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ABSTRACT

Large classes of selfsimilar (isospectral) flows can be viewed as continuous
analogues of certain matrix eigenvalue algorithms. In particular there exist families of
flows associated with the QR, LR, and Cholesky eigenvalue algorithms. This paper
uses Lie theory to develop a general theory of self-similar flows which includes the
OR, LR, and Cholesky flows as special cases. Also included are new families of flows
associated with the SR and HR eigenvalue algorithms. The basic theory produces
analogues of unshifted, single-step eigenvalue algorithms, but it is also shown how the
theory can be extended to include flows which are continuous analogues of shifted
and multiple-step eigenvalue algorithms.

——

1. INTRODUCTION

W. W. Symes [29] discovered that the finite, nonperiodic Toda flow [14,
22] is a continuous analogue of the wellknown QR algorithm [15, 31, 33].
Generalizations of the Toda flow were made in [10, 12, 23, 24]. All of these
generalizations are related to the QR algorithm, so we refer to the.m as OR
flows. In [32] a family of LR flows, flows related to the LR eigenvalue
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214 D.S. WATKINS AND L. ELSNER

algorithm, was introduced. In this paper we use elementary Lie theory to
develop a general theory of self-similar flows, in which the OR and LR f_IOWS
appear as special cases. Other interesting special cases are flows associated
with the SR algorithm [5, 8], and the HR algorithm [4-6]. We refer to the
eigenvalue algorithms collectively as FG algorithms. We will establish the
existence of FG flows associated with a very general class of FG algorithms.

a continuous analogue of the quotient-difference
algorithm, the predecessor of the LR algorithm, See also {17]. These develop-
ments seem to have been overlooked up to now.

the evolution of each such flow is described by a square matrix B(t) whose

Spectrum is invariant in time, This isospectral property follows from the fact
that B(¢) = F(t)~'B(O)F(t) for some nonsingular F(t). Thus, for all ¢, B(¢)
is similar to the initial matrix B(0). i '

ar flows associated with FG algorithms.
Section 7 handles the problem of contip

uing an FG flow after a singularity.

The HR flows, like the HR algorithm, present special difficulties in this

regard. These problems are addressed in Section §
In Section 9 we make a

further generalization which includes flows
associated with shifted, double-st ,

.
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flows considered in these papers are QR flows. The reason for this is that
the generalizations have been inspired by the classical theory of semisimple
Lie algebras [16]. In this theory the important group decompositions all have
a compact factor. In specific examples this compact factor is just a subgroup
of the unitary group. In order to obtain flows associated with the LR, SR,
and HR algorithms, one must consider group decompositions which do not

have a compact factor.

A recent paper by Chu and Norris [11] studies classes of flows which are
more general in the sense that they are generated by subspace decomposi-
tions which are not necessarily Lie algebra decompositions.

All matrices appearing in this paper are square matrices with real or
complex entries.

2. THE DIFFERENTIAL EQUATION OF A SELF-SIMILAR FLOW

Each of the self-similar flows studied in [32] and elsewhere arises from a
matrix differential equation of the form

B=BC-CB=[B,C].
Indeed one can prove the following theorem (cf. Lax [20], Flasc:'hka [14]),
which shows that just about any differential equation of this form gives rise to

a self-similar flow.

THEOREM 2.1.

(a) Consider the initial-value problem
B=[B,c] B(0)=BeC™", (1)

where C = C(t, B) is Lipschitz continuous in a neighborhood of (0, B). Then
(1) has a unique solution B(t) in some nonempty interval [0, f). The solution

B(t) = F(t) "'BF(t), (2)
where F(t) is the solution of the initial-value problem

F(¢) = F(¢)C(t, B(t)) F(0)=1. (3)
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(b) Conversely, Suppose B satisfies (2), where F is some diff'etl'entiable
matrix function satisfying F(O)=1. Then B(t) satisfies an initial-value
problem of the form (1), where C is given by C(t) = F(t)'F(¢).

Proof. (a): The fact that (1) has a unique local solution is clas;ical. Th.e
linear initial-value problem (3) also has 5 unique solution F on [0, f). F(t) is
nonsingular throughout [0, £); its inverse is the unique solution of the
initial-value problem H = — CH, HO)=1. To see that B satisfies (2), let
E(t)=F(t)‘lﬁF(t). Differentiate B to show that B satisfies (1). By the
uniqueness of the solution, B = B, (b): Conversely, suppose B satisfies (2),
and define C by C = p-1f - Just differentiate B to verify that it satisfies (1=

Obviously a self-similar flow can also be expressed in the form B(¢)=
G(t)BG(t)™ L In analogy with Theorem 2.1 we have

THEOREM 2.1'.

(a) Consider the initialvalue problem

B=[E.B]. B)=Becrn 4
where E = E(t, B) is Lipschitz continuous in g neighborhood of (0, ﬁ)- Then
(4) has a unique solution B(t) in some nonempty interval [0, f). The solution
satisfies

B(t)=c(¢)§c(t)-1, (5)

where G(t) is the solution of the initialvalue problem

G(t)=E(s, B(t))G(¢), G(0)=1. (6)

(t.>) Conversely, Suppose B satisfips (5), where

G i differentiable
matrix function satisfying GO)=1. Then o oome diff
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It is easy to check that they are identical. The reason this works is that B
commutes with itself. In fact, (1) and (4) are identical if and only if C + E
commutes with B. Consider, therefore, the more general situation in which
C(t, B)+ E(t, B) = f(t, B), where for each #, f(f,x):C —C is a function
defined on the spectrum of B. Then since f(t, B) commutes with B, (1) and
(4) are identical. It follows that the self-similar solution B(#) can be expressed
;1( t;’Vol different ways: B(t) = F(t)“lﬁF(t) = G(t)BG(t) !, where G(t)+#
i)~

3. ALGORITHMS OF QR TYPE (FG ALGORITHMS)

The finite, nonperiodic Toda flow and most of the generalizations which
have appeared in the literature are continuous analogues of the QR algorithm
for calculating the eigenvalues of a matrix. The LR (or LU ) flows introduced
in [32] are related in the same way to the LR eigenvalue algorithm. These
algorithms have the following general properties: Associated with each algo-
rithm is a pair of sets # and ¥, each of which is a closed subgroup of the
general linear group GL (F) (F =R or C), such that FNG={1} The
latter property guarantees that each A € GL,(F) has at most one factoriza-
tion of the form A = FG, where F€ % and GE€ 9. Sucha factorization will
be called an FG decomposition. Starting from a given matrix A € GL (F),
the algorithm produces a sequence of matrices A=Ay Ay A,,... as follows:
A, is factored into a product A; = F,, G, where F, € F and G, €Y.
gen the factors are multiplied together in the reverse order to yield A, .

us

Ai=E+1ai+1» GiiFir1= 4 (7)
We will refer to this general scheme as an FG algorithm. It is not guaranteed
that every A, has an FG decomposition. If some A, fails to have an FG
decomposition, the algorithm breaks down. _

In the QR algorithm & is taken to be the subgroup of unitary matrces,
and ¥ is the subgroup of upper triangular matrices with positive entries on
the main diagonal. Since every A € GL,(C) can be expressed as a pI'Ofill(.:t.of
Matrices of this form, the QR algorithm never fails to produce an llnﬁmte
Sequence. In the LR algorithm & is taken to be the subgroup of un.lt lower
triangular matrices, and ¢ is the subgroup of nonsingular upper triangular
matrices. Since not every nonsingular matrix has an LR decomposition, this
algorithm sometimes breaks down. Other FG algorithms are the SR and HR

algorithms, which will be introduced in Section 5.

- T M ST
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There are two fundamental relationships which are satisfied by.every FQ
algorithm. The first is self-similarity: every A, is similar to the starting matrix
A. From (7) we see immediately that

Letting

we have

An=FAF,=G,AG;", m=0102,... . (8)

Thus (A,) is a discrete analogue of a self-similar flow. In particular the
spectrum is preserved. The second fundamental relationship is

-

A"=F,G,., m=0,1,2,. .. (9)

This is easily proved by induction on m. Since F, € % and G, €9, (9
gives the unique FG decomposition of A™ If & , % and A satisfy certain

4. THE CONNECTION BETWEEN SELF-SIMILAR FLOWS AND
FG ALGORITHMS

Let # and ¥ be two closed sub
(One more hypothesis will be add
associated with this pair of sub - Let us see how we might associate
self-similar flows with this FG algorithm.

Every self<similar flow satisfies

B(t) = F(t) “BF(s)
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flow which satisfies a number of specific properties. To begin with, suppose
F(t)e & for all t. Suppose further that the flow has a second description

B(t) =G(t)BG(t) ", (11)

where G(0) = I and G(t)€ @ for all t. Associated with the functions F(t)
and G(t), respectively, are functions C(t)= F(t) 'F(t) and E(t)=
G(£)G(t) 1. The fact that (10) and (11) describe the same flow implies that
C(t)+ E(t) commutes with B(¢) for all t. Let us make the final assumption
that there exists a function f defined on the spectrum of B such that

C(¢)+ E(t)=f(B(t)) Vt=0. (12)

This is consistent with the commutativity requirement.

How is this flow related to the FG algorithm? Equations (10) and (11) are
analogues of (8). We also need an equation which corresponds to (9). An
analogue of (9) would have the form

At=F(t)G(t). (13)

To obtain necessary conditions for this equation, differentiate both sides:

(In A)A'=FG + FG
= FCG + FEG
- Ff(B)G

= F[F'f(B)F]G

= f(B)FG

= f(B)A". (14)
Since A* is nonsingular, we conclude that In A = f(B); that is, A = ¢f®, This
establishes the relationship which A and B must satisfy. Furthermore, a

Ds';““d,look at the chain of equations (14) reveals that F(¢)G(t) is a solution
the initial-value problem

K=f(B)K, K(0)=I.




D. S. WATKINS AND L. ELSNER

This problem has the unique solution K = ¢ 3", Thus

e™®' = F(1)G(1). (15)

This is the analogue of (9). Of course this is the same as (13)if A= o8

The connection between the flow and the FG algorithm is this: If the
initial matrices A and B are related by A = ¢f B then

A,=efBm) 019 (16)

If it happens that f(x)=Inzx, then
A,=B(m), m=01.2....

That is, the values of the self-similar flow at integer times coincide with the

iterates of the FG algorithm. To prove (16) compare (15) at ¢t = m with its

analogue (9). Since A = ¢/®, and the FC decomposition is unique,
F(m)=F,, G(m)=G,, m=0,1,2,. .. .

From (10), e/*®) = F(4)- L ABF(4) = F(t)™'AF(t). Thus, at integer times,

e/Bm) - p-14p (17)

t. Thus Equation (12)
amounts to a Lie-algebra decomposition. In order to satisfy (12) we must be

able to express f{B(t)) (which could be any matrix) as a sum of two matzices.
one from A(%), the other from A(¥). We shall see that if such a Lie algebra
decomposition exists, then the FG deco

A . mposition (15) also exists for ¢ in
some interval 0 <t <t. The existence of the FC flow follows.
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5. SUMMARY OF LIE-THEORETIC RESULTS

We summarize briefly the results on Lie groups and Lie algebras which
we will need. This section also introduces the principal examples which will
be used to illustrate the theory. Some good references to Lie theory are (3, 9,
13, 18, 18, 30]. A Lie group is an analytic manifold which has a group
structure whose multiplication and inversion operations are continuous with
respect to the topology of the manifold. The general linear group GL,(C)isa
Lie group, and so are its closed subgroups. As matrix practitioners we prefer
to work with matrices. Thus we view GL ,(C) as a group of matrices, and we
restrict our attention to GL (C) and its closed subgroups. Some important
examples of Lie groups of matrices are the nonsingular upper (lower)
triangular matrices, the unit upper (lower) triangular matrices (1’s on the
main diagonal), the unitary matrices, and the real orthogonal matrices.

A Lie algebra is a real vector space on which a nonassociative multiplica-
tion operation satisfying certain properties is defined. We need not list those
properties here. Two examples of Lie algebras are the real vector spaces
R™*" and C"*" with the commutator product

[X,Y]=XY-YX.

A Lie subalgebra of C™*" is any subspace (under real scalar multiplication)
which is closed under the commutator product. R™<" is a subalgebra of
C"™n_All of the Lie algebras which we shall consider are subalgebras of
C"Xr Some examples are the upper (lower) triangular matrices, the strictly
upper (lower) triangular matrices, the skew-Hermitian matrices, and the real
skew-symmetric matrices.

Let F=R or C. Associated with each Lie group ¥ CGL(F) is a Lie
algebra A(9). The simplest interpretation of A(#) is that it is the tangent
space of ¥ at the identity element I. This viewpoint is too simplistic for
tertain aspects of the theory, but it will suffice for our needs. A matrix
X€F™ " is a member of A(9) if and only if there exists a differentiable
function G(t) defined on a neighborhood of ¢ = 0 such that G(t) € ¢ for all
t, G(0) =1, and G(0)=X. It follows easily from the differentiation rules
(d/dt)G,G,) = GG, + G,G, and (d/dt)G(at) = aG(at) that A(%) is a
Vector space over the real numbers. Its dimension equals the dimension of
(the real manifold) @. It is also easy to show that A(#) is closed under the
commutator product; that is, it is a Lie algebra. For this we need to introduce

two preliminary results:

(1) f Ge ¥ and X € A(#), then GXG™' € A(¥).
@) I X is a differentiable function and X(t) € A(¥) for all ¢, then
X(t) e A(#) for all ¢.

R 5Y
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These are both easy to prove. Now let X,Y € A(¥). Then there exists a
function G(¢) € ¥ such that G(0)=1I and G(0) = X. From the two results
just stated, (d /dt)[G(t)YG(t)~!],_, is a member of A(%). Direct calcula-
tion shows that this derivative is just [X,Y]. Thus [X,Y] € A(¥).

For each of the groups which we will consider, it is easy to determine the
associated Lie algebra. A short list follows:

Group Algebra

Nonsingular upper (lower) triangular Upper (lower) triangular
Unit upper (lower) triangular

Strictly upper (lower) triangular
Unitary Skew-Hermitian
Real orthogonal Real skew-symmetric
Rotation Real skew-symmetric
Symplectic Hamiltonian

Since the tangent space at [ is completely determined by the characteris-
tics of & in any neighborhood of I, it can happen that two distinct subgroups
of GL,(C) have the same Lie algebra. For example, the Lie algebra of bOt.h
the orthogonal group and the rotation group is the skew-symmetric Lie
algebra. Let k(%) denote the connected component of ¥ which contains I.
Then, since I has a connected neighborhood, A(x(#)) = A(#). More gener-
ally A(9,) = A(%,) if and only if (¥,) = K(%,). In particular, two connected
subgroups of GL ,(C) have the same Lie algebra if and only if they are equal:

The exponential function plays an important role in Lie theory, as it

serves as a link between a Lie group and its associated Lie algebra. Indeed,
for any matrix C e C"** 5pd any Lie subgroup # of GL,(C), Ce A(#) i
and only if e € #. Another way to say this is that if F(t) is the unique
solution of the initial-value problem F = FC, F(0)=1, then F(t)€ # forall
¢ if and only if C& A(F). It turns out that this remains valid when C is
allowed to vary as a function

of ¢. This is one of the two key results for our
development.

THEOREM 5.1. Let C(t) be 4 continuous function from [t,,1,] into
C™*", and let F(t) be the solution of an initial-value problem .

F=FC, F(i)es (18)

on [ty,¢,], where F is any closedsubgroup of GL(C). Then F(t) € F for
all t & [to, t,] if and only if C(t) € A(F) for g1t ¢ "e( {t)o, t]. “

4 i Ay i
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Proof. The hypotheses of the theorem imply that F(t) is nonsingular for
all ¢ €[ty,t,], so C(t)=F(t) 'F(t). Suppose F(t)€ F for all £ € [ty 1,].
To see that C(f)e A(F) for £€ [ty t,], simply note that the function
G(t) = F(f)"'F(f + t) satisfies G(t) € F,G(0) =1, and G(0) =C(¥).

Conversely, suppose C(t) € A(¥) for all t € [, t,). Let {=
sup(t € [t,,t,]| F(t) € #). We must show that f=t, so suppose £ <t,.
Since # is closed, F(f) € #. It is easy to see that the tangent space of & at
a given point F is just the set {FX|X € A(¥)). Thus the quantity FC
defines a time-dependent, continuously varying vector field on the manifold
#, tangent to &. It follows that the initial-value problem F = FC, F (HHe F,
has a unique solution F(t)€ % for t in some neighborhood of f. This
solution must coincide with the solution of (18), which is also unique. Thus

F(t) € # for some t > {, a contradiction. n

A companion to Theorem 5.1 is the following.

Tueorem 5.17. Let E(t) be a continuous function from [ty t,] into
C" " and let G(t) be the solution of an initial-value problem

C=EG, G(t,)€¥

on [t t,], where & is any closed subgroup of GL(C). Then G(t)€ ¥ for
all t €[¢,,¢,] if and only if E(t) € A(¥) for all t € [to, 1]

This can be proved by arguments analogous to those used to prove
Theorem 5.1. Alternatively the theorem can be deduced from Theorem 5.1
by taking transposes. One need only note that the transpose of a Lie group of
matrices is also a group, the transpose of a Lie algebra of matrices is also a
Lie algebra, and A(97)= A(¥).

The next theorem is the other key result. It establishes conditions under
which matrices in a neighborhood of I can be guaranteed to have an FG
decomposition. As before, let F =R or C.

TueorEM 5.2. Let F and 9 be two closed subgroups of GL(F) such
that F (& = (I}. (Thus A(F)N A(F) = (0}.) Suppose F™" = A(¥)®
A(F). Then there exists an open set % C GL (F) containing 1, such that
every A € ¥ can be expressed (uniquely) as a product A = FG, where F € F
and G e 9.

Proof. (Cf. [16, Lemma 2.4, p. 115].) Let X,,..., X, be a basis for (the
real vector space) A(F ), and X, p,---» X, a basis for A(%). Then X,,..., X;

L
oty

5 -
RO, .-
TR
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is a basis for (the real vector space) F**". The map

k

Z ¢ X;

imj+l

i
(Crse-ency) = exp( Y c‘X‘-)exp

iw]

is an analytic map of R¥ into GL,(F). Since its Jacobian is nonzero at
(¢),...,¢,) =0, it maps some neighborhood of zero injectively onto a neigh-
borhood % of I in GL,(F). Thus every A€ is the image of some
(€1 -, ¢), and therefore A = FG, where F = exp(T{_ ,¢,X,)€ & and G =
exP()::(-ﬁ 16 X;) €Y. B

ExampLE 5.3. Let & be the group of unit lower triangular matrices and
¥ the group of nonsingular upper triangular matrices. Then A(.% ) is the Lie
algebra of strictly lower triangular matrices, and A(%) is the Lie algebra of
upper triangular matrices. Clearly C"*" = A(SF)®A(Y). Therefore, by The-
orem 3.2, there exists a neighborhood % of I such that every A € % can be
expressed as a product A = FG, where F is unit lower triangular and G is
upper triangular. Of course this is a weak version of a well-known fact: every

matrix whose leading principal submatrices are nonsingular (that is, almost
every matrix) has a unique LU decomposition.

ExampLe 5.4. Let # be the unitary group and & the group of upper
triangular matrices with positive, real entries on the main diagonal. Then
A(&) is the Lie algebra of skew-Hermitian matrices, and A(#) consists of
the upper triangular matrices having real main diagonal entries. It is easy to
show that C"*" = A(F)eo A(¥). Therefore, by Theorem 5.2, there exists @
neighborhood % of # such that every A€ ¥ can be expressed as A = FG,
where F is unitary and G is upper triangular with positive main diagonal

entries. Again we have a weak version of g wellknown fact: every square

matrix has a QR decomposition. In the real case # can be taken to be either
the orthogonal group or its subgroup, the rotation group, and % can be taken

to be the group of nonsingular real upper triangular matrices with positive
main diagonal entries. Then R"*X" = MF YBA(F).

ExampLE 55. Define ] € R2mx2n 1y

M,
“:'.".;\;
o
)
-
Y
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The real symplectic group is the set of S € GLg,(R) such that STJS=J. Let
F be the real symplectic group. Then A(F) is the set of X e RZ**%" guch
that (JX)T = JX. Matrices satisfying this equation are called Hamiltonian. A
matrix in R2"*2" is Hamiltonian if and only if it has the form

[k
K -AT[

where K = KT and N = NT. Let & be the subgroup of GLg,(R) consisting of
matrices of the form

Gy, Gm]
G= .
[Cm &

where each block is upper triangular, G, is strictly upper triangular, and G,
and G,, are nonsingular. It is not hard to show that ¢ is a group. In fact it is
the group of upper triangular matrices in disguise: Let P be the matrix of the
perfect shuffle permutation, which permutes the rows via

2k—1 if k<n,
2 lok—9n if k>n.

Then PGPT is exactly the group of nonsingular upper triangular matrices in
GL,,(R). The Lie algebra A(%) is the set of matrices of the form

X Xm]
X =
[Xm Xgo

such that all blocks are upper triangular and X, is strictly upper triangular.
Of course PA(F)PT is the Lie algebra of upper triangular matrices in
R_%xz"- Let ¢ be the subgroup of @ consisting of those matrices for which
diag{G,,} = diag{ Gy}, and G, is strictly upper triangular. In the corre-
sponding Lie algebra diag{X;} =diag{ Xz} and X, is strictly upper
triangular.

These groups and algebras have complex analogues. We have restricted
our attention to the real case because only this case is of interest in this
Paper.

Again it is not hard to show that R2"*2 = A(F)OA(Y). Thus there
exists a neighborhood % of I such that every A € ¥ can be expressed as a
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product A = FG, where F is symplectic and G € ¢. This is also known. In
[5] and [7], for example, it is shown that almost every A € GL,,(R) has such
a decomposition. All that is required is that the leading even principal minors
of PATJAPT be nonzero. This is called the SR decomposition. There is no
complex variant of this theorem [5, p. 247; 7]. The SR decomposition gives
rise to the SR algorithm, which is useful for calculating the eigenvalues of
Hamiltonian matrices [8]. The Hamiltonian eigenvalue problem arises in the
problem of solving the algebraic Riceati equation of control theory [9).

ExampLE 56. Let J€GL,(C) be any diagonal matrix whose main
diagonal entries are in{1, — 1}. Let # be the group of J-unitary matrices.
This is the set of G € GL (C) such that G*JG = J. Then A(F ) is the set of

X € C™*" such that (JX)* = — JX. These are called J-skew-Hermitian matri-

ces. Let & be the group of upper triangular matrices with positive main-diag-
onal entries. Then A(#) co

nsists of the upper triangular matrices with real
entries on the main diagonal. It is easy to show that C**" = A(F)OA(Y).
Therefore there is a neighborhood % of I such that every A €% can be
expressed as a product A = FG, where F is Junitary and G is upper

i i ecomposition. For a more precise result
see [5, p. 253] or 6], in which it is shown that A has an HR decomposition if
and only if the leading principal minors of A*JA have the same signs as the
respective leading principal minors of J. Note that in contrast to the
conditions in the preceding examples, it is not the case that this condition
holds for almost all matrices, but it does hold in a neighborhood of 1.

6. EXISTENCE OF FLOWS ASSOCIATED WITH FG ALGORITHMS

Let # and ¢ be closed subgroups of GL(F) such that # ¥ =1 and
F7X" = A(F)OA(F). Thus every M & Erxn can be expressed uniquely as
sum

M=p(M)+o(M), (19)

where p(M) € A(#) and o(M)eA(g)_ Equation (19) defines I rojec-
tors p:F" " —» A(F) and o:Fnxn 1 (19) defines linear p

= A(#). Associated with the subspace
pair (#,9) is an FG algorithm, as described in Section 3. The following
theorem establishes the existence of associated self-similar flows,

TueoreM 6.1. Let BeFrxn and let f be any locall ’ tion
", v analytic func
defined on the spectrum of B. Then, defining p and o as in (19), the

M
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initial-value problem
B=[B.o(f(B))] =[o(f(B)).,B]. B(0)=B (20)
has a unique solution on some nonempty interval [0, f). The solution satisfies
B(t)=F(t) 'BF(t)=G(t)BG(t) ', te[o,f),  (21)
where F and G are the solutions of
F=Fp(f(B)), F(0)=I, (22)
G=o(f(B))G, G(0)=1, (23)

respectively. F(t) & F and G(t)€ ¥ for all t €0, f). They are related by
the equation

/B =F(1)G(t), te][0,f), (24)

which gives the FG decomposition of e,

Proof. By Theorem 5.2 there exists a neighborhood % of I such that
every member of @ has an FG decomposition. For values of ¢ near zero,
"B Jies in &. Choose f > 0 so that e® € for all ¢ €[0,f), and let
F(tye # and G(t)€¥ be uniquely defined on [0, f) by (24). Clearly
F(0)=TI and G(0) = I. Differentiating (24), we obtain

A(B)ef® = F(£)G(t)+ F(t)G(t).
Premultiplying by F(¢t)~! and postmultiplying by G(t)™}, we find that
F(t)_1f(1§)F(t)=F(t)—lF(t)+d(t)G(t)_l- (25)

Define B(t) for t €[0,f) by B(t)= F(t)’_lﬁF (t). Then the l_eft-hand side of
(25) is just f(B(t)). Let C(t)=F(t)"'F(t) and E(t)=G(#)G(*)"". By
Theorems 5.1 and 5.17, respectively, C(t) € A(F) and E(t) € A(¥). Thus
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(25) gives the unique decomposition of f{B(t)) into components in A(F)
and A(¥):

F7IF =C=p(f(B)), (26)
GG~ '=E=0(f(B)). (27)

Applying Theorem 2.1, part (b), we see that B is a solution of the initial-value
problem (20). Since the right-hand side of (20) is locally Lipschitz, this
solution is unique. Rearranging (26) and (27) we find that F and G are the
(unique) solutions of (22) and (23), respectively. Our definition of B(t)
establishes half of (21). The other half is a consequence of part (a) of
Theorem 2.1". Since (24) also holds by definition, the proof is now complete:

In the proof we used the differentiation formula

_g.t.ef(é)t = f(B)eftBn,

It is instructive to repeat the proof using the alternative formula
ief(ﬁ)t = ef(ﬁ)tf(ﬁ)
dt )

One then defines B by B(t)= G(t)l?G(t)‘1 and applies Theorems 2.1’, part
(b), and 2.1, part (a), instead of 2.1, part (b), and 2.1, part (a).
Theorem 6.1 establishes the existence of flows satisfying all of the

conditions outlined in Section 4. Thus these flows are continuous analogues of
the FG algorithm, in the sense that (16) is satisfied.

ExampLe 6.2 (QR flows). Taking # to be the unitary group and & the
group of upper triangular matrices with positive entries on the main diagonal,
we obtain the QR flows,
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ExampLE 6.4 (SR flows). Taking # and & to be as in Example 5.5, we
obtain the family of SR flows, continuous extensions of the SR algorithm.

ExampLE 6.5 (HR flows). Taking # and ¢ as in Example 5.6, we
obtain HR flows.

It is useful to restate as a theorem some of the conclusions of the proof of
Theorem 6.1.

TueoREM 6.6. Let #, 9, B, and f be as specified at the beginning of
this section. Let $ be a nonempty interval, and suppose that for all t € S

ef®r = F(¢)G(t),

where F(tye & and G(t)e 9. Let B(t)=F(t) 'BF(t)=G(1)BG(t) ™"
Then F, G, and B satisfy the differential equations F =Fp(f(B)), G=
o( A(B)G, and B = B, p( fB))] = [6( f{B)), B, respectively, on L.

The proof is contained in the proof of Theorem 6.1.

7. SINGULARITIES IN SELF-SIMILAR FLOWS

The existence of a solution to the initial-value problem (20) is guar antt?ed
only on some bounded interval [0, f), which could be very short. The solution
fails to exist at £ if and only if

lim [|B(¢)]=c0.

t—i-

It is clear from Theorem 6.6 that B(t) cannot have such a singularity as long
as ef% has an FG decomposition (24). Conversely, as long as the solution
exists, so does the FG decomposition of ¢/(””. For suppose B(t) exists and
remains bounded on [0,#]. Then the linear differential equations (22) and
(23) each satisfy a Lipschitz condition, so they have unique solutions F(¢)
and G(t), respectively, on [0,f]. By Theorems 5.1 and 5.17, F(t)€ ¥ and
G(t)e ¥ for all te [0, f]. The equations (14) with C = p(f(B)) and E=
o( f(B)) show that the product F(t)G(¢) satisfies the initial-value problem
K=f(B)K, K(0)=1I. Thus ¢®* = F(t)G(t); that is, """ has an FG
ecomposition.

Ao
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This answers the question of when singularities occur. Since the QR
decomposition never fails to exist, the OR flows never have singularities. The
other examples of flows which we have considered all can exhibit singulari-
ties.
One can also ask what happens after a singularity. The decomposition
efBr = F(t)G(t) provides a canonical way of continuing the flow, provided
that this decomposition exists after the singularity. Using the F(t) or the
G(t) so defined, we can define B(t)= F(t) 'BF(t) or equivalently B(t)=
G(t)BG(t)"!. This B satisfies the differential equation B = (B, p(f(B))] =
[e( f(B)), B].

The LR and SR flows can always be continued after a singularity,
because the points (in time) at which the LR or SR decomposition fails to
exist are isolated. We will prove this in the LR case, the SR case being
similar, The LR decomposition fails to exist if and only if one of the leading
principal minors of ¢! is zero. Let fi(t) denote the ith leading principal
minor of ef®", and let )= fi()f(t) - - - £.(t). Then f(t) is an analytic
function whose zeros mark the points at which ¢/®" fails to have an LR
decomposition. Since f is analytic and nonzero, these points must be isolated.

Another way of viewing the continuation of flows is to r B(t) asa
function of a complex variable. Suppose the decomposition ¢A®* = F (t)G(t)
exists except at isolated singular points in the complex plane. The functions
F(t) and G(t) are in fact analytic functions of the complex variable ¢, as is
B(t)=F(t)'BF(t) = G(t)BG(t)~". Thus a singularity on the real axis can

be sidestepped in a unique manner by making a short detour into the
complex plane.

8. CONTINUING THE HR FLOWS

main-diagonal entries and the set of J-unitary matrices—that is, the matrices
satisfying H*JH = ], where ] is a giv

en diagonal matrix with + 1’s on the
main diagonal. Let ® denote the former group and # the latter. The
problem is that the set of matrices
A =HR, where HE o and Re

only the HR flows, but the discrete HR algorithm as well. In the case of the
discrete algorithm the problem is handled as follows: Instead of requiring that
H satisty H*JH = ], it is allowed that H*JH = J, where ], ke J, is diagons]
with +1's on the main diagonal. Such an H i called (J, f):unitary. By

dd & i« ad A

T
S
e T
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Sylvester's law of inertia J and f must have the same number of —1’s on the
main diagonal. For a given J, almost every A € GL(C) can be written
(uniquely) as a product A = HR, where H is (J, f)unitary for some J, and
R € A. The exact result is as follows:

Tueorem 8.1. Given A € GL (C), there exist unique (], [ yunitary H
and R € R such that A = HR if and only if the ith principal minor A*JA
agrees in sign with the ith principal minor of ] fori=1,2,...,n.

For a proof see for example [6, Theorem 2.3] or [5, p. 253].

The only matrices which do not have an HR decomposition of any kind
are those A for which one of the leading principal minors of A*JA is zero.
This is a set of Lebesgue measure zero in C"*".

Modified to accommodate changes in J, the HR algorithm has the
following form: Given initial A and J, let A;=A and J,=J. Then given
A;_, and J,_,, the ith step produces A, and J, by

Ai—lzﬁiﬁi’ ﬁiﬁi=Ai’

\'»Vhere 17‘ is (J,_,, J;)-unitary and ﬁi & A. The algorithm breaks down at step
i if and only if some leading principal minor of A}_,J; 4, is zero.

Defining H, = H,H,--- H, and R, =R, "' RyR,, the fundamental
equations for the analysis of the HR algorithm are

A, =H'AH, (28)
A"=H R, (29)

Notice that H, is (J,, Jyunitary. X
The HR flows can be extended in the same spirit. Given B, J, and f,
Consider the decomposition

e’ = H(¢)R(t), (30)

“fhere H(t) is (J, J(¢))-unitary for some J(t), and R(t) € % This decomposi-
tion exists, provided that the leading principal minors of A(t)*JA(t) are
nonzero, where A(t)= 2 7B We can define B(t) at all such points by

B(t) = H(t) “'BH(t) = R(t)BR(t) -1
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This flow evaluated at integer times coincides with the HR algorithm in the
sense described in Section 4. That is, if A=¢® then A, =efB™) for
m=1,2,3,.... Indeed, (30) evaluated at integer times gives

A = H(m)R(m).

Comparing this equation with (29) and recalling that the HR decomposition
is unique, we conclude that H(m)= H_, R(m)=R_, and J(m)=],. Thus
A, =H.'AH_= H(m)" e SBH(m) = ¢ (Bom),

We note further that the flow has a singularity at each point at which J(t)

changes: The leading principal minors of J(t) have the same sign as the
leading principal minors of

[eﬂé)t]s][eﬂﬁ)t]_ (31)

This determines J(t) uniquely. In order for J(t) to change, one of the leading
principal minors of (31) must pass through zero; that is, the flow must have a
singularity. The converse is almost true as well: If one of the leading principal
minors becomes zero, this will almost always signal a change in J(t).
However, it can occasionally happen that the minor touches the t-axis
without changing sign. In these rare cases a singularity occurs without a
change in J(t).

Finally we show that the function B(t) also satisfies a differential
equation of the form

B=[B,o(f(B))] = [o(f(B)), B], (32)

for appropriate choices of p and o, on
singularities. Suppose .# is an open
singularities. Throughout this intery

t € £. Let 5 denote the group of f-umtary matrices, and let p and o be the
unique projectors for which M = p(M) + o(M), p(M) € A(H#), and o(M) €
A(#). We claim that for this choice of p and o, B(t) satisfies (32) on S

Throughout .# the HR decomposition (30) exists, where H(t) is (J, F)-unitary-
Proceeding as in the proof of Theorem 6.1 we differentiate (30) to find that

each interval in which the flow has no
interval in which the flow _has no
K(t) is constant, say J(¢)=J for all

FIB(£)y = H(t) 'H(t)+ R(t)R(¢) ",

Let C(t)= H(t) 'H(t). At this point we would like to invoke Theorem 5.1
to conclude that C(t) € A(#) forall t € o However Theorem 5.1 does not
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apply, because H(¢) does not belong to #; H(t) is (J, F)-unitary. Tt is
nevertheless true that C(t) € £(#). Given { € S, let H\(t) = H(f)'H({ +
t). Then H(t)€ # for values of ¢t near zero, H(0)=1I, and H(0) = C(%).
Therefore C(f) € A(#). Now we can proceed exactly as in Theorem 6.1 to
show that B(t) satisfies (32) in f. It is important to realize that the
projectors p and o change whenever J(t) changes.

9. FLOWS ASSOCIATED WITH SHIFTED AND GENERALIZED
FG ALGORITHMS

Generalized FG Algorithm

Let A€ F"*", and let # and 9 be closed subgroups of GL ,(F) such
that F"*" = A(F)OA(¥). Let p,, 0y, p3,--. be a sequence of functions
defined on the spectrum of A, such that p,( A_) is nonsingular for i = 1,2,3,....
Let A,=A, and for i =1,2,3,... define F,€ # and G,€¥ by the FG

decomposition
p(Ai-1) = i(-;—i‘
Then define A, by
A= E—lAi-lFi = éf‘Ai—la—l-
This is the generalized FG algorithm. It contains the shifted FG algorithm as
2 special case: p(t)=¢ — o, where 0),0,,05,... is the sequence of shifts.

The double-shift FG algorithm is gotten by taking p(t)=(t - o Xt —7)
where (o, 1,) is the pair of shifts for the ith double step. Define

— -

Fi=F1F2‘”Fss Ga=(_;i"'(—;2é-1'
The fundamental equations for the generalized FG algorithm are

A, = F;'AF, =G,AG," (33)
and

Pm(A)"'Pz(A)Pl(A):Fme- (34)

The first is obvious; the second is proved by induction on m.
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The goal of this section is to construct flows
B(t)=F(t) 'BF(t)=G(t)Bc(t)
such that B(f)= A, for j=0,1,2,... or, more generally,
?(B(j))=A, j=0,1,2,..,

for some given function P.

Generalizing the FG Flows

Let p:F™ " 5 A(F) and 0:F"*" > A(¥) be the projectors defined in
Section 6. Let f(¢, x) be a function defined on [0,oo)><sp(l§), where sp(B)
denotes the spectrum of B. Suppose f is piecewise continuous in ¢t and

locally analytic in x. We will consider flows defined by differential equations
of the form

B=[B.o(f(t.B(t)))] = [o(£(2.B(1)}),B],  B(O)=5. (35
The following generalization of Theorem 6,1 holds.

TaeEoREM 9.1. The initial-value problem (35) has a unique solution on
some nonempty interval [0, ). The solution satisfies

B(t) = F(t) " "BF(t)=G(t)BG(t) ", (36)

where F and G are the solutions of

F=Fp(f(t,B(t)}), F(0)=1, (37)
G=o(f{t,B(t)))G, G(0) =1, (38)
respectively. F(t)€ F and G

()€Y for all t €[0,). They are related by
the equation

exP(fO'f(s, ﬁ)ds} =F(t)G(t), (39)

which gives the FG decomposition of exp{ fif(s, B)ds }.

R l‘ «
ik K -
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Proof. The proof is the same as that of Theorem 6.1. The only signifi-
cant difference is that f{B)t is replaced by the integral

M(t) = ]:f(s, B)ds.

The differentiation formulas which are needed are

gt_emc),_,z eM(t)f(t’ ﬁ)

= f(t, B)e™".

They are valid because all matrices involved are functions of B. Thus all
commute with B and with each other. u

Corresponding to Theorem 6.8 we have

Turorem 9.2. Let 5 be any nonempty interval, and suppose that for
dlte s

exp{jo‘f(s, ﬁ)ds} = F(£)G(1),

R 0 -1
where F(t)c & and G(t)€¥. Let B(t)=F(t) 'BF(t)=G()BG() .
Then F, G, and B satisfy the differential equations (37), (38), and (35)
Tespectively, on S,

The Connection between the Generalized FG Algorithms and FG Flows

Tueorem 9.3. Let ¢ be a locally analytic functio-n c?eﬁnefd on ’the
Spectrum of B, and let all other terms be as defined earlier in this section.
Suppose & = g(B), and

[ flo,x)ds=logpo(x)),  i=1.2:3 (40)
i—-1

for all x in the spectrum of B. Then the generalized FG algorithm and the FG
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flow based on f are related by

A, =o(B(m)), m=0,1,2,....

Proof. Substituting B for x in (40), summing from 1 to m, and taking
exponents, we find that, for m=1,2,3,.. .,

exp(j:f(s,I§)ds)=pl(1i)-~pm(zi). (41)
Then by (39) and (34)

F(m)G(m)=F,G,, m=1203,....

By the uniqueness of the FG decomposition, F(m)=F, and G(m)= G,
Thus A, = F'AF,, = F(m)~%p( B)F(m) = o( B(m)). .

ExampLE 94. Define f to be the step function
flt,z) =logp(o(x)), i-1<t<i, i=123,. ...

This f certainly satisfies (40), so it gives rise to a flow of the desired type
Since f is constant on each interval [i = 1,4), this flow is just a patchwork of

segments of flows of the type discussed in earlier sections. At each integer
time the flow is changed to correspond to a new shift.

ExampLE 9.5. A slightly less crude example is obtained by requiring that
A, x) be piecewise linear and continuous in ¢t. For 0 < ¢ <1 define fit,x)=
2t log p (@(x)). Then f(0,x)=0 and

j(;lf(t,x)dt=logpl((p(x)), (42)

Now suppose f has been defined for

i-1<t<i, and let a x)=lim, -
f(t, x). The conditions of continuity

at ¢ =i and linearity in ¢ force the form

A8, 2) = a(x) + m(x)(¢ - i),

iSt<i+l, (43)
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for some m,(x). In addition (40) requires

logp,,o(@(x)) = [ (a(x)+ m(x)(¢ = i) dt =a,(x) + fm(x)-

Thus
m,(x) = 2log p,. (#(x)) - 2a(x). (44)
Noting that a,, (x) = lim, ., f(t, x), we get a recursion formula for a;:
a,,(x)=a (x)+m(x). (45)
Equations (42)-(45) specify the desired flow.

ExampLe 9.6. Clearly the technique of the previous example can be
generalized to yield a flow satisfying the conditions of Theorem 9.3 for which
f(t,x) is piecewise quadratic in ¢ and C' at integer values of t or, more
generally, piecewise a polynomial of degree j and C’ -1 at integer times.
There is no point in writing down the formulas here. The choices j =0 and 1
give the flows of Examples 9.4 and 9.5, respectively.

ExampLe 9.7. From Example 9.6 we see that there are flows of the
desired type for which f is a C! function of t, where j can be made
arbitrarily large. Now we construct a flow which is C* in £. Let Y(t) €

C5°(0,1) have the property [A(t)dt = 1. Define

ft, x) =g(t - i)logp,, (9(x)), ist<i+l, i=012...
Then f satisfies (40) and is a C* function of t. This flow is stationary on a
neighborhood of each integer.

10. FLOWS FOR WHICH # n¥ # (I}

There is at least one important situation in which the Lie-group and
Lie-algebra decompositions are not unique.

ExampLe 10.1. Let % and ¥ denote the Lie groups of.nonsingu.lar
lower and upper triangular matrices, respectively. Then # N & is nontrivial;

=5
K SO
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it consists of the nonsingular diagonal matrices. It is nevertheless possible to
specify uniquely a decomposition

C=p(C)+46(C),

where p(C)€ A(F) and o(C) € A(¥), provided that we make the addi-
tional requirement

diag(p(C)) = diag{(C)}.

This decompostion leads to the Cholesky flows introduced in [32].

It is natural to ask to what extent the theorems which we have established
extend to this and similar situations. It turns out that practically everything
carries over. Let us suppose we have Lie groups % and ¢ for which
A(F)NA(F)+ (0} but A(F)+ A(9)=F"*" Suppose in addition that
there exist locally Lipschitz continuous functions p:F"*" — A(F) and
0:F"*" - A(%) such that for all M € Fn*»

M=p(M)+o(M).
(This is certainly the case in Example 10.1.) Then the initial-value problem

B=[B.o(f(B))] = [o(£(B)).B], B(0)=A

has a unique solution on some interval [0,£) because the right-hand side of
the differential equation is locally Lipschitz. By part (a) of Theorems 2.1 and
2.1’ this solution satisfies

B(t)=F(t) "'BF(t) =G(t)BG(t) !,
where F and G are the solutions of
F=Fp(f(3))s F(0)=1,

G=¢(f(B))G, G(0)=1.
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Differentiating FG, we find as in (14) that FG satisfies the initial-value
problem K = f{B)K, K(0) = I. Thus

e = F(£)G(1). (46)

While F(t)€ # and G(t)E Y, it is no longer true that these conditions
together with (48) specify F and G uniquely. Thus the equation (46) cannot
be used to continue the flow after singularities, unless some additional
condition is placed on the decomposition. In the case of the Cholesky flows
such a condition exists: diag{ F(¢)} = diag{ G(¢)}-

11. PRESERVATION OF STRUCTURE

A matrix C=(c,,) is lower k-banded if c;; =0 whenever i—-j>k Cis
upper k-banded if CT is lower k-banded. C is k-banded if it is both upper
and lower k-banded.

Tueorem 11.1. Let B(t) be the solution of an FG flow with initial
condition B(0)=B. If all elements of either F or 9 are upper (lower)
triangular, and B is lower (upper) k-banded, then B(t) is lower (upper)
k-banded for all t.

Proof. Without loss of generality suppose that all matrices in & are
Upper triangular, and B is lower k-banded. It is obvious that the product of a
lower k-banded matrix with an upper triangular matrix in either order is
lower k-banded. Since B(t) = F(t)"'BF(t), and F(t)~! and F(t) are upper
triangular, B(t) must be lower k-banded for all . =

Treorem 11.2. Let B(t) be the solution of an FG flow with initial
C;’l"dition B(O) = B. If Be A(F) (M¥)), then B(t)€ MF) (M¥)) for
all ¢,

Proof. Assume Be A(%). We use the equation B(t) =G(t)ﬁG(f)‘1,
Fix ¢, and write B = GBG ™" for simplicity. Since B € A(¥), there exists a
differentiable function Y(s) defined for s near zero, such that Y(s)€ ¥ for
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all 5, Y(0) =1, and Y(0) = B. Let Z(s)= GY(s)G" . Then Z(s)€ ¢ for all
$, Z(0)=1, and Z(0)=GBG ' = B. Thus B(t) = B € A(¥). |

CoroLLaRrY 11.3. In an SR flow, if B is Hamiltonian, then B(t) is
Hamiltonian for all t.

CoroLLary 114. In a QR flow, if B is skew-Hermitian, then B(t) is
skew-Hermitian for all t.

CoroLrLary 11.5. In an HR flow, if B is J-skew-Hermitian, B(t) is
J-skew-Hermitian for all t.

CoroLLaRY 118. In any flow for which the members of either F or 9
are upper (lower) triangular, if B is upper (lower) triangular, then B(t)
upper (lower) triangular for all ¢.

Of course Corollary 11.6 also follows from Theorem 11.1.

Tueorem 11.7. In an HR flow, if B is J-Hermitian, then B(t) is
J-Hermitian for all ¢.

Proof. B(t)= H(t)—II}H(t), where H(t) is J-unitary. A similarity trans-
formation by a Junitary matrix preserves the J-Hermitian property. .

Taking J = I in Theorem 11.7, we get the known result that the QR flows
preserve Hermitian matrices.

CoroLLary 118.  In an HR flow, if B is k-banded and J-Hermitian or
J-skew-Hermitian, then B(t) is k-banded for all ¢.
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