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ABSTRACT

We give an inequality for the spectral radius of positive linear combinations of
tuples of nonnegative matrices linked in a certain way. From this several observations
are deduced, including the perturbation inequality p(A + fsgn(A)) > p((A)+
tsgn(p(A)), in which sgn denotes the signum function, applied componentwise. This
was motivated in part by our work on characterizing the functions f such that
P(f(A,,..., Ap) < f(p(A)),. .., p(Ap)), in which f is applied componentwise on the
left, to be published elsewhere. One of our observations,the question of studying the
combinatorial structure of the cone (algebra) of nonnegative matrices with given left

and right Perron vectors.

1. INTRODUCTION

We consider throughout n-by-n, componentwise nonnegative matrices. If
A is such a matrix, we denote its spectral radius, or Perron eigenvalue, by
p(A). We say that a componentwise nonnegative (nonzero) vector x =
(xy,...,x,)7 is a right Perron eigenvector of A if

Ax =p(A)x,
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and that a componentwise nonnegative (nonzero) vector ¥y = (y,,.... ¥, Y isa
left Perron eigenvector of A if

ATy=p(A)y.
Of interest will be the Hadamard product
z=x0y

of a left and right eigenvector, in which

T T
z2=(z),...,2,) =(x Y- T,0.) -
If z is nonzero, we shall typically take it to be normalized so that

zle=1,

in which e =(1,1,..., 1"

We shall be interested in spectral inequalities involving the Perron root of
one or more nonnegative matrices. Of the several rather different appearing
inequalities we present, the most central one involves the spectral radius of a
weighted sum of nonnegative matrices. It should be noted that in general
there is no relationship between the spectral radius of a sum of nonnegative
matrices and the sum of the spectral radii; for example, for nonnegative
nbyn A and B, p(A+ B) can be larger than, less than, or equal to
p(A)+ p(B). Of course, if A and B share a right or a left Perron eigenvector,
then p(A + B) = p(A)+ p(B). We show that if several irreducible nonnega-
tive matrices A,,..., A, share something much less, namely a common
zvector as defined above, then

p(Ar+ - +A)2p(A)+ -+ +p(A})

at least. Furthermore, there is a certain converse to this statement. These
ideas are developed in Section 2.

The inquiry that motivated discovery of many of the results here was the
characterization of the functions f: R2 — R, such that

p(flAy....A,)) <Ap(A),....0(A,)).

Here, A,,..., A ,» are arbitrary n-by-n nonnegative matrices and f is applied
to A,..., Ap componentwise.



SPECTRAL INEQUALITIES 997

One function f that enjoys this functional property for p =1 turns out to
be the f defined by

f(x) =max{0,x - a}

for a fixed a € R *. Equivalent to the case a =1 is a fact that appears to be of
interest by itself. Consider the signum function defined on R by

1 if >0,
Sg“(x)z{o f o0

Extend this function to nonnegative matrices componentwise, so that sgn(A)
has 1I's where A has positive entries and 0’s where A has 0’s. We then have

the inequality

o(A +sgn(A)) > p(A) +sgn(p(4)). (1.1)

One view of this inequality is that it generalizes a certain inequality for
nonnegative real numbers. Let a,,...,a, >0 and b,,..., b, > 0 be two sets
of n nonnegative numbers. We then have the known inequality

[(01 +b)--(a,+ bn)]l/n >(a, - an)l/n +(by - bn)l/n> (1.2)

which is equivalent to its special case in which b, = sgn(a,). This is easily
seen to be the special case of (1.1) in which

[0 a, O 0 |
A= 0
O an-l

a, U

The inequality (1.1) and, in fact, stronger variants are developed in

Section 3. .
Another inequality [which turns out to be closely related to (1.1)] is noted

in Section 4. Given nonnegative A with left and right Perron eigenvectors y



i

ot e

228 LUDWIG ELSNER AND CHARLES R. JOHNSON
and x and signum matrix S, we have
T TS (1.3)
yx<y’Sx

(in fact a stronger result is given). If we consider the cone of all nonnegative
matrices with a left Perron eigenvector y and a right Perron eigenvector 1, it
is then clear that there are restrictions upon the zero pattern of matrices in

this cone. A natural question for further research is to fully understand such
restrictions.

2. THE SPECTRAL RADIUS OF A WEIGHTED SUM

We shall need the following result:

LemMa 2.1.  Let A be an n-by-n matrix, A > 0, irreducible with spectral
radius p(A) = p, and associated right and left Perron eigenvectors x, y:

Ax = px, ATy =py, (2.1)

normalized, such that z = x ¢ y satisfies z%e = 1. Then

(Av),

1

P(A)=UTAISH[ ] < ufAv

for u>0, v>0, uov=z (22

Ifw>0, wle=1, w+ z, then there exist u> 0, v > 0 such that
uov =1, u’Av <y"Ax =p(A). (2.3)

The proof of (2.2) can be found in [5]; different proofs are in [2] and [1]. The
weaker result p(A) < uTAv, known to Fiedler since 1970, was published in
[4]. (2.3) is in [7].

Let us point out in passing that the inequality yTAx < uTAv in (2.2) has a
nice geometric interpretation: Consider the set S of all positive vectors 7
such that diag(y;) - A is a (possibly singular) M-matrix. Obviously pe € d 5.
Then the hyperplane H = {¢: £"z = p(A)) is the unique supporting hyper-
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plane of S at the point pe. This can be seen as follows: For n € § there exists
w > 0 such that Aw < diag(n,) w. But then

n n (Aw),-
EEN D)

i=1 i=]

z;>2p(A)

by (2.2) with equality for n = pe. Equation (2.3) gives the uniqueness.
We now prove the first main result:

THEOREM 2.1. Let A, be irreducible n-by-n nonnegative matrices and
Ax=p(A,)x"?, Ay =p(A,)y", (2.4)
i=1,..., p, such that

xWoy=yDoyN=2 i j=1,..,p, (2.5)

and e’z =1. Then fort,>0, i=1,..., p,

P( ﬁ tiAi) 2 i to(A4,). (2.6)

i=1

i=1
Proof. Let g > 0 be a right Perron eigenvector of 27_, t,A;:

/

(é t;Ai)g = p( i t.-A,»)g,

i=1

and h > 0 such that heg=z. We infer from (2.2) and (2.5)

WAg > yOTA £ O = p(4,). @.7)

Multiplying (2.7) by ¢, > 0 and summing gives

p( Zp: t,.A,.) =hT( 2”: t,.A,.)gz i to(A,).

i==] i=1 i=1

We note that the special case in which A;= A, A;=B" .and x(f’ =y9,
x® =y may be found as Theorem 3 of [1]. Observe that this also includes
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Levinger’s inequality
p(tA+(1-¢)AT)>p(A), O<t<l. (2.8)

The condition (2.5) seems to be very strong. However, the next theorem,
which can be viewed as a converse to Theorem 2.1, shows that a somewhat
stronger version of (2.6) implies (2.5). Only the case p = 2 is treated.

THEOREM 2.2. Let A, A, be two nonneggative irreducible n-by-n
matrices

AxW=p(A)x", Ay =p(A)y", i=12, (2.9)

where the eigenvectors have been normalized so that xTy'" =1, i=12.
Suppose that for t > 0 and all positive diagonal matrices D we have

p(A,+tDA D7) > p(A)) + tp(Ay). (2.10)
Then

xW oy = x@ o @) (2.11)

Proof. Denoting for fixed D the right-hand side of the inequality (2.10)

by @(t) and the left-hand side by {(t), we have y(t) > @(¢) and ¢(0) = ¢(0).
This implies

¥

t=0

d d
E\!I(t) > Et“fP(t)

t=0

or
yVTDA,D~ M > p(A,). (2.12)

If (2.11) fails to hold, then (2.3) applied to A, shows that there exists 2
positive diagonal matrix D such that (2.12) is violated. "

We present now a theorem, which is a generalization of Theorem 2.1 and
Theorem 4 in [1].
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Tueorem 2.3. Under the assumpti
. : _ _ ptions of Theor 2.1 =
diag(Al,...,AL), AI>0,i=1,...,n, j=1,...,p. Then - 2

r

> Y p(a) TT(a1)", (213)

p
p( Y A4,

i=1

Proof. Let u>0, v>0 be positive vectors, and let A be any of the
matrices A(i=1,...,p). Then

P (Av),; vy, n [(Av), vo,u; 1™
uTAU= Z ( ) ;_Zi> I—I ( D)z &11_1
i=1 Y & i=1] Y %

nofuo "
>p(A)]1 (———) by (2.2). (2.14)
i=1\ %
If we define now h> 0, g >0 by

( Ep: A,-Ai)g=p( i A.-A,»)g, geh=z,

i=1 i=1

then by using (2.14) we get

n

| =l T

i=1

h:‘gkA{

Z

hTAJ.A].g;p(Aj)gl(

Summing over j gives (2.13).

3. PERTURBATION BY THE SIGNUM MATRIX

We are now in a position to prove the inequalities (1.1) addressed in the

introduction.

Tueorem 3.1. Let A =0 be an n-by-n matrix. Then

p(A +sgn(A)) = p(A)+sgn(p(4)). (3.1)
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Proof. Considering the reducible normal form of A {6], we see that it is
sufficient to prove (3.1) for the 1 X1 zero matrix (for which it is trivial) and
for irreducible A. Hence consider the case in which A is irreducible. If D is a
positive diagonal matrix, and ¢t > 0 such that

sgn(A) > tDAD ™!, (3.2)
then by (3.2) and (2.6) we have
p(A+sgn(A))>p(A+tDAD ') > (14 t)p(A). (3.3)

The maximal ¢ in (3.2) is obviously given by t =t,, where

d,
t;'= min max (aik—‘—) =p(A).
d,

di,....,d,>0 1gi,k<n

This well-known quantity appears in several applications; for an overview on
different characterizations of u(A) see [3]. In particular it is known that
(1/n)p(A) < p(A) < p(A). Hence we have by (3.2) and (3.3)

p(A+sgn(A))>(1+to)p(A)=p(A)+w>p(A)+1- .

n(A)

We see from the proof that we have actually
p(A +sgn(A)) > p(A) + —— (34)
®

for A irreducible. Also, upon replacing A by ¢ ~'A (¢ > 0) and multiplying by
t, we get

o(A+ tsgn(A)) > p(A)+ tsgn(p(4)) 2L (35)

p(4)

We observe that (since p(A)/p(A) > 1) (3.1) and (3.5) imply

p(g(A)) >g(p(A))



SPECTRAL INEQUALITIES 233

where g:x — x + tsgn(x) and g(A) is understood elementwise as in the
introduction.
A consequence of (3.1) is the following: If f{x)=max(0, x — 1) then

p(f(A)) < flo(A)). (3.6)

For a proof, consider first the case p(A) < 1. In this case all cyclic products
of A are less than or equal to I; hence in each cycle there is at least one
element < 1. But then all cyclic products of Sf(A) vanish, i.e. p(f{A)) =0,
and (3.6) holds.

Consider now the remaining case p(A)>1, p(f(A))> 0. But then, as
S(A)+sgn f{A) < A, we infer

p(A) > p(f(A)+sgn f(A)) 2 p(flA)) +sgnp( A(A)) =p(A(A))+1

and

fle(A))=p(A) -12p(f(A)).

4. THE BILINEAR FORM OF THE SIGNUM MATRIX

Our goal in this section is to observe

THEOREM 4.1. Let A be an n-by-n nonnegative matrix, and let y and x
be, respectively, left and right Perron eigenvectors of A. If S=sgn(A), we
have

p(A)y™Sx > p(A)y"x. (4.1)

In the event that A is irreducible, the inequality (4.1) may be proven by
differentiating (3.5) and evaluating at ¢ = 0. However, in general, especially
when the left and right Perron eigenspaces are not one-dimensional, it is not
clear how to adapt such a proof for arbitrary nonnegative eigenvectors. For
this reason, we need a lemma that strengthens a portion of Lemma 2.1.

LemMma 4.1.  Let A be an n-by-n nonnegative matrix, and suppose that x
and y are, respectively, right and left Perron eigenvectors of A such that
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yx = 1. Then for any nonnegative vectors u, v such that ucv=xoy =z we
have

uAv> ]

iz, #0

|:(Av)l :

" ] > yTAr =p(A). (4.2)

Proof. As (4.2) is true for p(A)=0, we assume p(A)=1, so that
Ax =x, y"A = y”. For a nonnegative vector w =(w,,...,w,)’ define J, =
{i:w;>0}. Introduce the partition U,_l i {l,...,n} in the following
manner: I, =], I,=] ~ ], I,= L+1, ly={1,....,n}+ ], This leads
to a partltlon of any vector w: w = (w?, u/g w:f, )T and we have in
particular x, > 0, x, >0, x;=0, x,=0and y, > 0, y2—0 y; >0, y,=0.1f

A=(A, ’), j=1 is the associated block partition of A, we have
Apx+ Apx,=x, Agyx+ Agpx,=x;3=0,
A11+!J3A31 yl! !I1A12+'J3A32 yz =0,

which yields Ag x, =0 and, as x, >0, A;;=0. Similarly A, =0, A, =0,
and hence

Apx =1, yiA =yl
From [6, Theorem 7, p. 78] we infer that (up to a permutation)

A =A® - - - ®A_, (4.3)

q

where the A, are irreducible and p(A;)=p(A,,)=1. Having established
this result, (4.2) is now a simple consequence of (2.2): Subdivide
U, 01, X1, Y31, 31, I) according to (4.3), e.g uy=(ul ,ul,,...,u] ), L=
U¢., I, ;. We now have

uAv> ) u(Av),= Y 3z, (4v), > [1 [(AD)‘] | (4.4)

i€l ie], 0, i€l i

by the weighted arithmetic-geometric-mean inequality. The product in (4.4)
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can be written in the form [T, P;, where

= (Aivlyf)i N
ij,-g_}[ (Dl'j)i J .

As Ajxy =x, y{jAjmyIj, and 01U =Y 0% =2, (22) ap-
plied to A ; 8ives P, > 1. This together with (4.4) shows the inequality (4.2). m

The proof of Theorem 4.1 may now be completed easily. Since p(A) =0
exactly when u(A) =0, (4.1) clearly holds for p( A)=0; so assume p(A) > 0.
In this event, choose a positive diagonal matrix D so that

u(A)S> D AD
componentwise. Then, using Lemma 4.1,
p(A)y"Sx > y"D™'ADx > y"Ax = p(A)y"x,

which verifies Theorem 4.1.
Since u(A) < p(A), we have

CoroLLARY 4.1. Under the circumstances of Theorem 4.1, we have

y sgn(A)x>sgn(p(A)) y'x.

The corollary makes it clear that there are nontrivial relationships be-
tween certain cones of nonnegative matrices. For a given directed graph G
on n vertices, let C; be the cone of all nonnegative matrices A =(a,;) such
that q, ;> 0 implies (4, j) is an edge of G. For nonnegative n—vectors: z, ¥, let
C,,, be the cone of all n-by-n nonnegative matrices A such that x is a right
Perron eigenvector and y is a left Perron eigenvector of A. Let § be the
incidence matrix of the undirected graph G. The corollary provides a
condition for C, , and C; to intersect nontrivially, namely,

yTSx > y'x.

For example, if x7=y7=(1,3), S could not be [ : é] Further investigation

of such combinatorial conditions upon the cones C, , seems warranted.



ST —

236 LUDWIG ELSNER AND CHARLES R. JOHNSON

REFERENCES

[y

-] &

R. B. Bapat, Two inequalities for the Perron root, Linear Algebra Appl. 85:241-248
(1987).

E. Deutsch, Lower bounds for the Perron root of a nonnegative irreducible matrix,
Math. Proc. Cambridge Philos. Soc. 92:49-54 (1982).

L. Elsner, C. R. Johnson, and J. A. Dias da Silva, The Perron root of a weighted
geometric mean of nonnegative matrices, Linear and Multilinear Algebra, 24:1-13
(1989).

M. Fiedler, C. R. Johnson, T. Markham, and M. Neumann, A trace inequality for
M-matrices and the symmetrizability of a real matrix by a positive diagonal matrix,
Linear Algebra Appl. 71:81-94 (1985).

S. Friedland and S. Karlin, Some inequalities for the spectral radius of nonnegative
matrices and applications, Duke Math. J. 42:459-490 (1975).

F. R. Gantmacher, Theory of Matrices, Vol. II, Chelsea, New York, 1959.

C. R. Johnson and J. A. Dias da Silva, Symmetric matrices associated with a
nonnegative matrix, Circuits Systems Signal Process., to appear.

Received 10 February 1988; final manuscript accepted 20 February 1989



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 

