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For k nonnegative n-by-n matrices A,, . .., A, we consider the matrix
C=A o 0 AP,

where a,>0,i=1,...,k, “o” is the (entry-wise) Hadamard product and 4 = (af) for A= (a;;);1e.C
is the component-wise weighted geometric mean of A, A,, ..., A, if Y a,=1. It is shown that for

k
Y «;> 1 the inequality
i=1

p(AGim) G . .oA‘(‘a"') QP(AI)“ i 'P(At)n

holds. Here p denotes the spectral radius. The case of equality is characterized and it is shown that p(C),
considered as a function of a = («,, . . . , %), is convex. This generalizes recent results of Schwenk, and of
Karlin-Ost. Similarly, we consider for A > 0 the comparison matrix M(A), where M(A);;= a;;for i =j, and
= —a;; for i #j. f a(A) denotes the minimal real eigenvalue of M(4) then it is shown that if a(4;) >0,
i=1,...,kand Y}, ;=1 the dual inequality,
G(AFV o -0 ALY Z a(A,) - - o (A )™

holds. Certain other inequalities, some already known, are related to these, and several characterizations
are given for another quantity associated with a nonnegative matrix.

1. INTRODUCTION AND DEFINITIONS

The Hadamard (or component-wise) product of two n-by-n matrices 4 = (a;;) and
B=(b;) is the n-by-n matrix defined and denoted by A4-B=(a;b;). For a
component-wise nonnegative matrix A = (a;;) (denoted 4 = 0), and a >0, we define

* The work of this author was supported in part by National Science Foundation grant DMS-8713762
and by Office of Naval Research contracts N00014-86-K-0012 and N00014-87-K-0661.
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A® = (a). To have continuity in «, for o =0 also, we adopt the convention that
0° =0. Let p(A) denote the spectral radius of A, which, for A >0, is an eigenvalue
(the Perron root) of 4. Our first result is the following:

IfA,, ..., A, are nonnegative n-by-n matrices, and «, . . . , &, are positive numbers
such that Y *_, o; > 1, then
p(AfY o 0 AP < p(A)" - - - p(A)™. (1.1)
We initially prove the case k=2 and «, + 2, =1 (Lemma 1)
p(A™ o B ~9) < p(A)p(B)' (1.2)
and then note the case k=1 (Lemma 2) '
p(AV) < p(AY, t=1. (1.3)

Then, the general result follows by induction (Theorem 1).
A special case is p(A4 o B) < p(4)p(B), A, B> 0 which does not hold for the usual
matrix product. Another case is

plA® - ATH) < p(A) (14)
which was proved in [12] and [9]. Slightly more general is
p(A® o BPY< p(4)} p(B)? (1.5)

which was proved independently and from a point of view different from our work
in [10]. The reference [10], which appeared after our proof of (1.1), also alludes,
without proof, to the special case of (1.1) in which ) a;=1. We then turn to the
question of equality in {1.1). In case all 4, are irreducible and ) o, = 1, the necessary
and sufficient condition is that all A, are essentially diagonally similar, i.e. there exist
v; >0 and positive diagonal matrices D; such that

.yiAi=Dl'—1A1Dl" i=2,...,k-

Using this we are able to give a characterization also in the general case.
After that we derive similar results for M-matrices. For A >0 we denote by o¢(A)
the minimal real eigenvalue of M(A), where the comparison matrix M(A)is defined by

a;;, i=j ..
M(A)ij={~_a f#_ji, l,}=1,...,n.
ij

We prove a result dual to (1.1)

(Ao o AN Z a(A,) - -0 (A)™ (1.6)

under the condition that 6(4,)>0,i=1,...,k,and } ., o;> 1.

Also the question of equality s treated. The cases of equality in (1.6) are quite
similar to those mentioned above for (1.1).

We also study the question of convexity of the left-hand side of (1.1) as a function
of 2,25, ..., ;. and derive several related inequalities. We close by showing that

several functions of the entries of a nonnegative matrix, some of which have been
studied elsewhere. are equal.
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This note is a by-product of [9]. There (1.4) was proved in two different ways and
the case of equality also discussed in the reducible case. We also observed that the
more general inequality (1.1) holds. As the emphasis in [9] was upon various
symmetric matrices associated with a nonnegative matrix, we felt that this observation
deserved a separate note. Also, although there is an overlap with [10], in which (1.5)
is proven, together with a discussion of equality in the irreducible case, we give a
much more complete and rather different treatment of (1.1) as well as a number of
related results.

We conclude this introduction by mentioning some well known or simple results,
which we refer to later on. Use will be made of the Holder inequality [1]in the form

n n a n 1—-a
s é?m"“S(Z c,.)(z m) |
i=1 i=1 i=1

7,20, &=20, i=1,...,n, 0<a<gt (1.7)

where for 0 <o < 1 equality holds iff = ({5, . . -, ¢,) and n=(1,,...,n,) are linearly
dependent. .
In the set of all nonnegative n-by-n matrices we make use of the equivaience relation

of diagonal similarity:

42 B 3A=diagd,,...,5,) with 8,>0,i=1,...,nsuch that 4=A""BA.
The following facts are easily observed for 4, B> 0:

D D

i) A~B,a>0 = A® ~B®

. D D p

(i) A~B, C~E=>A-C~B-E
D (1.8)
(iii) A~ B=>p(4)=p(B)

D
(iv) A >0 irreducible=>38>0, B~ A and B has constant row sums.

2. THE FIRST INEQUALITY

In this section we prove the following inequality.

THEOREM 1 Let Ay, ..., A, be nonnegative n-by-n matrices, and o, . . ., % positive
numbers such that
k
Y =1
i=1
Then
pAE o0 AP S p(A ) pLAJ™ (.1)

The proof of (2.1)is organized as follows: We first give two proofs of (2.1) for the case
k

215-':1-

i=1
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Then we extend this result to

k
z 2,21
i=1
with the help of the subsequent Lemma 2.
Let R% ={xeR* x;20,i=1,...,k}. Fora=(x,,...,%)eR" define
A(1)= Atlzn . A}:"J

@(a)= p(A(x))
and as long as ¢(x)>0
Y(a) =log o(2).

The entries a;;(a) of A(x) are either identically zero or log-convex on R% . The result
of [11] tells us that either ¢ =0 in R% or ¢(a) > 0 throughout and ¢ (and hence ¢)
is convex in R%. (Although only stated in [11] for functions of one variable, it is
obvious that the conclusions are also valid for functions of several variables.)If ¢ =0
then (2.1) holds. If ¢ >0 and a = (%, ..., o)e R, with Y a,=1, then

k
o= Z %€ e;
i=1

where e; are the usual unit vectors. Hence
k k
Y)< Y ae) < X, % log p(A) (2.2)
i=1 i=1
which is just (2.1) in logarithmic form. Here we have used in the second inequality that
Ale)=AP - A ..o A0 < 4. elementwise.

This approach does not, however, yield the possibility of discussing the case of equality
in (2.1).

Hence a second proof follows. It is based on

LemmMa 1 If A20,B>0,0<a<1, then
p(A® o BY ) < p(A)p(B) . (23)
Observe that this is just the special case k=2 and } «; =1 of (2.1).

Proof of Lemma 1 The inequality (2.3) is obviously true for p(4) =0 or p(B)=0
and also for « =0 or « = 1. Using a continuity argument we may assume that A and

B are irreducible and by (1.8) that both have row sums 1. We have to show that
under these assumptions

C=A®-B""9 gatisfies p(C)< 1.
If z>0 is a nonnegative eigenvector of C, Cz = p(C)z and k is such that

Zk =max Z,-,
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then by (1.7)
pLC)z, = (Czk = Z Cisi =
i=1

n n
a Ll —a a hl—a
ag;by; Ziﬁ(z yiOi )zk
i=1 i=1

" af n 1-a
< (; au) (; bu) Zy- (2.4)

Hence p(C)< 1 and the lemma is proved.
A simple induction leads now to a proof of (2.1) for Y o, =1 for general k. Assume
that (2.1) holds with k replaced by k —1 and define B = 0 by

B“"“""’—“A(la‘)c- . _OA}‘af—lx);
v=1,.... k—1,Y%1p,=1and
B=AfYo. .0 AfsY. (2.5)

hence with g, = a,(1 —x)7"

Now
p(A(@)) = p(B ™o A™) < p(B)' ~p(Af™ by (2.3)
<[p(A P - p(Ap- P77 p(4,)™ by assumption
=p(A4,)" - p(A™. (2.6)

This finishes the second proof of (2.1) in the case Y a;=1. The general case then
follows from

LemMMAa 2 If A=0and 121 then
p(A™) < p(A). @7)

Proof As usual we need to prove (2.7) only for irreducible 4 and by (1.8) we may
assume that A4 has row sums 1. But then for 121, AY < A (elementwise) and (2.7)
holds because of the monotonicity of the Perron root.

We observe that for t < 1 the inequality that reverses (2.7)is valid, i.e. p(A¥) > p(A).
As for t < | we have generically the strict inequality, so we see that (2.1) is not true
for ) ao; < 1.

We return to the proof of (2.1) and consider the case t=Yr,0,21 Define
yi=a;t™1, %, y;= 1. Then by Lemma 2

p(A(@)) = p((AYV o+ - -0 APND) < p(AFW oo AP (2.8)
and applying the already proved part of Theorem 1 the right-hand side is
< (p(A)" - p(AY) = p(A,) - - - p(AR)™ 2.9)

Remark By linearization of (2.3), i.c. by replacing A by I + ¢4, B by I +¢B, and
considering only the terms of first order in & on both sides of (2.3), we get

p(C(a, A, B)) < ap(A) + (1 — ) p(B) (2.10)
in which 0<a <1, A, B>0and C(a, 4, B)= (C;;) is given by

_{aaii+(1 —a)by, i=j
Yoo lagble i#j.
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A corresponding result for more than two factors follows from (2.1). Observe that
(2.10) is wrong if we replace the nondiagonal geometric means by arithmetic means,
as in general p(xA4 + (1 — 2)B) does not compare with ap(A)+ (1 —2)p(B). In the
special case a;=b;; (i #j) the inequality (2.10) is well known and exhibits the
convexity of the spectral radius considered as a function of the diagonal. See [3]-[5].

[71.

3. THE CASE OF EQUALITY

We study now the case of equality in the preceding results. It is obvious that we
may assume p(4,) #0,i =1, ..., kas otherwise equality holds trivially. We start with

Lemma 3 If 0 <a < 1,and A and B are irreducible nonnegative n-by-n matrices, and

p(A™ o B ") = p(A)'p(B)' 7, (3.1)

D
then there exists y > 0 such that yA ~ B.

Remark This result generalizes results in [9] and [10] (and corrects a slight error
in the latter).

Proof As in the proof of Lemma 1 we assume, without loss of generality, that A
and B both have row sums 1. Then in (2.4) all inequalities are equalities. By the
equality condition in Holder’s inequality (1.7) we get a,; = y,by, i=1,...,nand by
the equality of the row sums y, = 1. In addition a,; # 0 implies z; = z, (= max!): hence,
by the irreducibility of A (since each i is connected to k by a path in the graph of
A), z;,=z fori=1,...,n and by the reasoning above A = B.

Before stating the general equality condition we introduce the following notation.

For @#uc{l,2,...,n}, A[u] denotes the principal submatrix of A consisting of
the rows and columns of A with indices in p.

THEOREM 2 Let A; be a nonnegative n-by-n matrix with p(Ai) >0,0;>0,i=1,...,k
and

k
Y a;=1. (3.2)
i=1
Then the following are equivalent:
(1) equality holds in (2.1), i.e.
p(AP o '°A§¢°"))=,0(A1)" e p{A)™ (3.3)

and

(ID) uc{l,... ., n}, u# & such that the following holds fori=1,..., k.
(1) A;Lu] is irreducible,

(1) p{ALu])=p(A4), (3.4)

(iii) 3y, > 0 such that y;A[u] ~ A [ul.
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Proof Assume that (1I) holds. Then

p(A(@) 2 p(A@[U]) =75 - - -vip(A[1])
by (3.4)(iii) and a short calculation

= p(A, [p]) - - - p(ALE]™ = p(A ) - p(AS™

by (ii). Together with (2.1) we have (I).

To show that (I) implies (II), first note that p(A(x)) >0 by (3.3). Let E = A(x). We
infer from well-known results on reducible matrices (se€, €.8., [2, p. 39]) that there
existsu # @, pc {1,...,njsuch that p(E) = p(E[u])and E[u] 1s irreducible. From

E[p]=A,[u]"" >0 A L]
it follows that (3.4)(i) holds. Also from (3.3) and

p(E) = plE[K]) < p(A, ]} - - - p(AL]Y* < p(A)™ - p(A)™

we infer (3.4)(ii), because equality must occur in both inequalities. To prove (3.4)(ii1)

we can now restrict ourselves to the case u = {t,...,n}. Going through the proof
D
of (2.1), equality holds in (2.6). Using Lemma 3 we get that 5, A~ C. But by the
D D
induction assumption we have that y, 4, ~ A, (v=1,...,k—1)and hence C~A,.

D
ThlS ShOWS YRA]( ~ Al'
An easy consequence of Theorem 7 is the following. If in addition the A ;s are
irreducible, then (3.3) is equivalent to

D
3'}’.)(} SUCh that ViAi~A1a 1:2, . .,k. (35)
This follows from (3.4), as (3.4)(ii) and 4; irreducible implies u={1,..., n}.

LeMMa 4 If A>0, p(A)>0and t> 1, then the following are equivalent:

(1) p(A") = p(4),
(I1) 3@ #uc{l, ..., n} such that
(i) A[p] is irreducible, (3.6)

(i) p(ALu]) = p(A),

D
(iii) 3y>0and a 1u|-by-|u]-permutation matrix P with yP~ A[u).
Proof By using P =P we see at once that (IT) implies (I). Here (i) is not used.
To show (I) = (II) choose any u such that (IT)(i) and (IT)(ii) hold. It follows that
(1) holds also for A[x]. Going through the proof of Lemma 2 we infer (I1)(i1).
Theorem 2 and Lemma 4 together give a result on equality in (2.1) also in the
case ¥ a; > 1, which we cite here without proof.

THEOREM Under the assumptions of Theorem 2 let
k

r=y o> 1

i=1
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Then the following are equivalent
(1) Equality holds in (2.1),
(I) 3@ #£uc{l,...,n} such that the following holds for i= 1,2, ... k:
(i) A,[u] irreducible,
(i1) p(4;[p]) = p(4)),

D
(iii) 3y, > 0 and a |p|-by-| u|-permutation matrix P with 3, A,{u] ~ P.

4. GENERALIZATIONS TO M-MATRICES

It is possible to generalize the preceding results to results about M-matrices.

THEOREM 4 Let A; be nonnegative matrices with o(A)>0,i=1,... .k, 2%,...,%
positive numbers such that

t= i o; > 1.
Then o
a(ALV o0 ALY = G(A, )P - 6 (A )™ (4.1
Proof (4.1) is a consequence of (1.1) and
[D(w) = M(@)] ™" < LDy — M) ™11 o [(D, — M,)~ 1] (42)

where = (x, ..., %), A;=D;+ M;, D;=diagonal of A, i=1,...,k and
D@)=Df- D, M(a)= M@ o...c M@,
Hence we have to prove (4.2) only.
From D(«)™'M(a)= (D 'M,)*o- . .o(D; ' M, )™, from p(D7 M) <1, i=1,...,k
and (1.1) we infer p(D(x)” 'M(a)) < 1, hence M(A(x)) is an M-matrix. We consider

first the case t=1. Define S={y: K- R,, y >0 and log-convex} U {0} where

K=(xeR a>0,) a,>1}. It was proved in [11] that S is closed under addition,
multiplication and limits. The relation

[Pl = M@~ =D 3 [MG)D()Y 43)

J

shows that the entries of [D(a) — M({2)]™" are in S, and this implies (4.2) for t = 1.
Here we have used that [D(e;)— M(e,)] ™' < (D;—M;)™'. For t > 1 we use the fact
that for any nonnegative matrix A=D + M, D = diagonal of 4, a(A4) >0, one has

[M(AD)]™T < [M(4)7']. (4.4)

This follows by considering the Neumann-Series of both sides of (4.4). As for any
set of indices I and nonnegative x,, iel

x5 x)

icl iel
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one gets by applying this inequality to each entry
x o) (n
(D—l)x z [(MD")‘”]"S[D"‘ z (MD"l)J]
i=0 j=0

which is just (4.4).
Now let 3,=o;t™*, Y%, 7;=1. Then by (4.4)

(D(x) —M(@)] ' <[(DG) — M) 119
and applying the already proved part of (4.2), the right-hand side is
< {[(D, — M) 7110 o [(D— M0
= [(D, — My)~11®0e o [(D— M) 11

We remark finally that the discussion of equality in (4.1) turns out to be very
simple and yields similar results as for the inequality (1.1). Ifa(4)>0,i=1,....k
and Y a; =1 then equality in {4.1) 1s equivalent to the statements (I1) of Theorem 2,
with (i) replaced by “o(4;) = o(A,[u]).” Sufficiency follows by a simple calculation,
while necessity follows from the step (4.2) - (4.1) and from Theorem 2. Similarly
one can prove an analogue of Theorem 3:If Z a; > 1 then equality in (4.1) is equivalent
to the statement: “Jue{l,..., n} such that 0#a(d)=A[pl, i=1,..., n.” We
refrain from giving the details.

Remark Similarly an analog of (2.10) can be proved by linearizing (4.1) for k =2,
®, + Uy = 1,

a(C(a, A, B)) = ao(4) + (1—a)o(B). (4.5)

5. CONVEXITY

We next give some observations regarding the convexity of the left-hand side of
(2.1) as a function of a;, ..., % In the second section we have already shown that

except for the case p(A(x)) =0 the mapping a€R% —log p(A(a)) is convex, and
deduced from that result the inequality

}k:a.-=1 = p(A@) < [1 p(4)" (5.1)
i=1 i=1

But also the reverse implication holds: We show that (5.1) implies the convexity of
W(a) = log p(A@)). If = D01 Yok Ko€ RE,9,20,Y"-,7,=1and B,=A(u,) then
A(x)= B{Ve- ..o B and applying (5.1) (for r factors) we get p(A(2)) < p(B )
p(B,)”, ie., the convexity of ¥(x). In particular, if A, B=0 then

ple)=p(A@ B ") (5.2)
and }
W (x) =log @(a) (5.3)

are convex in ae[0, 1].
The question of strict convexity is discussed in the next theorem. Here a convex
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function f is called strictly convex if s #¢, 0 < a < 1 implies
flas+ (1 —a)t) < af(s)+ (1 - a)f(r).

It is tempting to conjecture that |17(<x) is either strictly convex or linear. This is,
however, not even true for A, B irreducible. A counterexample is

210 101
A=10 1 1], B={1 1 0
1 0 i 01 2
for which
(1-3x)log2, O<acx}
W)= 10, I<ag?.
(Bx—2)log2, i<a<l

Hence we need obviously a further condition:

THEOREM 5 Assume that for some Be (0, 1), AP o B" ~# js irreducible. Then exactly
one of the following properties holds:

(1) @ is linear on [0, 1],
(i1) y is strictly convex on [0, 1].

~ D

Proof Tt suffices to show that y not strictly convex implies that 4 ~ yB for some
7, because then by Theorem 2 y is linear. Hence assume that there are 0<s<t <1,
0 < a <1 such that

t;(as +(—-a)t)= oql?(s) +(1— oz)|,l~r(t).
But as 4> B~ is irreducible, so are Ao B'~9 and 49+ B! -9 By Lemma 3
D D
there exists $>0 such that 4% B! "9~ 4®o B =0 This implies A~7yB for
suitable y.

The case considered in Theorem 5 is not so special as it seems. The zero-pattern
of Ao B'' =P js constant throughout (0, 1).

Hence there is a partition gy U---up, = {1,...,n} such that AP BYPy]
are irreducible or one-dimensional zero blocks for 0 < B<landi=1,...,r.

Define §/(8) = log p((4" = B “P)[11]), then §(B) = Max; () and cach of the
satisfies the assumptions of Theorem 5. Results analogous to Theorem 5 hold for &(a).

THEOREM 6 Under the conditions of Theorem 5 exactl

y one of the following properties
holds:

(i) @ is constant in [0, 1],
(ii) @ is strictly convex in [0, 1].

6. AN EIGENVALUE LIMIT

We conclude with some observations relating quantities suggested here with some
quantities already occurring in the literature.
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Let A=(a;;) >0 be an n-by-n nonnegative matrix. It is a consequence of Lemma
2 that

r>s = p(A(r))l/r sp(A(s))l/s-

Hence

pu(A) = lim p(A“)H" (6.1)
exists. This was established in [10] and a probabilistic interpretation of u(A4) was
given in the case that Ais a stochastic matrix. In [8] it was shown that u(A4)is equal
to the functional h(A), defined below in (6.5) and hence depends on cycle products
from A. Earlier, it had been shown in [6] that h(A) (and hence u(A)) is equal to
g(A), defined below in (6.4). Here we add another characterization namely

p(4° B)
A)= max . (6.2)
u()p?gf0 o(B)

In the subsequent Theorem 7 we prove all the above-mentioned results together. We
feel that this procedure simplifies the proofs in the literature and stresses the
interdependence of the results.

We introduce

f(A4)=max{p(4°B): B0, p(B)< 1} 63)
d:
g(A):inf{max ay —: dj>{),j=1,...,n}. (6.4)
ik d
Let {3, be the set of all paths in the complete graph with vertices {1, ..., n}, i.e.,
weld, o w={i,is. . shie1) ie{l,....n}.

iw| = k is the length of the path and [Tw (4) = @:,0,850, " * Figises - Q, is the set of all
cycles, i.e., paths where i; =11, and € the set of all simple cycles, ie.,

WEQi L d W={i1,...,ik,i1} aﬂd ij#i[ifj#[,lII,...,k.
Define
h(A) = max{n (A, weﬂf,}

= max{ﬂ (A)H™, weQ,,}. (6.5)

Here the second equality is easy to prove, as each cycle is the union of simple cycles.
We are now ready to state

TueoreM 7 If A is a nonnegative n-by-n matrix, then p(A) = f(A) = g(A)= h(A).
Proof We establish step by step the following chain of inequalities:
p<f<g<shsy.

(i) p<f: If f(A)=0, then also #(A4) = 0. Hence assume now f(A)>0. Define
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p, = p(A"). By definition of f = f(A):
Pr < fp, -1, (6.6)

hence p,f ~"<p,_f "*P<- - <p,f ", which implies

S u(Ay=1im (p, f )< L.

re o

(i) f<g: For any diagonal matrix D with positive diagonal entries d,, . .., d,
and any B > 0, we have

d.
p(A°B)=p(DAD ' B) < max a, J' -p(B)

i.k k

and hence f(A4) < g(A).

(ii1) g < h: Here we use a technique introduced in [6] and also used in [8] to prove
a slightly different result. We may assume here p(4)> 0 and A irreducible,
the general case following by either a continuity argument or by considering
the irreducible components of 4 in its reducible normal form.

We may also assume h(4) = 1. We show that there exists a diagonal scaling
such that

a; <1, i,j=1,...,n. (6.7)

Define d, =1 and

d,~=ma"{ﬂ (A w={iy, ... i ed, i =1, "*zj}'

As all cyclic products are bounded by one this maximum exists and is positive
due to the irreducibility of A. For i=j, (6.7) is obvious. Let i #j and
w={1,...,i}eQ, such that [], (4)=d,. Let w ={1,...,i, j}. Then

dj 2 n (A)= aijdi;
hence (6.7) holds.

(iv) h < p: Let weQ; be chosen such that h(4) = [ . (A)'*!. Replacing all entries
of A not appearing in [1. (4) by zero, we obtain a matrix Ay < A. Then
h(A) = p(Ao) = p(ADY'" < p(AD)V" for r > 0. Hence h(A) < u(A).

Remark From p(A)=h(A) it is easy to conclude that also

u(A) = lim sup{n (A)H weﬁn}, (6.8)

the largest accumulation point of this countable set of real numbers. [Statement (6.8)

has been established in [10] for 4 stochastic.] Thus, the right-hand side of (6.8) may
also be added to the list in Theorem 7.
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We list some simple properties of the functional u:

u(A°B)< u(4)-u(B) by (6.2) (6.9)
WA =pu(AY  (asp=h) (6.10)
u(A) < p(A) < np(A). (6.11)

Here the first inequality is obvious and equality holds iff p(4®) = p(A) for some (and
hence all) > 1 (see Lemma 4 for a description of the structure of A in this case).
The second inequality is a consequence of (6.2) and can also be found in [8], where
also the case of equality is characterized; equality occurs exactly when A is a (positive)
rank 1 matrix, all of whose diagonal entries are equal. As simple examples show,
neither u(AB) < pu(A)u(B) nor (A + B) < pu(4)+ (B) are correct in general.
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