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Abstract. To interpret sensor signals like images, image sequences, or
continuous speech the representation and use of task-specific knowledge
is necessary. The paper scetches a framework for the representation and
utilization of declarative and procedural knowledge using a snitable defini-
tion of a semantic network. To meet the needs of machine-human interac-
tion we extend this framework in two ways. A temporal model similar to
Bruce is incorporated and representational structures are integrated to
formulate qualitative (relational) knowledge. The problem-independent
inference rules are extended to allow for the temporal prediction and
the dynamic refinement of this knowledge. Our integration of relational
knowledge exemplarily shows how semantic network representations can
benefit from developments in qualitative reasoning research.

1 Introduction

The KL-ONE-like semantic network language ERNEST [14, 18] has been espe-
cially designed for the purpose of knowledge—based signal understanding and has
proven successfully in different larger scale applications in the area of image and
speech understanding. Because of this quality, this semantic network language
shall now also be used to model the domain-specific knowledge needed by a
knowledge-based system that communicates with a human user via continuous
speech and disposes of a camera input. However, this extended task domain in-
troduces a new issue: the communication with a human user makes it essential
to allow for the use of qualitative terms in this communication.

A lot of expertise on the modeling and utilization of qualitative knowledge
!1as beetn evolved from qualitative reasoning (QR) research. Beside the research
in qualitative temporal [3, 1, 8] and spatial reasoning (10, 11, 4] a lot of progress
has been achieved in the field of qualitative physics and qualitative simulation

(19, 4]. Also, QR research addresed issues regarding the interaction of numerical
data and qualitative models [12, 7, 5).
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data on the basis of this model. Secondly, it allows to use qualitative expecta-
tions (e.g. some spatial position of an object qualitatively described in a sentence
uttered by the human user) to infer focused expectations on the numerical input
(e.g. excluding parts of an image frame, where this object need not be searched).

We furthermore outline how a notion of time can be settled into the formalism,
that accounts for both, the sampledness of the analyzed data and the necessity
to formulate complex temporal relations between concepts. Temporal prediction
is introduced as a new inference rule.

In the next section, the paper describes a subset of the ERNEST language.
In section 3 we present the new representational structures to represent qualita-
tive knowledge together with the adapted inference rules. Section 4 outlines our
integration of an explicit notion of time into the network. A small example is
explained in section 5 that illuminates one aspect of our extension of ERNEST by
especially focusing on the interaction of qualitative and numerical data. Finally,
we give some conclusions and an outlook on further work.

2 The Semantic Network Language

ERNEST is a semantic network language that has been designed to meet the
specific needs of pattern interpretation and understanding tasks. In this section
we describe only that subset of its representational vocabulary that is essential
to understand the rest of this paper. Beside other details, we particularly omit
how specialization hierarchies can be formulated, in which way inheritance is
bound to this hierarchy and how knowledge can be organized in different levels
of abstractions w.r.t. the signal level. The reader will find descriptions of the
complete ERNEST language in [16, 18, 14].

As usual in semantic networks, concept nodes are the central representa-
tional entities to model notions of the task domain. In ERNEST a concept is an
intensional description of some notion and can be specified by establishing links
to other concepts as well as by annotating it with attributes and relations.
Finally, the definition of a concept must be completed by defining a judgment
function that allows to estimate the correspondence of some area of the sensor
signal to the notion represented by the concept. This correspondence cannot si'm-
ply be characterized as being true or false due to the different certainty, quality,
and reliability of the input sensor data. The judgment calculus underlying. the
judgment functions can be determined by the modeler. A concept can be specified
as the composition of other concepts by establishing part links to other concepts

(e.g. Car *5 Wheel). Attributes (e.g. color, size) can be used to repr.esent fea-
tures characterizing the notion modeled by the concept. For every attribute A of
a concept C a function f for the computation of values (of A) must be defined.
Attributes of C and attributes of its parts may be used as parameters of f. Also a
function for the inverse computation of values (w.r.t. f) can be bgund to A.
This allows to express in which way attributes of a concept can restrict t!le at-
tributes of its parts. The possibility to bind procedural knowledge to af.tnbutes
allows the modeler to integrate domain-specific algorithms (e.g. for §1gnal fil—
tering, segmentation) appropriate for handling the kind of the domain-specific
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Fig. 1 Simple semantic network model of some image scene

sensor data. Finally, a judgment function for an attribute may be s!)eaﬁed.
However, a concept is usually not definable as simply any combination of its parts
and also not any combination of values of the concept’s attributes will correctly
characterize it. Hence, a concept may be annotated by relations (e.g- “height <
length”) to constrain such combinations. A relation is defined by a judgment
function that can take attributes of the concept and its parts as parameterfi.
That relations are being judged rather than being tested on being true or false 18
a concequence of the fact that attributes and parts are judged. Again, an inverse
function (inverse judgment of relation) can also be supplied to model‘ the
restrictions imposed on attributes of parts due to the semantics of the relation.

Fig. 1-a) shows a very small ERNEST network to model simple scenes that
contain a church, a house and the two moving objects car and lorry (Fig. 1-'?))-
All objects are attributed by bounding rectangles, given as the two projection
segments w.r.t. to the x and y axis (x-seg, y_seg). Furthermore, their velocity
is qualitatively described through the signs of the derivatives of the segments’

bounds (x-sderiv, y_sderiv). All network entries printed in italics, belong to the
extended network language and will be explained later.
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IF for a concept A or a modified concept M;(A) instances exist for all parts
THEN create instances I (A) as follows:

ecreate for I+(A) an empty instance,

econnect I;(A) with those instances referred to by the premise,

e activate the attached functions for I;(A) in the sequence: judgment of links,
computation of attributes, computation of QVSs, extraction of QVSs from
members, qualitative propagation on QVSs, member—centered propagation for
each attribute of A which is a member of a QVS of A, judgment of attributes,
judgment of relations, judgment of the concept A

Fig. 2 Rule for the creation of instances

cepts. In modified concepts only restrictions (i.e. sets of values that are still
admissible) are given for attributes, and only some parts (given as instances or
modified concepts) may be bound.

The rule for the creation of instances (see Fig. 2) shows how instances
are constructed by the ERNEST system. It reflects the idea that the recognition
of some complex object in the data needs the detection of all its parts as a pre-
requisite. It can also be seen that due to this rule concepts with no parts can
be directly instantiated on the basis of the sensor data, and that increasingly
complex concepts can be constructed in a data-driven fashion. Furthermore, a
rule for the data-driven modification of concepts is defined that looks very
similar to the instantiation rule. The important difference is that not all parts
must be bound to a given concept (or modified concept) and only restrictions
may be given for attributes. So, this rule formulates a data—driven propagation
based on pariial information. Contrarily to instances, a model-driven modi-
fication of concepts is also possible (see Fig. 3). Here the inverse functions
come into play. The ERNEST system includes a problem-independent algorithm
that controls the activation of the inference rules to construct interpretations for
the input data. Due to the noise inherent in sensor data several competing inter-
pretations may be inferred for identical signal areas. Hence, the most adequate
interpretation must be searched for. The control algorithm manages this in an
A*-based fashion. For details see [16, 14].

The successful application in different task—-domains indicates the quality of
the ERNEST language. The applications cover the detection of a roboter hand
in complex scenes [13], the diagnostic interpretation of image sequences of the
heart [17], and the understanding of spoken language in a speaker—independent
dialog system [18]. The obtained results show that the network language and
the problem-independent control algorithm are able to handle totally different

applications in an efficient manner.

3 Incorporating Qualitative Knowledge

The incorporation of qualitative knowledge must account for its dynamic nature.
Spatial relations between objects in a frame t are usually not (totally) known in
advance and hence, cannot be modeled by static relations. The spatial structure
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IF for a concept A or a modified concept M;(A) a new instance I(B) or a new
modified concept M(B) exists and there is a link B ™~' A
THEN create new modified concepts Mi(A) as follows:
ecreate for Mx(A) a new empty modified concept,
econnect Mx(A) to all instances and modified concepts referred to by M;(A),
eactivate for Mx(A) the attached functions of A and B in the following
sequence:
oinverse computation of attributes of B, which have an attribute of A as an
argument,
o inverse computation of QVSs of B, which have an QVS of A as an argument,
o member-centered propagation for each attribute of A which is a member of a
QVS of B
oinverse judgment of relations of B, which have an attribute of A as an
argument, '
oinverse judgment of links of B, which have A as the goal node,
ofunctions of A like for the creation of instances

Fig. 3 Rule for the model-driven modification of concepts

of the objects in frame ¢ may be different from their relations in frame ¢ +1 and
might even constrain the latter. Furthermore, some spatial description extracted
from an utterance could constrain the image positions (pixel areas) for the men-
tioned objects. Consequently, relational knowledge should be extractable from
numerical or other lower level data (data-driven usage). Additionally, it should
be able to constrain lower-level numerical and qualitative data (model-driven
usage), and also should be usable to derive temporal expectations (predictive us-
age). However, in the ERNEST system only stalic expectations on attributes can
be modeled via the relation entry in concepts. Those relations may constrain
attribute values (model-driven usage) but their fulfillment can only be judged
(data-driven usage). Hence, an extension of the ERNEST system is necessary.

3.1 New Representational Structures

To formulate dynamic qualitative knowledge we introduce base relation sets
(?RSS) and temporally structured neighborhoods (TSNs) as representa-
tional entities that have network-wide validity. Their content can be used to
spe(ﬂf)f the qualitative value spaces (QVSs) that can additionally be formu-
lated in each concept.

Base re!ation sets. The user can define sets of binary base relations for any
typf& of attributes he uses in the semantic network. So e.g. point relations may
be introduced, Cohn’s 2D relations ([4]), etc. A base relation r is described
by. two procedl.lre.s. The first procedure tests for the fulfillment of the relation
using the restrictions/values of two attributes. In this way the relations can be

numencglly defined. The second procedure propagates the restriction/value of
one att.nbtfte to another according to r. Finally, for each set of base relations a
procedure. implementing its composition table must be given. Fig. 4-a shows the
base relation set segmentrels. The relations are adaptations of Allen’s relations to
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Fig. 4 Binary relations on 1D spatial segments and their TSN

one-dimensional (spatial) segments. A segment | is a chain of consecutive discrete
points with smallest point s(l) and greatest point g(l). In our case, the points
correspond to pixel positions w.r.t. a single image axis, and consecutive points
have difference 1. The corresponding composition function implements Allen’s
transitivity table.

Temporally structured neighborhoods. On sets of relations often con-
tinuity structures, called neighborhoods (Freksa) can be imposed ([8, 11, 4)),
that reflect and depend on the possible valid transformations on the related
attributes. Furthermore, neighborhoods support the qualitative prediction of re-
lations ([4, 9]). We incorporated a special version of neighborhoods into the se-
mantic network, called temporally structured neighborhood. They enable
a qualitative temporal characterization of changes analogous to Forbus’ equal-
ity change law. Consequently, a temporally more precise qualitative prediction
is achievable when simultaneous changes may happen (see [9]). Fig. 4-b shows
the TSN stn we imposed on segmentrels. Its structure reflects that projections
of image regions scale and translate at simultaneously. Furthermore, due to the
discreteness of segments all transitions between relations must be regarded as
being of non-zero duration (solid arcs).

Qualitative value spaces. In each concept an arbitrary number of relational
networks, called qualitative value spaces, can be formulated. A QVS q of a
concept C has an entry referencing a single TSN. QVS nodes, called members, are
identified with attributes of C or of its parts. Arcs may be labeled by disjunctions
of base relations of the referenced TSN. If any relation of the base relation set
may hold between two members, no arc is established. A QVSs restriction or
value is given by some refined version of its relational network. Fin.ally, two user
procedures may be associated with a QVS q. The QVS computa.atl.on function
can take QVSs of C or QVSs of C's parts to compute a refined restriction or a value
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of q. The inverse computation function of a QVS supports the refinement
of QVSs of C’s parts. Both functions directly counterpart the functions bound
to attributes and allow e.g. the incorporation of transformations like Metric-to—
Allen and Allen-to-Metric [12].

Fig. 6-a shows the QVSs represented in the concept SCENE. In the extended
ERNEST version. They express the a priori known spatial relation between the
stable landmark objects Church and House in a Guesgen-like fashion [10]. They
also express that a Car and a Lorry with unknown qualitative position are ex-
pected in the scene. Restrictions and values of these QVSs that were computed
during an example analysis process can be seen in Fig. 6-b,c,d,e (see section 5).

3.2 Adapted Inference Rules

Three general system procedures are implemented and incorporated into the se-
mantic networks’ inference rules (see Figs. 2, 3). Our extensions of the rules are
printed in italics: computation and inverse computation of QVSs (see sec-
tion 3.1), extraction of a QVS from its members, qualitative propagation
on QVSs, and member-centered propagation. In this way, the utilization of
the dynamic qualitative knowledge within QVSs is ensured. This is also demon-
strated in our small example in section 5.

Extraction of a QVS. This routine applies the test routines bound to base
relations in the following way to refine QVSs. For each pair of members a and
b of some QVS q determine the base relations that may hold between them by
testing for all base relations of the corresponding BRS. Intersect this set with the
current label between a and b to yield the new label. In this way QVSs can be
computed bottom-up from (numerical) attribute data and numerical data can be
checked for accordance with QVSs.

Qualitative propagation. This is a slightly modified Allen-like propaga-
tion ([1]) algorithm that works on QVSs: the initial queue contains ell QVS arcs
that were changed during the last extraction process. So, the extraction phase is
clearly seperated from the propagation. This system routine uses the composition
functions bound to base relation sets. The qualitative propagation is always ac-
tivated directly after the extraction phase (see Fig. 2). So data-driven extracted
QVSs can be refined, due to the semantics of the underlying BRS.

Member-centered propagation. The refined qualitative constraints in a

QVS can be used to further restrict attribute restrictions of the modified con-

cept or ir_lst?mce or to propagate numerical restrictions top-down to parts. The
new restriction for a membe

. for r attribute A is calculated simply, by intersecting all
numgnf:al restrictions propagated along each arc leading to A with the actual
restnctlop for A. The restriction obtained along an arc is given by the union of
t!1e restnct'lons returned by the propagation procedures bound to the base rela-
tions labeling this arc (see description of BRSs). This kind of propagation is a
simplified numerica} propagation [15] in the sense that information is transfered
to a member from its direct QVS neighbors only and resulting changes are not
furth.er pro_pagated to other members, Although being computationally less ex-
pensive, this propagation doesn’t yield the most restrictive result for the regarded
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member. However, most often the less refined attribute restrictions already allow
to sufficiently focus expectations on lower level concepts.

4 Introducing Time into the Semantic Network

We decided to introduce a model of time similar to Bruce [3] since in opposite to
(1, 8] it accounts for both, the sampledness of the data and the need to formu-
late complex temporal relationships. Bruce regards time as a set of time-points.
Gapless chains of linearly ordered time-points are called time-segments. Bi-
nary relations, similar to Allen [1], are defined on time-segments that allow the
formulation of qualitative temporal knowledge. Consequently, we annotate each
concept with an attribute time that can take a time-segment as value. As a stan-
dard semantics we incorporate computation and inverse computation functions
for time that ensure, that each concept’s time value expresses which subsequence
of the signal data it interpretes. The attributes time can be treated by the mod-
eler like any other attribute. So, qualitative relations between time-segments can
be introduced and used like other qualitative knowledge according to section 3.

An adequate tool for the analysis of image/utterance sequences needs the ca-
pabality to express expectations on future frames due to the (intermediate) anal-
ysis results of the previous images/utterances. This expectations have a highly
dynamic character and do not only affect attribute values, but might also affect
the bindings between modified concepts that interpret subsequent data. For this
purpose we introduce a new inference rule that allows for inferring expectations
along the time axis: rule for the creation of corresponding modified con-
cepts (see Fig. 5). This rule is not directly executed by the problem-independent
control algorithm [14]. It rather must be activated by a user prediction function.
These user functions may be bound to concepts via the newly introduced optional
slot prediction function. In contrast to the attribute and QVS functions (see
section 3), they can use information of the whole subgraph underneath the con-
cept they belong to. This together with the optionality of the prediction function
entry in concepts allows for the implementation of centralized temporal predic-
tions: only one high-level concept (e.g. SCENE) embodies a prediction function,
whenever it is instantiated for some time-segment [t, ], this function uses the full
scene description (i.e. including all instantiated subconcepts) to derive expecta-
tions for the scene in the next frame. On the other hand, there might just as well
concept specific prediction functions be defined in each concept. In this way, a
decentralized local temporal prediction can be formulated.

The modeler is offered a qualitative prediction routine as a tool to support
him in realizing temporal prediction functions. Given a set of QVSs and qualita-
tive derivative values for their members the algorithm determines new arc labels
for each given QVS on the basis of their TSNs, assuming that all c}.la.nges occur
simultaneously. The new label sets express which relations are principally ad-
missible between the connected members in any temporally directly subsequent
qualitative state. If the simplest action assumption ([6]) can be applied to the
signal data the new labels express the qualitative expectations on the data.. of th.e
subsequent sample point (for further details see [9]). The prediction algorithm is

” 5B prvigamch tomis e
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IF for a concept A an instance I,(A) or a modified concept M,;(A) exists
THEN create new modified concepts Mx(A) as follows:
ecreate for Mx(A) a new empty modified concept,
einsert restrictions for all attributes and all QVSs due to the prediction func-
tion of A,

s connect Mx(A) to instances and modified concepts selected by the prediction
function,
s connect Mix(A) to I;(A) or M;(A), respectively, via the correspondence link,

sactivate the attached functions for Mx(A) like in the rule for the creation of
instances (see Fig. 2)

Fig. 5 Rule for creation of corresponding modified concepts

offered to the user as a tool he may use to implement user prediction functions
(see previous section). We are well aware, that Forbus’ assumption will often not
be fulfilled by image sequence data. Furthermore, in contrast to [5] we are not
able to compute a total envisionment of the observed system prior to the analysis
to be able to fill observation gaps during the analysis. The possible behavior of
the scene objects captured in images are usually to manyfold. Hence, what is
needed is an adapted qualitative prediction algorithm that also predicts the re-
lations of non-directly successive states that could match the next image frame.
So far, we have no solution for this.

In connection with this new inference the new link type correspondence
between modified concepts and/or instances is introduced. It expresses that the
connected modifications or instances refer to the ontologically same object in the
world, although they interpret it with respect to different time-segments.

5 A Small Example

The example analysis process we scetch in this section is based on the very simple

semantic network model of some image scene shown in Fig. 1-a) (including the

parts printed in italics) and no real image data was used. However, it is sufficient
to describe, how the interaction between numerical attribute data and qualitative
knowledge works due to our adapted inference rules.

We omi?; to regard any competing modified concepts or instances, hence we
can ignore Judgment computation. To visualize the effects of the inference rules
we depict the bounding boxes that characterize the modified concepts and in-
stancc.:s that are currently computed for the objects. Since the concept SCENE
contzfuns QVSs only but no attribute or relation entries, the application of the
n.lodxﬁcatlon l_'ules as well as the instantiation of the concept SCENE merely con-
s1st of the activation of the newly introduced functions (cf. section 3.2). So, their
effect can purely be demonstrated. Our example analysis starts at a point ’where
the content of the image frame (scetched in Fig. 1-b)) taken at time point ¢ is
fully interpreted by the construction of I;(SCENE). The bounding boxes in Fig
6-a) captu.re the objects’ positions and the QVSs x_gpos and y_qpos exactly rep-.
resent their spatial relations seperately for the x and y axis (c-t-' [10]). The little



Fig. 6 The SCENE concept and some analysis states
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arrows at the rectangle for CAR and LORRY represent their qualitative velocity.
By activating the prediction function structural_prediction of SCENE concept-
local predictions w.r.t. time point t + 1 are computed for each instance of time
segment|t, t]. The new QVSs in Fig. 6-b) including the meets relations in round
brackets result from applying our qualitative prediction algorithm to the QVSs
of I; (SCENE) (Forbus’ simplest action assumption is assumed to hold.). The sub-
sequent qualitative propagation eliminates these meets. The restrictions for the
objects at time-point ¢+ 1 are computed using the qualitative velocity information
only. Church and house are regarded as immovable. It should also be noted that
the prediction rule connects the modified concept M,(SCENE) with I,(SCENE).
Next, a model-driven modification of LORRY takes place yielding the refined box
of M2(LORRY) in Fig. 6-c). This box is computed by the member—centered prop-
agation function. Subsequently, LORRY is instantiated directly from the data (its
old position is illustrated by the dashed box), SCENE, is modified data-driven
(the QVSs don’t change), and CAR is modified model-driven. The result of these
three steps shows Fig. 6-d). CAR’s bounding rectangle is substantially refined.
After activating the instantiation of CAR all prerequisites are given to instanti-
ate SCENE to I;(SCENE). As part of the instantiation rule the QVS extraction
function restricts all arc labels to a single relation. Fig. 6-¢) shows the resulting
interpretation for the frame at time segment [t + 1, + 1].
This example shows that our extension of the network formalism allows to
— focus the search space for instances by allowing to convert qualitative knowl-
edge top-down to numerical expectations (this is an important aspect also,
when a human user verbally describes the position of some object to be iden-
tified by the image analysis system),
- extract qualitive knowledge from the numerical sensor data, and
— derive qualitative expectations on temporally successive sensor data.
We further want to point out, that this example is not a claim for a Guesgen-
like ([10]) representation for modeling spatial properties of complex scenes. This

representation was only chosen in this paper, because it is easy to understand
without much explanation.

6 Conclusion and Outlook

We s.cetched the semantic network language ERNEST that has already proven its
quality for tl}e knowledge-based understanding of sensor data, like images and
speech‘. The incorporation of a notion of time is described. Furthermore, repre-
sentational structures are introduced to model qualitative (relational) knowledge.
The proble_m—independent inference rules of ERNEST are extended to allow for
the dyn.amxc refinement of this knowledge and its interaction with numerical data.
We l.)ehr:'ve that our extension is a further example of a beneficial integration of
qualitative reasoning into another reasoning framework, namely a semantic net-
work language. With our extension arbitrary domain-specific relations between
concepis can be modeled in a systematic way without violating the demands e.g.

pu-t‘forward in [21: they have a well-defined domain-specific semantics and can be
utilized by domain-independent algorithms.
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In our future work we will focus on the integration of judgments for QVSs
and their labeling relations. This is necessary since relations that have continuous
domains in the world have to be modeled on the basis of sampled input data.
Also an adaptation of our prediction algorithm is of great interest, that is based
on restrictions less strong than Forbus’ simplest action assumption .

Literatur

1. J. F. Allen. Maintaining knowledge about temporal intervals. CACM, 26(11):832-
843, November 1983.

2. R. J. Brachman. On the epistemological status of semantic networks. In N. V.
Findler, editor, Associative Networks, p. 3-50. Academic Press, New York, 1979.

3. B. C. Bruce. A model for temporal references and its application in a question
answering program. Artificial Intelligence, 3:1-25, 1972.

4. 7. Cui, A.G. Cohn, and D.A. Randell. Qualitative simulation based on a logic of
space and time. In Proc. of QR92, Heriott Watt University, 1992.

5. Dennis DeCoste. Dynamic across-time measurement interpretation. Artificial In-
telligence, 51:273-341, 1991.

6. K. D. Forbus. Qualitative process theory. Artificial Intelligence, p. 85-168, 1984.

7. K. D. Forbus. Interpreting measurements of physical systems. In Proceedings of
AAALSé6, p. 113-117, 1986.

8. Christian Freksa. Temporal reasoning based on semi-intervals. Artificial Intelli-
gence, 54:199-227, 1992,

9. T. Fuhr, F. Kummert, S. Posch, and G. Sagerer. An approach for qualitatively
predicting relations from relations. In Erik Sandewall and Carl Gustav Jansson,
editors, Proc. of the Scandinavian Conference on Artificial Intelligence, p. 38-49,
Amsterdam, 1993. IOS Press.

10. H. W. Guesgen. Spatial reasoning based on allen‘s temporal logic. Techn. Report
TR-89-049, Int. Computer Science Institute, Berkeley, August 1989.

11. Daniel Hernandez. Qualitative Representation of Spatial Knowledge. PhD thesis,
Technical University of Munich, 1992.

12. Henry A. Kautz and Peter B. Ladkin. Intergrating metric and qualitative temporal
reasoning. In Proceedings of AAAL- 91, p. 241-246, 1991.

13. F. Kummert, E. Littmann, A. Meyering, S. Posch, H. Ritter, and G. Sagerer. A
Hybrid Approach to Signal Interpretation Using Neural and Semantic Networks.
In Mustererkennung 93, 15. DAGM-Symposium, p. 245-252. Springer, Berlin, 1993.

14. F. Kummert, H. Niemann, R. Prechtel, and G. Sagerer. Control and Explanation
in a Signal Understanding Environment. Signal Processing, special issue on ‘Intel-
ligent Systems for Signal and Image Understanding’, 32:111-145, 1993. .

15. Alan K. Mackworth and Eugene C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Artificial In-
telligence, 25:65-74, 1985. ]

16. H. Niemann, G. Sagerer, S. Schroder, and F. Kummert. ERNEST: A Semantic
Network System for Pattern Understanding. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 12(9):883-905, 1990.

17. G. Sagerer. Automatic interpretation of medical image sequences. Pattern Recog-
nition Letters, 8:87-102, 1988. Special Issue on Expert Systems in Medical Imaging,
Elsevier Science Publisher, Amsterdam. _

18. G. Sagerer. Automatisches Verstehen gesprochener Sprache, volume 74 of Reihe
Informatik. Bibliographisches Institut, Mannheim, 1990. o ‘

19. Daniel S. Weld and Johan de Kleer, editors. Readings in Qualitative Reasoning
about Physical Systems. Morgan Kaufmann, San Mateo, California, 1990.




	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 

