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ABSTRACT
) We present a family of flows which includes continuous analogues of the un-
shifted and shifted LZ and QZ algorithms for the generalized eigenvalue problem. In
al family of algorithms,

order to do this we use elementary Lie theory to create a gener
of which the LZ and QZ algorithms are special cases. For each such algorithm we
construct a family of associated flows, some of which are interpolants of the algorithm.

W(_* do not restrict our attention to Hessenberg—tﬁanglﬂm ;
pairs of nonsingular matrices.

1. INTRODUCTION

been considerable interest in continuous ana-
d other algorithms for calculating eigenvalues
Deift et al. [9], Nanda

In recent years there has

logues of the QR algorithm an
of matrices. See for example the works of Symes [18].
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(14, 15], Chu [6], Watkins [20), and Watkins and Elsner [21], all of which
have appeared since 1982. See also the earlier work of Rutishauser [16, 17]
from the 1950s, which has been overlooked until recently. Given a matrix
A whose eigenvalues are desired, the QR algorithm produces a sequence
Ag, A,y A,,... such that each member of the sequence is similar to A, and
the matrices tend to upper triangular or block-triangular form. A continuous
analogue of the QR algorithm produces a smooth, matrix-valued function or
flow B(t), such that, for all ¢, B(t) is similar to A, and B(m)=A,, for
m =0,1,2,.... That is, the flow interpolates the QR algorithm. More gener-
ally we may have B(t) similar to I§=g(£) and B(m)=g(A,) for some
specified function g. Such a flow must satisfy

B(t) =F(t) 'BF(t) (1)

for some nonsingular matrix function F(t). In [21] we studied functions of
the type (1), which we called self-similar flows.

When studying eigenvalues it is natural to employ similarity transforma-
tions, since they preserve eigenvalues. For certain other problems, such as the
generalized eigenvalue problem and the singular-value problem, it is more
natural to consider equivalences. Recall that two matrices A,AeC"*™ are
equivalent if there exist nonsingular matrices F € C"*" and Z € C™*" such
that A = FAZ. A matrix-valued function B(t) defined on some interval is
called a self-equivalent flow if there exist smooth, nonsingular, matrix-valued
functions F(t) € C"*" and Z(t) € C™*™, and B & C"*™, such that B(t)=
F(t)BZ(t). In this paper we will develop self-equivalent flows associated with
the generalized eigenvalue problem. We discussed flows associated with the
sin -value decomposition in [22].

We will use elementary Lie theory to develop a family of algorithms for
solving the generalized eigenvalue problem

A

Ax = \Bx. (2)

The family includes the LZ algorithm of Kaufman [12] and the QZ algorithm
of Moler and Stewart [13], as well as new algorithms which we call SZ and
HZ. We will refer to the algorithms collectively as FGZ algorithms. The usual
formulations of the LZ and QZ algorithms are implicit and require that A
and B be in unreduced upper Hessenberg and upper triangular forms,
respectively. Our formulation is explicit and can be applied to arbitrary
nonsingular A and B. While it is not recommended for practical use, our
formulation does contribute to the understanding of the QZ and related
algorithms and their relationship to self-equivalent flows. Associated with
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each FGZ algorithm we introduce a family of FGZ flows, some of which
interpolate the algorithm.

In [8] Chu introduced a flow which is an analogue of the QZ algorithm.
That flow is a special case of the flows developed here. This paper also
generalizes our earlier work [21], since the FG flows discussed there corre-
spond to the case B =1 in (2).

In Section 2 we summarize the basic Lie-theoretic results which we will
use, and we also introduce the specific Lie groups and Lie algebras which
give rise to our main examples of algorithms and flows. In Section 3 we
introduce the FGZ algorithm for solving the generalized eigenvalue problem.
For simplicity we stick to the unshifted case at first. In Section 4 we develop
a family of flows which are continuous analogues of the unshifted FGZ
algorithm, and we show that one member of this family interpolates the FGZ
algorithm. In Section 5 we look at shifted and generalized FGZ algorithms,
and in Section 6 we develop their continuous analogues. We show how to
construct numerous flows which interpolate a given generalized FGZ algo-
rithm. In Section 7 we demonstrate that there is some overlap between the
flows presented here and the flows associated with the SVD which we

introduced in [22].

2. NOTATION AND BASIC NOTIONS OF LIE THEORY

Let F denote either the real or the complex numbers, F"*" the set of
nby-n matrices over F, and GL ,(F) the group of n-by-n nonsingular matri-

ces with entries in F.
GL_(F) is a Lie group 5, 11, 19], as are all of its closed subgroups. Given

a closed subgroup # of GL(F), we will let A(5¢) denote the Lie algebra of
H# [5, 11, 19, 21]. If one views ¥ as a real manifold, then A(5#) can be
viewed as the tangent space to J at the point 1. The Lie algebra of GL (F)
is F*Xn with the Lie product [X,Y]= XY —YX, and A(#)is a subalgebra
Of F n><n'

Initial-value problems of the form

H=HX, H(0)=H,e¥

or

H XH: H(0)=H0€X’

where X = X(t), will play an important role in the paper. Suppose the
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initial-value problem has a unique solution in some interval [0,f]. Then
H(t)€ o for all t €[0,f] if and only if X(t)€ A(SF) for all ¢t €[0,). A
proof is given in {21] (Theorem 5.1).

Throughout the paper # and ¢ will denote two closed subgroups of
GL (F) such that

Fng={I) (3)
and
A(F)DA(F) =Fr=n, (4)

From the condition (4) it follows [21, Theorem 5.2] that there is a neighbor-
hood ¥ of I in GL (F) such that every A € ¥" can be expressed as a product

A=FG (5)

where FE€E % and GE¥. By (3) F and G are unique. The expression (5) is
called an FG decomposition of A.

ExampLE 2.1L. Let & be the group of unit lower triangular matrices
and ¢ the group of nonsingular upper triangular matrices. Then A(F ) is the
Lie algebra of strictly lower triangular matrices, and A(%) is the Lie algebra
of upper triangular matrices. Clearly F"*" = A(%)®A(¥). Therefore there
exists a neighborhood ¥~ of I such that every A € ¥ can be expressed as a
product A = FG, where F is unit lower triangular and G is upper triangular.
Of course this is a weak version of a well-known fact: every matrix whose
leading principal submatrices are nonsingular (that is, almost every matrix)
has a unique LU decomposition [10].

ExampLE 2.1Q. Let # be the unitary group and ¢ the group of upper
triangular matrices with positive, real entries on the main diagonal. Then
A(&) is the Lie algebra of skew-Hermitian matrices, and A(¥) consists of
the upper triangular matrices having real main-diagonal entries. It is easy t0
show that C"*" = A(F ) ®A(¥). Therefore there exists a neighborhood 7" of
I such that every A € ¥~ can be expressed as A = FG, where F is unitary
and G is upper triangular with positive main-diagonal entries. Again we have
a weak version of a well-known fact: every square matrix has a QR decompo-
sition [10]. In the real case # can be taken to be either the orthogonal group
or its subgroup, the rotation group, and ¥ can be taken to be the group of
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nonsingular real upper triangular matrices with positive main-diagonal en-
tries. Then R"*" = A(F)SA(Y). =

ExampLE 2.1S. Let F be the real symplectic group in GL g, (R). This is
the set of S € GL,,(R) such that $7JS = J, where ] € R2n%2n i given by

The associated Lie algebra A(F) is the set of X € R2"X2" guch that
(JX)T = JX. Matrices satisfying this equation are called Hamiltonian. Let 9
be the subgroup of GL,,(R) consisting of matrices of the form

G Gm]
G= ;
[Gzl Gy

where each block is upper triangular, Gy, and G, are strictly upper
triangular, G,, and Gy, are nonsingular, and diag{ G, } = diag{ Gy }. This
group is discussed in greater detail in [21, Example 5.5]. Its Lie algebra is the

set of matrices of the form
Xy Xlz]
X =
[Xm Xp

such that all blocks are upper triangular, Xo and X, are strictly upper
triangular, and diag{ X,,} = diag{ Xy }- Again it is not hard to show that
R20X20 = A(F)®A(Y). Thus there exists a neighborhood ¥~ of I such that
every A € ¥ can be expressed as a product A= FG, where F is symplectic

Exaupis 2.1H. Let J €GL,(C) be any diagonal matrix whose main-
diagonal entries are in {1, — 1}. Let ¥ be the group of Junitary matrices.
This is the set of G € GL(C) such that G*JG = J. Then A(F) is the set of
X € C"*" guch that (JX)* = — JX. These are calied J-skew-Hermitian matri-
ces. Let 4 be the group of upper triangular matrices with positive main-diag-
onal entries. Then A(#) consists of the upper triangular matrices with real
entries on the main diagonal. It is easy to show that C"*" = A(F)BAN(Y).
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Therefore there is a neighborhood ¥~ of I such that every A € ¥ can be
expressed as a product A =FG, where F is Junitary and G € 4. This is
known as the HR decomposition. For a more precise result see [2, p. 253] or
[3), in which it is shown that A has an HR decomposition if and only if the
leading principal minors of A*JA have the same signs as the respective
leading principal minors of J. Note that in contrast to the conditions in the
preceding examples, it is not the case that this condition holds for almost all
matrices, but it does hold in a neighborhood of I. In the case J=1, this
example reduces to Example 2.1Q.

3. FGZ ALGORITHMS FOR THE GENERALIZED
EIGENVALUE PROBLEM

Given A, Be GL (F) we will introduce a family of algorithms to solve
the generalized eigenvalue problem

Ax = \Bx.
For simplicity we will present the unshifted algorithms first. The shifted
algorithms will be introduced in Section 6.

Given % and %, closed subgroups of GL. (F) satisfying (3) and (4), the
corresponding FGZ algorithm produces two sequences of matrices (A,) and
B,) as follows: The starting matrices are A, = A and B, = B. Given A,_,and
B, |, perform FG decompositions of A, B} and B A, ;:

A, BT\ = F.‘C—:v B_\A,_,= Zsﬁn (6)
where F,Z, € # and G;,R,€ 9. Then define A, and B, by
A,=F",Z, B=F'B_Z. (7)

It is easy to show that A, and B, are also given by

Since also
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we see that one step of the FGZ algorithm accomplishes one step of the FG
algorithm [21] for both A,_ B}, and B} A, _,. Since not every matrix has
an FG decomposition, it can happen that the algorithm breaks down.

For i=0,1,2,... define F,Z, € # and F,R,€¥ by

F,=FF,---F, 2,=21,--Z7,
G,=G,---CLG, R,=R,--R4R,
Then
A,=F'AZ,=GAR;", (9)
B,= F'BZ,=G,BR]", (10)
AB ' = F Y AB™")F,=G,(AB™)G/ ", (11)
B A, =Z;Y(B'A)Z,= R,(B'A)R; . (12)

By an easy induction argument we get

-1y =FG,, (13)

w38

(A
(ﬁ_lﬁ)i:‘ziﬂi- (14)

These are the unique FG decompositions of (AB~1) and (B~'A)', respec-
tively.
If the algorithm does not break down, then, for certain choices of #, &,
A, and B, the sequences A;B; 1 and B, 'A; will converge to triangular form,
revealing the generalized eigenvalues on the main diagonal. It is difficult to

state exact conditions under which convergence will take place, and we will

not attempt to do so here. We have chosen to describe the FGZ iteration in a

very general context, but we do not claim that every choice of # and 4
yields a useful algorithm.

ExampLe 3.1. This example shows that convergence of A.B7! and

B A, to triangular form does not imply the same for A, and B, Let U be

any nonsingular matrix, and let A=B=U. Then, for al i, A, B l=
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4. SELF-EQUIVALENT FLOWS ASSOCIATED WITH THE
GENERALIZED EIGENVALUE PROBLEM

Let F(t) and Z(t) be smooth functions such that F(0)=1, Z(0)=1,
F(t)eGL_(F), and Z(t) € GL (F) for all ¢. It is easy to show that the
smooth function C(¢)=F (t)’léZ(t) satisfies the initial-value problem

C=CcYy-xc, c(0)=¢C, (15)

where Y =2"1Z and X = F~'F. Conversely, if (15) has a unique solution,
then the solution is C(t) = F(t)~'CZ(t), where F and Z satisfy

F=FX, F(0)=1I, (16)

Z=2y, Z(0)=1I, (17)

respectively. A proof is given in [22], but this is an easy exercise. Similar
results are given in {7, 8].

We will also find it useful to express selfsimilar flows in the form
C(t) = G(t)CR(¢)". Then C(¢) satisfies the initial-value problem

C=Xxc-cy, ¢(0)=C, (18)

where X =GG™! and Y=RR ™! Conversely, if (18) has a unique solution,
then the solution is C(t) = G(t)CR(t) !, where G and R satisfy

(19)

G=XG, G(0)=I,

(20)

R=YR, R(0)=1I.

Since F"*" = A(F)DA(¥), every M € F**" can be expressed uniquely
as a sum

=p(M)+o(M),

where p(M) € A(F) and o(M) € A(¥9). Given C,De GL (F) and a locally
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analytic function f defined on an open set containing the common spectrum
of CD-! and D~1C, consider the system of differential equations

¢ =Cp(f(D7'C)) - p(f(CD7Y))C,  C(0)=C,
(21)

D =Dp(f(D'C))-p(f(CD™))D, D(0)= D.

Each of these differential equations has the form (15). The system (21)
satisfies a Lipschitz condition on compact sets, so it has a unique solution on
some nonempty interval [0, f). Therefore the solution is

C(t)=F(t) 'CZ(t),
(22)

D(t)= F(t) 'DZ(t),
where F and Z are solutions of
F=Fo(f(cD™Y)), F(O)=1I
Z=27p(AD7'C)), Z(0)=L

Since p( f(D~'C))€ A(F) and o(fICD™Y)) € A(F), we have F(t)€F
and Z(t)e F forall t € [0, F) [21]. In the case when % and ¢ are as in
Example 2.1Q, C is upper Hessenberg, D is upper triangular, and fix)=1x,
(21) reduces to the flow of Chu [8]. Using the fact that

f(cD™H)C=CAD™C)
and
f(cp~)D=Df(D'C),
we see easily that the system (21) can also be expressed as

G = o( (CD™1))C ~ Co( f(DT'C)), ) =C, )

D=o(f(CD1))D - De(f(D'C)), D(O)= D.
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It follows that
C(t)=G(z)CR(z) "
D(t)=G(t)DR(t) ",
where
=o(f(CD™))G,  G(0)=1,
=o(f(D"'C))R, R(0)=L

Since o( f(CD~!)) € A(%¢) and o( (D~ 'C)) € A(¥), we have G(t) € ¢ and
R(t) € . From (22) and (24) we see that

C(t)D(¢t) '=F(t) 'CD'F(t)=G(t)CD'G(t) ',  (25)
D(t)'c(t)=2Z(t) 'D-'CZ(¢t)=R(t)D"'CR(¢)"".  (26)
Furthermore, CD~! and D~!C satisfy the differential equations

%(cp-l).—_[co— (f(cD™Y))] = [o(f(cDY)),CD7 ],
(27)

—(D Ic) =D, p( AAD-'C))] = [o( AAD~'C)), D7 'C].

so CD~! and D™'C are self-similar flows of the type discussed in [21]. It
follows that

exp(¢f(CD1)) = F(£)G(¢), (28)
exp(tf(D~'C)) = Z(¢)R(t) (29)

for all t € [0, £). These are the unique FG decompositions of exp(tf(CD h)
and exp( tf(D~'C)), respectively. Because of these equations it is possible, in
certain cases, to extend the flow past singularities, as discussed in [21]. We
will postpone the discussion of this topic until Section 6.
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Connections between FGZ Algorithms and Flows

In the following theorems we assume that both the FGZ algorithm and
the FGZ flow are defined at some integer times t =i =0,1,....m.

TueoreM 4.1. The FGZ algorithm (6, 7) with initial matrices A, B and
the FGZ flow (21) are related as follows:

(a) If AB~! = exp( ACD ")), then A,B[ ! = exp(flC()D(i)™ 1)) for i=
0,1,...,m.
(by If B~'A = exp( {DIC), then B~ A, = exp( AD(i)'C(i)) for i=
0,1,...,m.

Proof. Suppose AB~1 = exp( fiCD™")). Then, comparing (13) with (28)
att=i=0,1,2,...,m, we have

F.G,=F(i)G(i). (30)
By the uniqueness of the FG decompositions,
F=F(i), G=G() (31)
for i = 0,1,..., m. Therefore, by (11) and (25),
A B '=F'ABF,
~ F(i) “exp( A(CD™) F(i)
= exp( f(F (i) ~18D'F(i)))
= exp| AC(1)D(i) ).

f the theorem. (We could equally well have used G,

This i irst assertion O :
is is the firs assertion we compare (14) with (29) at

instead of F, ') To get the second
t=i=0,1,....mto obtain

Z.R,=Z(i)R(i)- (32)
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These are also FG decompositions, so
Z,=1Z(i), R, = R(i) (33)
for i =0,1,..., m. Now applying (12) and (26) we get that

B[ 'A,=exp( f{D(i) " 'C(i))),

i=01,...,m. ]

In the special case f(x)=1logx we get a much nicer result. By log x we
mean any branch of the natural logarithm for which log( AB - yand log(B 'A)
are meaningful.

Tueorem 4.2.  The FGZ algorithm (6, T) with initial matrices A, I? amj
the FGZ flow (21) with f(x)= log r and initial matrices C= A and D = B
are related by

A,=C(i), B,=D(i), i=0,1,...,m.
That is, the flow interpolates the FGZ algorithm.

Proof. Under the hypotheses of the theorem, the equations AB~'=
exp( ACD~')) and B4 = exp( AD-'C)) are trivially true, so Equations
(31) and (33) from the proof of Theorem 4.1 hold. Therefore

A,=F'AZ,=F(i)"'CZ(i) = C(i),
B,=F'BZ,= F(i)~'Dz(i) = D(i).

We could equally well have used G, and R; ! instead of F! and Z,. =

5. SHIFTED AND GENERALIZED FGZ ALGORITHMS

The variants of the FGZ algorithm which are used in practice all employ
shifts. A simple shifted FGZ algorithm would shift A, B} and B \A,_,
before performing the FG decompositions. Thus instead of (6) we would
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have

iG>

ry

Ai—lBi_—ll —ol=
(34)

NI

Bi——-llAi—l —ol= iﬁi’

where 0,, 6,, 05,... are shifts which do not lie in the common spectrum of
AB~! and B~ 'A. The double shift FGZ algorithm replaces (6) by

H

(Ai—lBi——-ll -0l )(Ai—lBin—ll - "'.‘I) Fié-i’

(35)

=]

Z,

i.

(Bi_—-lIAi— 1~ ol )(BiiliAi-l" "'iI)

In both cases A, and B; are defined by (7), as before. Both of these
algorithms are special cases of the generalized FGZ algorithm: Let
P> Pg» P3,. .- be a sequence of functions defined on the common spectrum of

AB~' and B~'A such that none of the points of the spectrum is mapped. to
zero by any of the p,. Let A=A and B, = B. Given A,;_, and B;_,, define
A, and B, as follows. First let F,,Z, € # and G,, R, € ¥ be given by the FG

decompositions
pi(Ai-lBi_-—ll) = Fia_i’ pi(Bi_—llAi—-l) =—Z-iﬁi' (36)

Then define

A =F*IA,-_1Z,-, B.~=Fi_lBi—1Zi- (37)

- -1
Using the identities A,-_lp,-(B,-_llAi_l) = P.-(l‘.\.'—lB.'—l)Ai—l and
B,_.p(B YA, ) =p(A;_,B 1B, one shows easily that A; and B are

also given by

A,=CA,_ R B=GB R (38)

If we take p,(x)=x—0; (36) reduces to (34), wggreas if p(x)=(x—0)x

— 1), (36) reduces to the double shift algorithm (35). . |
T‘F)anlati)oixs E)) through (12), which hold for the unshifted F G? algorithm,

continue to be valid for the generalized FGZ algorithm. Equations (13, 14)
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are replaced by the generalizations

Hlp,-( AB~')=FG,, (39)
j-
nlpj(ﬁ‘l/i)=ziﬂi, (40)
j=

ExampLE 5.1L. Let # be the group of unit lower triangular matrices,
and ¥ the group of nonsingular upper triangular matrices. Defining p, as in
(35), we get an algorithm equivalent to Kaufman’'s LZ algorithm [12] without
pivoting. Of course the actual implementation of [12] is an implicit formula-
tion which is very different from what is indicated by (35) and (37).

ExampLE 5.1Q. Let &# be the unitary group and ¢ the group of upper
triangular matrices with positive entries on the main diagonal. Defining p, as
in (35), we get an algorithm equivalent to the QZ algorithm of Moler and
Stewart [13]. Once again the actual implementation of [13] is implicit.

ExampLE 5.1S. Let # € GL, (R) be the real symplectic group defined
in Example 2.1S, and let ¢ also be as defined in Example 2.1S. The resulting
algorithm is called the SZ algorithm. Like the LZ and QZ algorithms, it can
be implemented implicitly. We plan to discuss questions of implementation
in general in a subsequent paper.

Exampre 5.1H. If we take % and ¥ as in Example 2.1H, we get an
algorithm which we will call the HZ algorithm.

6. FLOWS ASSOCIATED WITH GENERALIZED FGZ ALGORITHMS

Given a generalized FGZ algorithm, we would like to find self-equivalent
flows which interpolate the algorithm. To this end we consider flows satisfy-
ing nonautonomous initial value problems of the form

C=Cp(f(t,D'C)) - p(f(t,cD))C, C(0)=C,

D = Dp(f(t,D™'C)) - o(f(t,CD""))D, D(0)=D,
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where f(¢, x) is piecewise continuous in ¢ and locally analytic in x. Solutions
of (41) satisfy the following theorem, which generalizes Theorems 6.1 and 9.1
of [21].

Tugorem 6.1. Let C €F**", DeGL(F), and let f(t,x) be any
function which is piecewise continuous in t and, for each t, locally analytic
in x on an open set containing the common spectra of CD~! and D~ 'C. Then
the initial-value problem (41) has a unique solution on some nonempty
interval [0, {). The solution satisfies

C(t) = F(t) 'Cz(t) =G(t)CR(¢) ™

(42)
D(t) = F(¢) "'DZ(t) =G(t)DR(t) ",
where F, G, Z, and R are solutions of
F=Fp(f(t,.cD™")), F(O)=I, (43)
G=o(f(t,CD™Y))G, G(0)=1, (44)
7=2p(f(t,D7'C)), Z(0)=1, (45)
R=o(f(t,D'C))R, R(0)=1L (46)

F(t), Z(t) € F and G(t), R(t) €Y for all t €[0, ). They are related by the
equations

exp{ M(¢)) = F(£)G(1), (47)
exp{N(t)) = Z(DR(2), (48)

where
M(:)=f‘f(s,é‘ﬁ-l)ds and N(t):jo‘ﬂs,ﬁ-lé)ds.
0

Equations (47) and (48) represent FG decompositions of exp{M(t)} and
exp{ N(t)}, respectively.

Proof. There exists a neighborhood ¥ of I such that every A € ¥ has
an FG decomposition. Choose f>0 such that exp{M(t)} € ¥ and
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exp{ M(t)} € ¥ for all t €[0, ), and let F(t), Z(t) € F and G(t),R(t)€ ¥
be defined uniquely on [0, #) by (47) and (48). Clearly F (0)=G(0)=Z(0) =
R(0)=1. Define C(t) and D(t) by C(t)=F(t)"'CZ(t) and D(t)=

F(t)"'DZ(t). Then C(0) = € and D(0) = D. The next step is to differentiate
(47) and (48). Notice that

d an
75 P M(t)} = f(t,CD™ V) exp{ M(t)).

This would be obvious if M(t) were a scalar-valued function. It is false in
general for matrix functions because of noncommutativity, but it is valid in

this case because all matrices involved are functions of CD~ L, Differentiating
(47), we have

£(t,CD exp(M(t)} = F(t)G(t) + F()C(¢).

Multiplying on the left by f"\(t)"1 and on the right by G(¢#)~ !, and noting
that C(¢)D(¢)~! = F(t)"'CD~'F(t), we find that

f(t,C(t)D(t)“)=F(t)“1F(t)+d(t)G(t)". (49)

Since F(t)"'F(t) € A(#) and G(t)G(t)~' € A(¥), we see that (49) gives
the unique decomposition of (¢, C(¢t)D(t)"') into components in A(F)
and A(%):

F7'F=p(f(t,CD')) and GG~ != o f(t,CD™Y)).

Rearranging these equations, we find that F and G are the unique solutions
of (43) and (44), respectively. We now differentiate (48) and perform an
analogous sequence of manipulations to find that Z and R are the unique
solutions of (45) and (46), respectively. Since (43) and (45) have the form
(16,17), C(t) must satisfy a differential equation of the form (15). This is just
the first equation of (41). Similarly D(¢) must satisfy the second equation of
(41). Since the right-hand side of (41) satisfies a Lipschitz condition on
compact sets, the solution is unique. Our definition of C(¢) and D(t)
establishes half of (42). The other half follows from the fact that (41) can also
be written as

C=o(f(t,CD"Y))C~ Co( (1, D-'C)), c(0)=C,

D =o(f(t,CD"))D~ Do(f(t,D-'C)), D(0)=D.
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Fach of these equations has the form (18), so C(t)=G(t)CR(¢)"" and
D(t) = G(t)DR(t)~*. This completes the proof. ]

ReEmaRK. Our proof was based on the differentiation formula

d :
E;exp{P(t)} = P(t)exp{ P()}.

One can just as well use the formula

d .
5 el P(t)] = exp{ P(t)} P(t)-

In this case one defines C and D by C(t)=G(t)CR(t)™" and D(t)=
G(¢)DR(t)! and works in the opposite direction.

ExampLes. Taking # and ¢ as in Examples 9.1L, 2.1Q, 2.1S, and
2.1H, we get families of flows which we will call LZ, QZ, SZ, and HZ flows,

respectively.

Singularities in the Flows
Just as in [21], one can show that the flow (41) has singularities at exactly

those ¢ for which one of the FG decompositions (47, 48) fails to exist. Thus
QZ flows never have singularities. All of the other types of flows which we
have considered can have singularities. A flow can be continued after a
singularity provided that the decompositions (47) and (48) exist after the
singularity. This is always the case for LZ and SZ flows with autonomous
differential equations (21), because the points at which the decompositions
fail to exist are isolated in time [21]. For general LZ and SZ flows (41) we
cannot say categorically that the singularities are isolated, because M(t) and
N(t) are not necessarily analytic. It is nevertheless generically true that the
singularities are isolated. In order to extend the HZ flows one must extend
the definition of the HR decomposition as in [1-3, 21]. The definition of the
generalized HZ flows can then be extended in a patural way. There is no
need to carry out that extension here, since the important jdeas are already

given in [21].

The Connection Between Generalized FGZ Algorithms and Flows

locally analytic function defined on an open

Tueorem 6.2. Let ¢ bea bl
of D~} and D™°C, and let all other

set containing the common spectrum
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terms be as defined earlier in this section. Suppose

fj fls,z)ds=logp,(9(x)), j=1,23,.... (50)

f-1

(@) If AB~'= o(CD-! ), then the generalized FGZ algorithm based on
P1> Pas P, .., with initial pair A, B, and the generalized FGZ flow based on
f, with initial pair C, D, are related by

AB ' =9(C(i)D(1)7Y), i=0,1,2,....

(b) If B A =¢(ﬁ‘lé), thgnjhe generalized FGZ algorithm based on
Pys Pas Ps,. .., with ipit}'al pair A, B, and the generalized FGZ flow based on
f5 with initial pair C, D, are related by

B7'A,=¢(D(i)"'c(i)), i=01,2,....

Proof. Suppose AB~!= e(CD™ Yy, Substituting CD~! for x in (50),
summing j from 1 to i, and taking exponents, we find that for i =1,2,3,...,

exp{[)if(s, éﬁ"l)ds} = in-[lpj(AAﬁ‘l).

Then by (39) and (47) with ¢ = i, we have F(i)G(i)= F,G, fori=0,1,2,....
By the uniqueness of the FC decomposition, F(i)= F, and G(i)=G,,
i=0,1,2,.... Therefore

AB'=F'AB'F,= F(i) 'p(CD 1) F(i) =o(C(i)D(i) ™Y

for i=0,1,2,.... This proves the first assertion. The proof of the second
assertion is similar. _
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If we take @(x) = x, we get a flow which interpolates the FGZ algorithm:

TueoREM 6.3. Suppose f and p,, pa, P3.-.- ar€ related by

];j_lf(s,x)d-?:logpj(x)’ j=1,2,3,.... (51)

Then the generalized FGZ algorithm based on py, Pg> P3s---» with initial pair

A, B, and the generalized FGZ flow based on f, with initial pair ¢ D=A,B,
are related by

A,=C(i), B;=D(i), i=0,1,2,....
Proof. Substituting AB-! (=CD™") into (51), summing j from 1 to i,
and taking exponents, we find that
exv{f‘f(s,éﬁ“)dS} = [1p,(AB7Y).
0 i=1
Similarly

exp{foif(s, ﬁ”lé)ds} = in[lpj(ﬁ‘lAA).

Comparing (39) and (40) with (47) and (48), respectively, ar{d invoking‘ the
uniqueness of FG decompositions, we find that F(i) =F,, G(i) = G, Z(i)=
Z,, and R(i)=R,, for i=0,1,2,.... Thus

A,=F'Az,=F(i) " 'CZ(i) =C(i),

B,= F'Bz,=F(i) 'DZ(i) = D(i)

fori=0,1,2,.... =

Remark. We could have drawn the same conclusion using G and R7!

instead of F~! and Z. -

Provided that py Pa>Pas--- 8€ chosen so that log p(CD™') and
log p,.(f)'l(f ) are always meaningful, there are many Ways to ch.oose f(t, x)
so that the equations (51) are satisfied. Some examples are given 1n [21]
(Examples 9.4-9.7). There is no need to repeat them here.
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7. RELATIONSHIP TO FLOWS ASSOCIATED WITH THE SVD

There is some overlap between the flows discussed in this paper and the
flows associated with the singular-value decomposition which we discussed in
[22]. Consider the flow (41) in the case when FG is OR. In this case p(M) is
skew-Hermitian for all M. Using this fact and the identity (d /dt XD ') =
— D7 'DD™!, we find that the differential equation for D can be transformed
to

d 1
2 (P* ) =D*"o(f(t,D7C)) - p(f(t,cD™'))D* ",

Thus D*~! and C satisfy the same differential equation. It follows that if
D*~!'=C, then D(t)*~'=C(t) for all . Thus (41) reduces to the single
matrix differential equation

C=Cp(f(t,C*C)) - p(f(1,CC*))C, C(0)=C,

which is exactly the form of the flows considered in [22], except that in [22]
we allowed singular and even nonsquare C.
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