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A hybrid system to detect hand orientation in stereo images
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The recognition of hands and the 3-dimensional characterization of hand orientation is
a difficult and practically important vision problem. In this work we propose a hybrid
system attaching artificial neural networks to concepts of a semantic network to solve this
problem. The neural networks are attached as a holistic representation at varying levels
of the abstraction hierarchy modeled by the semantic network. In this way we are able
to combine the advantages of both techniques. However, it can also be applied to other
problems in computer vision and tasks of signal interpretation in general.

1. INTRODUCTION

Recognition and description of objects is one of the main problems in computer vision.
Furthermore, this task is one of the key capabilities required for the successful operation
of both biological organisms and artificial robots. Two different paradigms to solve this
problem are often discussed as competing approaches: On the one hand artificial neural
networks (ANNs) based on trained parameters, and on the other hand semantic networks
with knowledge based techniques. In this work we do not intend to argue which one
of these approaches is better suited to the image interpretation task. Rather we aim
at utilizing the advantages of both techniques by combining them in a hybrid system
for knowledge representation and utilization. The starting points for this hybrid system
are the semantic network ERNEST and Local-Linear-Map networks. The latter ones are
attached to concepts of the semantic net modeling objects.

As an application we chose the visual recognition of a hand and the characterization of
its orientation. This poses a challenging vision problem the solution of which is of great
Practical interest, for instance to facilitate the control of multifingered anthropomorphic
manipulators. However, the techniques developed here can also be applied to other prob-
lems in computer vision and tasks of signal interpretation in general like speech under-
standing. The work described in this paper is an extension of previous research ([1,2))
where monocular images are used as input. This system is further developed to utilize
depth information acquired from stereo images.

In the next section, the advantages and disadvantages of both techniques and our
approach for their combination in a hybrid system are discussed. Section 3 gives a brief
overview of the neural and semantic networks used as the starting point for this work.
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Then the application of the hybrid system Lo recognize 3D-hand orientations is presented
in detail and in section 5 results are discussed. We conclude with a discussion and plans
for future work.

2. OUTLINE OF THE APPROACH

As in all semantic network approaches, the domain knowledge in ERNEST is explic-
itly structured using a decomposition and specialization hierarchy of concepts. Likewise,
knowledge about attributes and relations between parts of the concepls is modeled in an
explicit way. The analysis process is strongly influenced by this decompositional view of
the world. Based on intensity information at pixel level, the sensor data are transformed
into increasingly abstract representational levels. This process may proceed in both a
data or model driven way, as well as in a mixed strategy. While the decomposition of
objects and the explicit description of their attributes is one of the main advantages of
semantic networks, it also may cause drawbacks. The inherent ambiguity of signal inter-
pretation, especially for primitive parts of the segmentation hierarchy may lead to many
competing interpretations for more complex objects of the knowledge base. Additionally,
the acquisition and adaptation of the knowledge base imposes a considerable effort on
semantic network approaches.

In contrast to semantic networks, the neural net approach does not attempt a de-
composition into symbolic object parts. Instead, the properties of objects are modeled
“holistically” in the weight parameters of an artificial neural network. Thus, the use of
heuristics and world knowledge in the first approach is replaced by learning from exam-
ples. The trained network represents implicit knowledge about the attributes required for
the identification of the object. This allows for a fast recognition of the learned objects
that is also robust with regard to noise and variations in the signal. However, being a
holistic system it is not feasible to build a single ANN that can cope with all possible
configurations of many simultaneous objects in a complex scene. Rather, multiple ANNs
have to be applied to certain regions of interest, but their coordination is not {yet) well
understood in the neural paradigm. Another possible problem is the necessary size of the
training set for ANNs. For complex images, the number of required training samples may
be too large for realistic applications.

To overcome the disadvantages of both approaches we propose a hybrid system com-
bining neural and semantic network techniques. The main idea is to associate or attach
ANNs as holistic models to concepts of the semantic net, with both components modeling
the same object.! That is, the interface between the different network types is not, defined
at one fixed level of the segmentation hierarchy, rather it is determined as appropriate for
the given task, knowledge base, or the current state of the analysis process. Given such
a hybrid knowledge base, different options are available to recognize a modeled object in
a model-driven strategy. If a concept node is to be instantiated the associated ANN can
be activated and the object is recognized in a fast and robust way without the necessity
to detect the parts of the object as modeled by the semantic network. If no ANN has
been attached to a concepl node the analysis works in the usual manner pursuing the de-

The':sam? fxpp%;es to other concepts modeled in the semantic network, like events or abstract conceptions.
For simplicity, however, we only refer to objects in the following.
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cotmposition hierarchy. In this mode of operation the semantic network is mainly utilized
to control the analysis process and to focus the various ANNs attached to the semantic
network on different image regions. If in a later phase of the analysis process information
about parts and attributes of parts is required, the knowledge about the structure of
objects modeled in the semantic network can still be exploited. In a data driven analysis
strategy the interaction is done in a similar way. After an object has been recognized
by an ANN the corresponding concept can be instantiated even if its parts are not (yet)
detected. In a mixed strategy the instantiated objects recognized by ANNs can be used
to select appropriate goal concepts of more abstract levels of the semantic network. In
this way the number of competing interpretations is drastically reduced and the analysis
process can be focused by propagating the contraints from the estimated goal concepts
and the instantiated objects.

As indicated above, it is not necessary to attach an ANN to each concept of the semantic
network. Rather, one might choose to first train and associate ANNs for objects that occur
frequently or that are difficult to recognize by a semantic network. In cases when sufficient
training data are not available for a successful training of an ANN, no ANN is bound to
the corresponding concept. On the other hand, the hybrid approach gives the option not
to fully decompose some of the objects alleviating the effort to acquire and adapt the
knowledge base of the semantic network.

3. FORMALISMS FOR NEURAL AND SEMANTIC NETWORKS

The neural network used in the following is the Local-Linear-Map network (LLM) [10,
4,5]. This sort of network consists of units that are significantly more complex than the
usually employed sigmoid neurons. Therefore, a moderate number of units is sufficient
for many tasks.

Each of these units processes the same input vector x of dimensionality [ and com-
putes a node response y of dimensionality M. Each LLM-unit is characterized by three
components: an input weight vector wi™ € R*, an output weight vector wi*t) ¢ RM
and a MxL-matrix A,. The matrix A, implements a locally valid linear mapping. The
node response y of a unit r is determined by

o = Wi 4 A (- i),

For computing the final net output two different variants can be distinguished. If the
LLM network acts like a “winner-takes-all” network the node response of one single unit
is used as final output. Otherwise, a weighted superposition of several node responses
is used. The contribution of each node to the superposition can depend e.g. on the
distance between the input vector and the input weight vector of the node and can also
be influenced by the previous node response. In this way, a short-term memory-effect
might be produced. “

In our approach the “winner-takes-all” variant is used, The “winner” unit s is deter-
mined in this case by comparing the distances d, = ||x — w{™|| hetween the input vector x
and the input weight vectors w{™, r = 1,2,3.. ., and selecting the node with the minimal
distance.

To perform the required transformation between input and output space the necessary
values of the network parameters are learned during a training phase. For this purpose
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correct input-output pairs (x'*, (™), o = 1,2,... 7, of a set of T training samples are
presented repeatedly and in a random sequence. The input and oulput weight vectors
as well as the matrix coefficients are adapted according to the following simple error-
correction rules:

Awlinl = g (x(®) . wimy
Awlrdl= ¢(yl™) — wlowthy 4 A, AW,
AA, = efd) (y) — yCey(x(®) o T

During this adaptation process each training step parameter ¢; decays exponentially from
a large initial value (typically €% = 0.9) to a small final value (typically £ = 0.01).

In the following the semantic network is described. In contrast to other approaches like
KL-ONE or PSN, in the ERNEST semantic network language only three different types
of nodes and three different types of links exist. They have well defined semantics and
we believe that these structures are adequate to represent the knowledge for different
pattern understanding tasks. Concepts represent classes of objects, events, or abstract
conceptions having some common properties. In the context of image understanding an
important step is the interpretation of the sensor signal in terms modeled in the knowledge
base. The second node type, called instance, represents these extensions of a concept. [t
associates certain areas of the image with coneepts of the knowledge base. It is a copy
of the related concept where common property descriptions of a class are substituted by
values derived from the signal. In an intermediate state of processing instances of some
concepts may not be computable because certain prerequisites are missing. Nevertheless,
the available information can be used to constrain an uninstantiated concept. This is done
via the node type modified concept. As in all approaches to semantic networks the partlink
decomposes a concept into its natural components. Another well-known link type is the
specialization with a related inheritance mechanism by which a special concept inherits
all properties of the general one. For a clear distinction of knowledge of different levels
of abstraction the link type concrefe is introduced. In addition to its links, a concept is
described by attributes representing mainly numerical features and restrictions on these
values according to the modeled term. Furthermore, relations defining constraints for the
attributes can be specified and must be satisfied for valid instances.

The creation of modified concepts and instances constitutes the knowledge utilization
in the semantic network. For the creation of instances, this process is based on the
fact that the recognition of a complex object needs the detection of all its parts as a
prerequisite. For concepts which model terms only defined within a certain context the
instantiation process must proceed in the opposite direction. In this case the context
must exist before an instance of the context-dependent concept can be created. In the
network language, these ideas are expressed by six problem-independent inference rules.
Context-independent parts, contexts, and concretes are the prerequisites for the creation
of instances and modified concepts in a data-driven strategy. The opposite link directions
are used for model driven inferences. Since the results of an initial segmentation are not
perfect, the definition of a concept is completed by a judgment function estimating the
degree of correspondence of an image area to the term defined by the related concept.
On the basis of these estimates and the inference rules an A*like control algorithm is
applied. For a detailed description of the network language see [7,3].
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4. APPLICATION

The complexity and variety of real scenes poses challenging problems for computer
vision systems aiming at a complete description of objects and their relations. Therefore,
we choose an incremental design of our system and concentrate on the location and
orientation of multifingered anthropomorphic hands in scenes as shown in figure 1. This
description is essential information for the control of such manipulators.

m =2 N e o

Figure 1. Two examples for left input images shown as grey value images.

The system uses color images as input, either monocular or stereo images. As the re-
sult, one or possibly more hypotheses for the location and orientation of a hand are com-
puted. The additional information provided by stereo images can be exploited to enhance
performance of the system as will be demonstrated later, imposes however .stmnger com-
putational requirements. In the rest of this section we describe the declarative knuwledge
base as shown in figure 2, the attached neural networks, and the procedural knowledge in
some detail,

The lowest level of the hybrid network is the concept INPUT.IMAGE form%ng the
interface to the input data. The concept SKIN.COLOR_ACTIVITY.MAP is realized by
an LLM network. The network was trained to map the local color information of eac‘b
pixel onto a real-valued “skin-color activity” value (see Fig. 3 (a) for an example). This
training was based on an additional calibration image that had been segmented manually

in hand and non-hand pixels.
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Figure 2. The declarative knowledge base of the hybrid network

The resulting skin-color activity values for all pixels form the SKIN.COLOR_ACTI-
VITY_-MAP and is the basis for the detection of hand and arm regions: Applying discrim-
inant analysis to the histogram of this activity map the concept SKIN.COLOR_IMAGE
calculates a threshold. This threshold is applied to the low pass filtered activity map yield-
ing a binary image with foreground pixels corresponding to skin colored areas. Connected
regions of skin colored pixels are candidates for a hand-arm-complex and are represented
as instances of SKIN.COLORED_REGION. (see figure 3 (b) for an example). However,
different skin colored objects overlapping in the image plane cannot be separated using
only color information. Yet in most cases overlapping objects are separated in 3D space
and depth information may be exploited to discriminate the objects. To acquire three-
dimensional information we employ a contour based stereo algorithm (see [8,9]). Straight
lines or polygons are extracted ouly for foreground pixels of the SKIN.COLOR.IMAGE
and matched subsequently. To confine matching to pairs of regions is not feasible, since
a region in one image may correspond to more then one region in the other image due to
different viewpoints. Nevertheless, focusing on a subset of all contours in the image allevi-
ated the correspondence problem for the stereo algorithm. The resulting sparse disparity
map has to be expanded to all foreground pixels. If only few contours exist within skin
colored objects, this disparity map may not be reliable for subsequent splitting of regions
since disparity can only be computed for contour pixels, Assuming that two objects are
projected into the region and that the depth (and hence disparity) of each object does
not vary significantly, discriminant analysis is applied to the histogram of disparity values
within each region. The resulting threshold is used to split the regions. At this point of
the analysis no attempt is made to decide whether overlapping objects indeed occired
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Figure 3. {a} Skin-color activity map for the image shown in figure 1 (a); (b) connected
regions of skin colored pixels as candidates for a hand-arm-complex for the same scene

or not. Hence, for each connected region derived from the binary skin color image, the
region itself and all subregions computed from the disparity information yield instances of
SKIN.COLORED.REGION. All theses hypotheses are further processed and judged later
on. Since SKIN.COLORED_REGION is a concrete of HAND.ARM.COMPLEX, each in-
stance of the former gives rise to an instance of the latter. As an example, in figure 4 a
subwindow of the image in figure 1 {a) is displayed and the two competing regions for a
hand-arm-complex detected in this subwindow using disparities are shown. The union of
both regions forms the third hypothesis corresponding to the non overlapping case.

The concepts HAND and ARM are modeled as context-dependent parts of HAND.-
ARM.COMPLEX. To separate the arm from the hand the hand-arm-complex is trans-
formed into the normalized orientation by a Karhunen-Loeve transformation. Based on
general knowledge about the shape and proportions of hands and arms the hand is ex-
tracted from the complex. For each of the competing hand hypotheses a judgment has
to be computed in order to control the interpretation process. This is done by projecting
each hand candidate into a subspace spanned by “eigenhands” derived from a test set
of hands in an approach adopted from the “eigenface approach” (see {11]). The concept
ARM is not considered further for our application.

For our task the HAND_DESCRIPTION is composed of the HAND_ORIENTATION
(including location) and HAND.POSTURE, the latter one not being cousidered for the
current state of the system. The concept HAND.ORIENTATION is again modeled by
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Figure 4. {a} A subwindow of the image in figure 1 {a): {b) the competing regions for a
hand-arm-complex

an LLM network. This network operates on a feature space represented in the concept
GABOR_FILTERED_HAND: A Laplace operator is applied to the hand and negative filter
values are clipped. Then a Gabor filter with four different orientations operates ona 3 x 3
“filter grid”, resulting in a 36-dimensional feature vector. From this feature representation
the LLM network attached to the concept HAND_ORIENTATION calculates the two

angles characterizing the orientation in our setup.

5. RESULTS

To evaluate our approach we use a set of 300 stereo images with 512 x 512 color pixels
each. Examples are shown in figure 1. The images were taken in 15 groups of 20 images
each. For each group the basic setup of the scene is constant, while the end effector of
the robot was positioned in each image in a random orientation. This orientation was
generated by two subsequent rotations around a local coordinate system of the hand. First
the z-axis is rotated in the range of [—40°,40°], followed by a rotation of the resulting
y-axis in the range of [10°, 70°]. The z-axis is approximatly aligned with the middle finger
of a stretched hand, while the y-axis is roughly defined by the finger tips.

An additional calibration image was used for the training of an LLM network to detect
skin-colored pixels. The current LLM network for this task consists of one layer containing
50 nodes. 1t is trained to provide an output value of | for pixels belonging to the hand-
arm-complex and —1 otherwise. 200,000 adaptation steps were carried out by randomly
drawing pixels from the calibration image. In contrast to {1], the chosen network and
mput representation is rather simple to guarantee robust recognition of hand pixels at
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the expense of the specificity of the mapping, thus yielding large hand activity values for
wootden objects,

The basic setup of the 15 groups of scenes was chosen to challenge the system with
frequent overlaps of the robot hand with other skin colored objects. As a result, 176 of
the 299 scenes® show such an overlap for the left image.® For these images the correct hand
description cannot be derived using only monocular images as in [1,2], but can potentially
be handled using stereo images. The evaluation of the segmentation results show that for
a total of 230 scenes the system was able to correctly segment the hand region.* Different
types of problems can be identified analysing the remaining 69 scenes: About 75% of theses
scenes are from one of four groups. In two groups the overlapping objects have no contours
in the vicinity of the border between hand and object. Therefore, no reliable disparity
values can be derived near these horders with the contour based stereo algorithm. In
another group there were two skin colored objects located in the background, overlapping
the hand at both sides. In addition, these objects have repetitive patterns and positional
reversal of scene points along a scanline occurs. This results in difficult conditions for
stereo algorithms. In the fourth group, the overlapping objects have about the same
depth, and hence cannot be separated using disparity information. The remaining errors
are due to wrong stereo matching or problems in correctly thresholding the disparity
histogram. For the remaining discussion we consider only the 230 correctly segmented
scenes,

As mentioned in the previous section, we use the “eigenhand” approach to judge all
competing instances of the concept HAND in a given images. To train these eigenhands,
a given set of training images is scaled to size mzn and the eigenvectors are computed,
considering the scaled images as vectors of length mn. The k eigenvectors with largest
eigenvalues constitute the set of eigenhands spanning the k-dimensional subspace of hands.
In order to judge for a given region the similarity to a hand, the region is again scaled
and then projected into this subspace of hands. The error of the projection, i.e. the
distance to the hand space yields the required judgment. The training set was derived
in two steps: First, for each of three scenes ten images were chosen and a tentative set
of 15 eigenhands derived. In the second step for each of the remaining 200 scenes with
correct hand segmentation, the distance of the hand was compared to the distance of
the competing regions. For 165 scenes the correct hand region had the smallest distance,
thus the best judgment. The inital training set was augmented with the other 35 images
and the final set of eigenhands computed. Figure 5 shows the mean of all eigenhands
and the eigenhand with largest eigenvector of the eigenhands we used. For 3, 22, and 58
eigenhands corresponding to the largest eigenvalues, table 1 shows the number of scenes
where the hand region yields the smallest distance and therefore is returned as the best
hypothesis for the hand location. In most cases the correct region is found, while the
number of eigenhands has no significant influence on the result, indicating that the hands
are located in a low dimensional subspace.

The subsequent orientation detection works on these areas of interest, The data set
is randomly split into two subsets: 150 images are used for training, the remaining 80

2One of the originally 300 images was unusable due to technical problems
3The left image is used to locate the hand and determine its orientation
*The correctness was judged visually and is therefore subjectivly Lo a certain degree.
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Figure 5. (a}) Mean of all eigenhands and {b) the eigenhand with largest eigenvalue of the
eigenhands from the final training set

Table 1
Absolut number and percentage of the correctly segmented 230 scenes, where the eigen-
hand projection yields the correet hand region as the best hypothesis. The results are

given for 15 eigenhands of the tentativ set of eigenhands and 3, 22, respectivly 58 eigen-
hands of the final set.

15 tentative eigenhands 3 eigenhands 22 eigenhands 58 eigenhands
absolut 195 215 220 222
relativ 0.85 0.93 0.96 0.97

Table 2
Performance of the LLM network for the recognition of orientation on the training /test

set presenting the mean square root error as an absolute value as well as normalized by
the standard deviation of the data sets.

MSRE NMSRE
training 3.76° 0.139
test 7.54° 0.270

images form the test set. The task is accomplished by an LLM-network consisting of five
units. For the 36-dimensional input space the training set contains very few examples.
Therefore, the network is trained with the relatively small number of 40.000 adaptation
steps only, since more training iterations would lead to overfitting.

The performance of the orientation LLM network is represented in Table 2. Evaluated
on the independent test set, the mean square root error (M5RE) for the Euclidean distance
in both dimensions is 7.54°. Normalizing the MSRE with the corresponding standard

deviations of the data sets, we obtain a total NMSRE of 0.270. These results are presented
graphically in figure 6.
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Figure 6. Representation of the orientation error on the training set {a) and the test
set (b, The center of a cross is the target point whereas the length of the tail represents
the size of the total error for rotation about z- and y-axis in degree. The rotation about
z-axis in the range of [~40°,40°] is shown on the abscissa, the rotation about the y-axis
in the range of {10°, 70°) on the ordinate.

8. CONCLUSION

In this work we describe a hybrid system for the analysis of complex scenes combining
semantic and artificial neural networks. The ANNs are attached to concepts of the se-
mantic network adding a holistic model of a given object to the decompositional view of
the semantic network. Given such a hybrid knowledge base, different analysis strategies
can be realized. In this way, the robust holistic recognition by ANNs is combined with
explicit structuring of domain knowledge resulting in a flexible and powerful analysis sys-
tem. The same technique can also be applied to other problems in computer vision and
tasks of signal interpretation in general.

The system is successfully applied to the problem of recognition of a hand and the
determination of its 3D-orientation in complex real world scenes. Using stereo images as
input, the system is able to correctly process many scenes with overlapping skin colored
objects which cannot be handled by a monocular system as realized previously in {i1,2]).

In further work we will explore issues of control strategies to exploit the potentials
of holistic and decompositional modeling in more detail. Additionally, the knowledge
base of the system is incrementally expanded. A complementing direction of research
aims at realizing procedural knowledge of Lhe semantic network by neural networks, like
computation of attributes or judgments ([6]). The resulting tighter coupling of both
network types will be combined with the approach described in this paper.
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