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Abstract: Based on a detailled discussion of system architectures for
knowlgdge based speech understanding and knowledge representation
techniques, criteria for both a knowledge representation scheme and
system architectures are developed. Upon this background a system is
introduced which is organized around a homogenuous knowledge base.
Both the knowledge representation language and the content of the
knowledge base are described. The knowledge representation language
do not only cover declarative but also procedural knowledge. Analysis
Processes are guided by a flexibel bottom-up top-down strategy.
Besides the procedural semantics of the language the A -Algorithm is
used for this purpose. Search graph nodes are judged by a vector
which reflects knowledge dependent and acoustic scores and which is
admissable for the A -Algorithm.

1. INTRODUCTION

The term "knowledge based speech understanding" is strongly
related to the first ARPA Speech Understanding Reseach Project /LEA
80a/. A number of different system architectures were developed and
applied to speech understanding tasks. Architectures 1like the
blackboard model of Hearsay-II /ERM 80a/ were also adopted to other
problems 1like Computer Vision /KIM 84a/. But independent of speech
applications, knowledge based systems were studied with great effort
in the last years. Especially the technology of Expert Systems /HAY
82a, WAT 86a/ influenced the development of systems in the speech
recognition /DEM 83a, MER 85a/ and understanding area /MCC 8la, NIE
86a/. The progress in knowledge representation resulted in different
powerful approaches /MCC 83a/. Schemes and languages developed in
this area are of increasing influence on natural language and speech
understanding systems /THU 88a/. Besides these successful mutual
effects between speech understanding systems and knowledge based
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systems in general, a gap arose during the last years inside the
speech understanding community. Perhaps based on the success of the
Harpy /LOW 80a/ and the IBM /BAH 83a/ systems concerning the
recognition rate of spoken texts, the recognition and the
understanding of speech were more and more treated as two sequential,
not cooperating and not interacting tasks /RAB88a, SCH88a/.

All these systems are based on a left to right analysis of the
input signal. Linquistic knowledge is precompiled and implicitly used
during the recognition process. I1f we change from spoken texts to
dialog oriented systems, analysis becomes more complicated.
Background of the following investigations to this problem is the
system EVAR. EVAR is the abbreviation of the German words for
recognition, understanding, answering, asking back. It is designed as
speech understanding and dialog system with IC-train schedule
information as discourse domain. Additionally, EVAR shall satisfy the
following requirements: speaker independence, use of continuous
speech, about 4000 words in the lexicon, use of linquistic knowledge.
The different modules of this system together with a bottom-up
control strategy are described in /NIE 85a/. The results generated by
various modules and the experiences with the system initiated and
strongly effected the considerations of this paper. The main points
can be summarized as follows:

- A 100% recognition rate is not achievable at the word level with

an acceptable number of word hypothesis.

- The "optimum" with respect to the recognition rate for words,
word chains, or complete utterances is not necessarily the
"optimum" with respect to the understanding task, if there is no
feed back.

- If a grammar for conversational speech exists, it is different
from the grammar of the corresponding natural language.

- Even if an utterance is syntactically wrong and/or uncomplete,
it is understandable. That means, semantic and pragmatic
knowledge is more important than syntactical one.

- Linguistic knowledge can constrain the complexity of the
recognition process by giving restrictions and priorities for
hypothesis. This capability is not sufficiently used in a
bottom-up process.

Therefore, I agree with the following statements given in /GOO 80a/:



"We know that all the available sources of knowledge must comminicate
in the presence of error and uncertainty. ... The problem of control
in a speech understanding system refers to how knowledge is
organized, activated and focused to constrain the search. ... The
direction of knowledge flow is not necessarily from a lower level to
a higher level. ... some common representation is necessary if
knowledge sources are to interact cooperatively." Contrary to the
recognition of spoken texts, cooperation between signal related
recognition processes and symbol related understanding processes is
necessary to understand spoken utterances in a dialog situation.
Therefore, we have to look for system architectures and knowledge
representation schemes which support the integration and flexible
cooperation of knowledge and algorithms developed in both, the speech
recognition and the natural language understanding field. Since
knowledge and algorithms are well described in other papers of this
volume, e.g. /SCH 88a, THU 88a/ this paper will be mainly concerned
with the problems of organization, activation, and focusing of the
knowledge and the algorithms, in order to develop an architecture for
a speech understanding system which fulfils the required properties.

In Section 2 different aspects of knowledge based systems will be
discussed with respect to the speech understanding problen.
Considering the integration and cooperation of algorithms and
different kinds of knowledge, schemes for knowledge representation
will be examined in Section 3. Based on the criteria evaluated in
both sections an active homogenuous knowledge base will be developed
in Section 4. This knowledge base is the kernel of the speech
understanding system described in Section 5. Some remarks on the
computer realization and a first test will conclude the paper.

2. SOME ASPECTS OF KNOWLEDGE BASED SYSTEMS

Generally spoken, the goal of speech understanding is to compute a
symbolic description of those contents of a speech signal which are
Therefore, for information dialogs

relevant for a given application.
but it is

it is not necessary to interpret the complete signal,
sufficient to extract a symbolic description which allows to continue
the dialog in an appropriate way. Besides general linguistic
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knowledge like acoustic-phonetic, syntax, and semantics, the system
has to cover pragmatical knowledge about the discourse domain,
knowledge about dialog strategies, and about the former utterances of
the actual dialog. The speech understanding task in this situation
therefore requires an explicit representation and an efficient use of
all this Xknowledge by the system. If we try to organize the
declarative and procedural (algorithmic) knowledge, we can attack
these problems under different viewpoints. First of all, we can
seperate different modules from a processing oriented point of view.
Contrary, system activities can be grouped around the different kinds
of knowledge stored in or created by the system. Both organization
principles are independent of speech specific knowledge. The third
way is a problem dependent organization. The system is divided into
several modules, and each module is related to one level of knowledge
like syntax or semantics.

2.1 0rganization with Processing Oriented Modules

Fig. 2-1 shows a system architecture which is quite common to most
knowledge based systems /NIE 8la/. It is basically built up of the
following four modules:

METHODS for doing low level processing like feature extraction,

preprocessing, and segmentation. It can also cover more complex

algorithms e.g. to calculate distance or similarity measures
between a hypothesis and the signal.

KNOWLEDGE to support the understanding process by facts and

algorithms (declarative and procedural knowledge) .

CONTROL for determining a processing strategy by activating the

appropriate algorithms at the proper time using a relevant subset

of declarative knowledge and intermediate results.

RESULT DATA BASE for storing the results of processing and making

them available to processing algoritms as necessary.

There are several schemes for knowledge representation (rules, formal
grammars, ATINs, semantic networks, logic), and several control
strategies and algorithms (backtracking, A', heuristics, rules,
resolution). The organization of the result data base usually depends
on the knowledge representation scheme. Some special methods may be
required by the control algorithm which is used. But in principle,
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the four modules are independent of each other. Nevertheless, the
behaviour of the complete system depends on each module and mainly on
their cooperative interaction.

2.2 Organization along Different Aspects of Knowledge

In order to achieve descriptions of a speech signal automatically,
different aspects of knowledge have to be considered. First of all,
there are linguistic conceptions 1like words, syntactical
constituents, verb frames, semantic classes etc. Together with task
specific conceptions 1like train schedule information, these
conceptions have to be modelled. For an analysis process, inference
processes are needed to use this knowledge. Based on the a priori
known conceptions and on the input signal, instances of conceptions
are created by these processes. Thus we obtain a triple of associated
knowledge aspects: declarative knowledge (conceptions), procedural
knowledge (inferences), and a posteriori Xknowledge (instances).
Furthermore, signals have to be transformed into a symbolic
description (e.g. words) to initiate the inference processes. For
this task features are needed. Additionally, if we associate some
signal area to one or more symbolic descriptions, the resulting
instances have some properties which are important for the further
processing steps; e.g., the covered sector of the signal. What
features and what properties we use, 1is also declarative knowledge.
From the procedural point of view, algorithms are needed to extract
and to combine values of such features and properties. Again we get a
triple of associated terms, which is summarized ina line of Fig 2-2.

Because signals are noisy, they are a source of errors and
ambiguity. One has to take into account that no decision in terms of
YES or NO is possible, but every decision can be judged with sonme
kind of certainty or possibility /PRA 85a/. The larger the context of
an interpretation is, the more significant a decision is. A calculus
for such judgements including domain and operations builds up a third
triple. Contrary to the composition of facts in order to get more
complex interpretations, there are constraints which are propagated
by such interpretations. E.g., it is a priori known that a noun group
can be built up of a noun and adjectives. If additionally the noun is
known, the adjectives of the group can be restricted to those ones
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which are compatible with the detected noun. Therefore, a constraint
can be propagated and this process results in a situation dependend
restriction on the adjectives.

The described aspects are grouped in Fig.2-2. The a priori
knowledge of a system consists of the declarative and procedural
components mentioned in this figure. If a module KNOWLEDGE is able to
Cover and connect these aspects, the module CONTROL is reduced to a
monitor, which just activates some processes dependending on the
actual situation of the analysis process. Furthermore, most of the
METHODS are integrated into the module KNOWLEDGE, and the
organization of the RESULT DATA BASE strongly depends on the
knowledge representation scheme. Because the system is centered
around the module KNOWLEDGE, we extend the demand for "some common
representation” (compare section 1.) to the following statement:

A knowledge representation scheme must cover and connect all the

knowledge components shown in Fig.2-2 to support an efficient

cooperative interactionbetween the different components.
The main advantage of this organization principle is, that the
Communication problem is reduced to the interactions within the
module KNOWLEDGE. If one knowledge representation language is able to
fulfil this statement, most of the problems concerning a cooperative

interaction are solved.
2.3 Organization along Levels of Knowledge

A stratified model of language comprehension is described in /WIN
83a/. According to this model, the knowledge for speech understanding
is made up of levels of procedural and declarative knowledge, that
transform the speech signal stepwise into a final interpretation.
Fig.2-3 shows such a model with the levels Acoustic-Phonetic, Lexical
Retrieval, Syntax, Semantics, and Pragmatics. The advantage of such a
model is the modularity in order to get a flexible and expandable
System architecture. But in /WIN 83a/ it is pointed out also: "What
is needed for effective integration of the levels is a uniform
definition for the structures that the components accept as input and
Produce as output", and furthermore that the processing sequence
should be separated from the structural levels. The reason for the
second point is also given: "Many experiments have demonstrated that
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in listening to speech we often use knowledge of the expected meaning
as an aid in analyzing the sounds in order to decipher the words of
the message." There are different possibilities for the required
uniform definition for the structures and for a flexible processing
sequence.

In Hearsay-II the blackboard architecture was introduced. All the
modules (also called components or knowledge sources) communicate
with each other only via the blackboard. All processing results are
written on this structured memory. For the further processing they
can be read by other modules. Also, all other kind of communication
between modules can only be done via the blackboard. Therefore, the
structure of the input and the output of all modules have to be
unified. The advantage of this architecture is the modularity. The
main disadvantage is that the problem of errors and ambiguity are
more or less neglected. There is no explicit CONTROL module, which is
able to regqulate the activities of the different modules towards a
given goal and therefore to manage the search process. Contrary, the
HWIM-architecture /WOL 80a/ groups the system around a central
CONTROL strategy. Only three modules are separated to cover the
components of the stratified model. A uniform structure is used to
represent the syntactical, the semantic, and the pragmatic knowledge.
All these components are integrated into one augmented transition
network (ATN) /WOO 70a/. The modules for acoustic-phonetic processing
and lexical retrieval are sequentially ordered. The CONTROL module
communicates with both the lexical retrieval and the integrated ATN
module. Additionally, it is supported by a verification module. This
module calculates judgements for hypothesis based on a match between
a hypothesis and the signal. The disadvantage here is, that most of
the linguistic knowledge is not explicitly stored, because it is not
separated from the ATN. E.g., there is no conception for a noun
group, for a semantic class, or for a verb frame. Contrary to the
stratified model in /WIN 83a/, all such facts are only implicitly
used to build up the ATN. The main advantages are the capability of a
controlled but flexible processing, the use of uniform and therefore
comparable 7judgements for hypotheses, and the use of predictions
based on the ATN.

The two examples show that even system archtitectures for the
stratified linguistic model are grouped around one centralized



module: the RESULT DATA BASE at Hearsay-II, respectively the CONTROL
module at HWIM. Other potential architectures like a strictly
hierarchical or a strictly goal directed architecture are of minor
interest /GOO 80a/. Because of the exponential number of data paths,
also the complete heterarchical architecture was not realized.

In the previous subsection, the advantages of a system
architecture around the module KNOWLEDGE were shown. So far, only
requirements concerning different aspects of knowledge were stated
for this architecture. The different levels of knowledge were
neglected. But this KNOWLEDGE centered architecture can also support
one main point of the blackboard architecture. If an uniform
knowledge representation language is given for all aspects and
levels, a uniform utructure of the RESULT DATA BASE is the
Consequence. Then the remaining question is, whether one knowledge
represenation language is able to integrate at least most of the
levels, which are seperated into different modules at Hearsay-II, in
an adequate manner. The ATN in the HWIM system does the job of
integration. But we have to look for a scheme, which also reflects
the different levels of knowledge, in order to keep all the knowledge
explicit and to guarantee the modularity of the knowledge base. It
Was also pointed out, that the judgement calculus should be
integrated into the knowledge base. Therefore, the four modules
besides the CONTROL strategy of HWIM form the knowledge base, also
including the verification. Because of this, the interaction between

CONTROL and KNOWLEDGE becomes easier.

3. KNOWLEDGE REPRESENTATION

For a knowledge representation scheme (and language) it was
required in section 2, that it should be able

(R1) to integrate the different aspects of knowledge,

(R2) to integrate the different levels of knowledge,

(R3) to make the different levels of knowledge explicit, and

(R4) to build up a modular knowledge base.
Because the intended system strongly depends on the organization of
the knowledge base, the gquestion, how adequate is a scheme or

language, is of importance. Therefore, adequacy criteria will be



presented, before different knowledge representation schemes are
discussed with respect to these criteria and to the four
requisitions, which are summarized above.

3.1 Criteria for Knowledge Representation Languages

In /MCC 69a, BRA 79%a, SCH 86a/ the epistemclogical adequacy is
accentuated as main criterion for knowledge representation languages.
A compact definition for this criterion is given in /MCC 69a/: "A
representation is called epistemologically adequate for a person or a
machine if it can be used practically to express the facts that one
actually has about the aspects of the world." /BRA 79a/ pointed out
that an epistemologically adequate scheme muist be neutral with
respect to a conceptional level of a knowledge base. This level is
built up of those conceptions and the relationships between them,
which are relevant for a given context of problems. Therefore, a
representation scheme should be independent from applications.
Further criteria are summarized in /SCH 86a/:

Logical Adequacy: Is the system (language and interpreter) correct,
logically complete, anddecidable?

Psychological Adequacy: Are the structures used for knowledge
representation a model of psychical structures and also the inference
processes? Are the errors of the system, comparable to those of a
man? Does the system permit contradictions?

Algorithmic Adequacy: Are the algorithms for knowledge utilization of
acceptable complexity, and do algorithms exist to monitor the
analysis with acceptable complexity?

Ergonomic Adequacy: Is the language manageable and comprehensible?

These criteria do not only ask questions concerning the
declarative components of a knowledge representation scheme, but also
questions concerning a complete system in the sense of section 2.1
excluding problem specific knowledge. This emphasizes that at least
the components pointed out in the first two lines of Fig.2-2 must be
judged as one wunit with different facets. If a knowledge
representation scheme is used to interprete sensor signals one should
take a further criteria into account: the handling of uncertain data,
and therefore uncertain decisions. In our oppinion it is impossible
to extract an unique symbolic description out of speech signals,



take them as being correct, and finally running an understanding
process as it is done in systems for natural language understanding.
Contrary, it is necessary to describe, how results can be judged in
the knowledge representation lanquage itself. Examples for such kinds
of knowledge bases are given for example in /DEM 83a, TSO 80a, SAG
85a/. Because of these reasons, the criterion adequate for sensor
data interpretation is introduced.

It is evident that one system can hardly fulfill all these
criteria. Additionally, there is no effective test to decide whether
a system realizes these criteria. For the task of pattern
understanding psychological adequacy is of less interest compared to
the epistemological, the algorithmic, and sensor data adequacy.

If these adequacy criteria are compared with the requisitions
summarized as Rl,..,R4 at the top of this section, it is evident,
that both groups have common properties. At one point, those
requisitions, which demand the integration of different aspects and
levels of knowledge (R1,R2), supply the criterion "epistemological
adequacy". Because the "facts ... about the aspects of the world"
(see /MCC 69a/) are divided into a number of more special terms, they
become more concrete. The most important subcriterion, which results
from this division, treats this partial view on epistemological
adequacy which concerns the representation of conceptions and their
interrelations. If a knowledge representation scheme allows the
integration of a judgement calculus (R1l) this fact supports the
Sensor data adequacy. The algorithmic adequacy has references to the
Procedural aspects of knowledge shown in Fig.2-2. The question on
logical adequacy asks for the declarative and the procedural aspects.
By the requisition R1 both have to be integrated into cne scheme. As
a consequence, it is also stated that they are not independent from
each other and that they cannot be exchanged individually. Therefore,

Rl and the logical adequacy criterion are in correlation. Last not

least, the manageableness, which was pointed out as one fact of

ergonomic adequacy, is also reflected by the requisitions Rl and R3.
Because an integrated knowledge base for speech understanding will be
of large complexity, also the manageableness of a large knowledge
base in the representation language is an important criterion.

Based on these considerations the following criteria are

Presented for knowledge representation languages:
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(C1) Does the language support the manageableness of large knowledge
bases?

(C2) Is the represenation of conceptions and their interrelations

epistemologically adequate?
I (C3) Does the language support the handling of uncertain data and
| uncertaindecisions?

(C4) Do algorithms exist which monitor analysis processes

efficiently?

Together with the requisitions R1,..,R4 these criteria subsume those
adequacy criteria which are most relevant for the speech
understanding task. Therefore, the requisitions and the criteria
C1,..,C4 are used in the following subsection to examine knowledge
representation languages.

3.2 Examples and Classification of Knowledge Representation Languages

Following /MYL 83a/ knowledge representation schemes can be
classified into the categories semantic networks, logical, and
procedural schemes, whereas most knowledge representation languages
subsume more than one of these categories. The problems with such a
classification are described in /MYL 83a/: "wWhen trying to classify
representation schemes we consider the world as a collection of
individuals and as a collection of relationships that exist between
them. The collection of all individuals and relationships at any time
in any one world constitutes a state, and there can be state
transformations that cause the creation/destruction of individuals or
that can change the relationship among them."

One example to illustrate this is the language PROLOG /KOW 74a/.
At one point of view PROLOG is a logical representation scheme.
Therefore it employs the notations of constant, variable, function,
predicate, logical connective and quantifier in order to represent
elementary facts. A knowledge base is a collection of terms and
formulas. But besides the traditional Tarskian semantics

"B1 and 32 and ... and Bm implies A"
the procedural semantics

"if you want to establish A,

try to establish B andB, and ... and B "
is used. This procedural point of view establishes how knowledge can




be used and is therefore comparable to calculus for proving theorens,
like the Gentzen calculus or the resolution method /MAN 74a/. Because
the use of knowledge is the crucial point for the procedural
semantics, we prefer the notation that a pragmatics is defined for
the lanquage, respectively for logical schemes.

Procedural schemes view a knowledge base as a collection of
active processes and agents. Most procedural schemes have been
influenced by LISP and LISP itself was a favourite represenation
language. Schemes like production systems /HAY 82a/ and PLANNER /HEW
71a/ offer activation mechanisms for processes. In both schemes a
knowledge base is built up of pairs. Each pair consist of a pattern
and one or more actions which manipulate the result data base. If the
pPattern of a pair can be successfully matched to the data base the
corresponding theorem in PLANNER respectively the action of the rule
is executed. One difference is, that a theorem can directly call
another one, while the action of a rule can only modify the result
data base. The PLANNER control module uses the backtracking
algorithm. This is also used in many applications based on production
Systems. Nevertheless, numerous other algorithms are used to monitor
Such systems. Contrary, the ACTOR formalism /HEW 77a/ places the
control structures into the foreground. All objects of a knowledge
base are viewed as active agents, called actors. They have the
Capability to send and to receive messages. The messages themselves
are actors. Aan object is specified by the kinds of messages it can
receive and all the actions, including the sending of messages, it
takes. The actions depend on the message the cbject received.  One
of the main points of semantic networks is the information retrieval.

Although the languages based on such networks are of large diversity,

there exists a most basic form. A priori and a posteriori knowledge

is expressed by nodes and directed labeled links. The former stand
for conceptions or classes of conceptions (mainly a priori) and
indiviquals (mainly a posteriori), the latter for binary relations
over these. The main problem of the scheme was that most of the
early languages had little or no semantics for the types of nodes and

links they used. The nessecity for a semantics and an epistemological

adequacy was pointed out in /WOO 75a, BRA 79a/. In order to define a

Unique interpretation of the different types of nodes and links in a
language, this set must be restricted. On the other hand, to get an

e ——



epistemological adequate language, this set must be sufficient to
build up knowledge bases for all possible or at least a large number
of applications. Most network lanquages offer different
organizational axes for structuring a knowledge base /FIN 79a/. The
most common axes are:

Classification: A real world object is associated with its generic
type(s): This axis forces a distinction between a concept, which is
the intensional description or a prototype of a conception, and an
instance, which is a member of the extensional set of a concept.
Aggregation: A concept or an instance is related to other concepts or
instances respectively, which describe their components or parts.
Generalization: It relates a concept to more generic ones.
Generalization, often called is_a, defines a hierarchy in the network
due to a partial order. In most approaches properties associated with
a general concept are inherited to the more special ones, unless they
are not explicitely modified.

Semantic network languages like KL~ONE /BRA 85a/ and PSN /LEV 79a/
are influenced by the notation of frames /MIN 75a/. Such frames are
complex data structures for representing stereotypical informations
for a field of problems. A frame has slots for the objects which play
a role in the situation as well as conditions between the slots.
Furthermore, processes and facts are attached to the slots of a
frame, like "if added", "if needed". In KL-ONE and PSN frame like
data structures are used to build up the nodes of the semantic
network. Links are described inside such a data structure by slots of
different types, one for each link type. The interpretation of the
slots and their facets is defined with respect to the semantics of
the semantic network. While KL-ONE only uses procedural attachment
associated with the slots, in PSN also a pragmatics (procedural
semantics) is defined. Besides others, procedures to build up or to
delete instances are associated with each concept. The slots in a
concept are divided into prerequisites and consequences with respect
to the instantiation procedure of the concept.

3.3 Discussion of Knowledge Representation Languages

For each class of knowledge representation schemes one language is
choosen for the following discussion:



PROLOG for logical schemes

EMYCIN /BUC 85a/ for rule based system shells

PSN for semantic networks
As mentioned above the inference process of PROLOG is given by the
definition of the procedural semantics. Therefore, PROLOG covers
declarative and procedural aspects (R1l) . Vice versa, the rules in
EMYCIN also allow a declarative description of facts. But both do not
integrate the handling of numerical features (R1). Because it is a
logical language, PROLOG offers no help to operate with uncertain
data and uncertain decisions (C3). On the contrary, EMYCIN allows
scores for rules. The main problem at this point is that both, PROLOG
and EMYCIN, have to decide whether the premise of a rule is true or
false. As a consequence, if uncertain data and judgements on inter-
Pretations are used, there is a need for thresholds. Because rules
and formulas can be formulated independent of each other, both
languages are modular (R4). They can also integrate different levels
of knowledge (R2). But these facts imply that such levels cannot be
made explicit (R3). Whereas identical conceptions are identified in
PROLOG and EMYCIN implicitly by utilization of an identical name,
each conception is representad exactly once in a semantic network.
All relationships, the conception is associated with, are centered in
the node standing for the conception. Therefore, semantic networks
are more suited for large knowledge bases (Cl). But this kind of
organization is also helpful to keep a knowledge base modular (R4) in
the following sense: If one conception has to be changed, it is known
in a semantic network, where and how often it occurs in the knowledge
base. Applications of PSN, e.g. /TSO 80a/, show that it is possible
to integrate different aspects and levels of knowledge into one
knowledge base (R1,R2), and that PSN supports the handling of
Uncertain data (C3). Contrary to PROLOG, EMYCIN and PSN do not
include a complete monitor. But as it is shown by examples, there
exist monitors which satisfy criterion c4. By their built in
Pragmatics, all these three languages prefer one direction, goal-
directed or data-driven, for analysis processes. Thus, a flexible
Propagation of constraints (R1) and flexibility of processing
Sequences are limited. .

The epistemological adequacy (C2) is one of the most ser 1ov..xs
Problems concerning a knowledge representation language. For semantic



networks, this adequacy strongly depend on the built in links and the
distinction of different types of properties /BRA 79a/. The set of
epistemological primitives is defined in XL-ONE and PSN by the link-
types, which were presented in the last subsection, attributes, which
describe further properties and relationships, and structural
relations to describe and test relations, which must hold between
referred conceptions and attributes. In PROLOG and EMYCIN it is not
possible to distinguish such different classes of relationships and
properties in an explicit way. All of them and the conceptions are
represented uniformly by predicates and formulas. Additionally, there
is no way to describe an inheritence between a class of conceptions
and a corresponding superclass. In order to motivate the need for an
additional 1link type in a semantic network language, we present an
example given by /MYL 83a/: "for example the parts of John Smith,
viewed as a physical object are his head, arms etc. When viewing as a
social object, they are its address, social insurance number, etc."
Two "worlds" or conceptional systems are distinguished in this
example. A concept modelling a person has different parts within each
of these systems. Parts in the social system are social conceptions,
parts in the physical system are physical conceptions. In speech
understanding conceptional systems like syntax, semantics, pragmatics
build up the knowledge base. Therefore, links between conceptions
have to be distinguished, whether they connect conceptions inside one
or conceptions belonging to different conceptional systems. In /SCH
86a/ it is pointed out, that within one conceptional system parts of
concepts may exist, which can only be described adequately inside the
context of those conceptions they are part from. As an example,
social structures like family, father, mother, and married couple are
given. It is worked out, that an adequate description of these
conceptions requires a definition by sets, and that a definition by
atoms is not adequate. A context dependent definition like husband in
/SCH 86a/
husband (x) := u (u=<x,y> married_couple(u) )

could be established by defining "husband" to be an aggregation of

"married couple" but also to depend on the context of "married
couple".
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4. A HOMOGENUOUS KNOWLEDGE BASE FOR SPEECH UNDERSTANDING

After the discussion of knowledge representation languages we now
turn to the presentation of a particular semantic network language.
this language is the kernel of the system shell ERNEST /KUM 87a/.
There is a clear distinction between the syntax, semantics, and
pragmatics of this language. In order to explain the interpretations,
i.e. the semantics, of the ERNEST structures, the knowledge base
designed for the system EVAR will also be presented in this section.
The knowledge base is called homogenuous, because it integrates the
different aspects and levels of knowledge discussed above.

4.1 The Declarative Aspects of the Knowledge Base

First of all the ERNEST network language distinguishes three types
of nodes. A concept represent the model of a conception. According to

classification (see 3.2), instances are associated with concepts. The

connection between instance nodes, concept nodes and signal areas is

shown in Fig.4-1. In this figure the three word hypothesis "train",

"time", and "Hamburg" stand for the signal. Three concepts "noun",

"source", and "goal" are given. Instances are denoted by circles.

Each instance establishes a connection between exactly one concept

and an unique signal area (word hypothesis). Such an area can be

concept noun source goal
Instance Il 12 13 14 I5
*Hamburg”
hypothesis ‘traln”
"time"

Fig.4-1: Relations between Concepts, Instances and Hypothesils



connected to more than one concept via instances and one concept to
more than one area. It is obvious, that there are instances which
compete each other: I4 and I5 because "source" and "goal" is a
contradiction, and I2 and I3 because the signal areas overlap.
Contrary, I3 and I4 are compatible, because "noun" and "source"
belong to the different levels (conceptional systems) syntax
respectively semantics. As illustrated by its name modified concept,
the third node type is similar to a concept, but it is restricted
with respect to a given situation of an analysis process. For
example, in German adjectives and nouns have to agree in genus,
number, and casus inside a noun group. A priori these attributes are
unknown for the group or one member. If an adjective is yet
instantiated, modified concepts for noun group and noun can be built
up. This is done by restricting the attributes mentioned above with
respect to the detected adjective. With the interpretation of the
three node types also the link types instance and instance of are
fixed according to the links between concepts and instances in Fig.4-
1.

Similar to PSN, all node types are syntactically described by
frame like structures. Fig.4~2 shows those parts of the data
structures building up an ERNEST concept, which are relevant for the
speech understanding application. Besides internal properties, the
structures subsume all the links to and from other concepts. The
structures for modified concepts and for instances differ only
slightly from those for concepts. Therefore, the interpretation of
the structure "concept" the substructures and the items, which
together build up a concepts, are given in the following. If there
are substantial differences to the other node types, it will be
mentioned.

Besides the instance relationship four organizational axes are
distinguished. All of them define a nonreflexive partial order on the
set of concepts. Trees of concepts are constructed by the link
specialization. This 1link type establishes the inverse of the
generalization as described in section 3.2. All substructures of the
groups part, concrete, attribute, analysis attribute, structural
relation, and analysis relation referred in a concept are inhereted
to its specialization, unless they are explicitely modified by
marking this fact in the item modified of the superimposing
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substructure in the specialized concept. Aggregation is notified by
the 1link part. Part and specialization relationships are restricted
in the way, that they are only allowed inside the same conceptional
system. If a concept is referred by the inverse link part of and in
the item context of, this indicates that the concept itself is
context dependent from that twice referred concept. (see 3.2). Links
between different conceptional systems are established by the
concrete relationship.

Fig.4-3 shows a snapshot on the network of the knowledge base. In
order to simplify the following explanations, each concept in this
figure has a prefix, which illustrates its membership to one of the
conceptional systems pragmatics (P), pragmatic classification (PC),
semantics (S), semantic classes (SC), or syntax (SY). At the very
bottom, the concept WORD build up one interface of this network to
the signal oriented analysis modules /SCH 87a/. At the top 1level,
pragmatical conceptions 1like P_TRAIN CONNECTION, with parts
P_VF_FAHREN or P FROM TIME are shown. They build up the application
oriented conceptions. E.g., P_VF_FAHREN relates the corresponding
verbframe for "fahren" (to go, to drive) to the application. The
concept S_VF_FAHREN itself is indepedent from the application. From
the applications point of view, to ask for a train connection using
the verb "fahren" requires time information (P_FROM TIME). Contrary,
S_TIME is not referred by S_VF_FAHREN. Concepts of the conceptional
system describing the pragmatic level are connected via concrete
links to concepts of the PC and the S levels. E.g., P _VF_FAHREN is
concretized by S_VF_FAHREN, and P_FROM_TIME by both PC_TIME_INTERVAL
and S_TIME. From the concept S_VF FAHREN, deep cases like
S_INSTRUMENT, or S_SOURCE are referred. They are concretized by both
semantic classes and syntactical constituents. Syntactical
conceptions like nominal phrase complex (SY NPC) have other
syntactical concepts like preposition phrase (SY PP) as parts, which
itself is built up of SY NP (nominal phrase) and SY_PREP
(preposition). While Fig.4-3 was restricted to a few concepts and
links, Fig.4-4 gives a condensed view on the complete network. Here
the part links are omitted. They connect only concepts, which are
members of one conceptional system. Arrows between blocks and/or
single concepts (capital letters) stand for bundles of links of the
desired type. The membership of a block or a concept to a
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conceptional system is denoted by the prefixis alsoused in Fig.4-3.

The complete definition of each part and concrete relationship is
done by the substructure link description. Different from most
similar knowledge representation languages, the dimension item inside
a link description causes no differentiation for the correponding
role in the instances. However, the role in an instance has to be
filled with just as much instances the dimension intervall requests.
Parts and concretes defined in a concept or inherited to the concept
may be grouped into different modality descriptions. Each such
substructure establishes one admissable combination of obligatory,
optional, and inherent links, whereas one link can be inherent and
optional or inherent and obligatory in the same modality. The
Substructure is completed by an adjacency description which allows a
compact notation of required time neighbourhoods of parts. If no
daps are allowed between adjacent parts, this fact is notified by the
term YES in the item coherent. An example of modality and adjacency
descriptions is given in Fig.4-5. Fig.4-5a shows the graphical ATN
representation of the concept SY_NP of Fig.4~3. This results in the
modality description in Fig.4-5b. For simplicity, the rcles of the
parts are represented by the name of the corresponding concept but
written in small letters. The adjacency description, i.e. the matrix,
for first modality set of SY NP is shown in Fig.4-5c. Because it is
possible to describe the facts of a modality description also by
specialized concepts and the adjacency in the substructures relation,
both are not epistemological primitive. But they give compacter
knowledge bases and therefore aids the ergonomic adequacy.

The intensional description of a concept is completed by its
attributes and structural relations. E.g., the CNG features of nouns,
adjectives, noun phrase are attributes. That they shall agree inside
one noun phrase are structural relations. The main items in the
substructures defining an attribute description respectively a

relation are the computation of value for an attribute and the test

of relation when building up an instance. A procedure defintion in

the ERNEST-network includes the explicit notation of the arguments,
and it is possible to refer also the inverse of the procedure. While

the activation of the procedure itself results in concrete values if

all arguments are known, the inverse is able to restrict the domain

set, especially the selection of attributes inmodified concepts. In



Fig.4-5a: Graphical Representation of an ATN
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a similar way the selection of an attribute may be restricted, if not
all the argument values are known. The complete domain set of an
attribute is described by the three items domain, selection, and
dimension. The domain item refer the type, e.g. integer or casus. By
the selection this type can be constraint to certain valus, e.g. to
the numbers 1 to 10 or to the subset nominative, accusative. The
dimension jtem gives the number of values which are necessary to fill
the property in an instance, e.g. at least 1 at most 10. Arguments
are described by a role or a pair of roles, respectively. If only one
role is referred, the argument is taken from the instance or modified
concept itself. By two roles attributes of parts or concretes are
referred to by the role in the corresponding link description and the
role of an attribut in this part or concrete. As pdditional argument
the adjacency matrix is allowed. This is notified by the content of
the item ajancency dependent. While the attributes show the features
of a concept, analysis attributes accept quantitative parameters,
which are necessary for the analysis process but do not contribute
the intensional description. One example of such an attribute, is a

data structure which is called "mask". It is analysis attribute of
Quite the same situation
All the

each concept of the network (see 4.2).
differs structural relations from analysis relations.

attribute and relation groups described so fare are implicitely

inhereted to more special concepts. Contrary, local attributes are

not inhereted, they describe local properties.
The function to judge an instance with respect to the conception

modelled by the corresponding concept is referred in the item

judgement of the concept. Arguments of this function are the

judgements of the parts and concretes, the restrictions of link and

attribute descriptions, and the results of both kinds of relations.

All arguments are -eferred by the role of the corresponding

substructure. The calculus for judgements is not fixed by the ERNEST
Network lanquage. In section 5 the use of judgement vectors, which
reflect quality, certainty, and priority of a (modified) concept, or
an instance, for speechunderstanding will be discussed.

4.2 Procedural Aspects of the Knowledge Base

Besides the procedures and their inverse, which are attached to
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substructures of a concept, a pragmatics is defined for the ERNEST
network language. Different from PSN and analogous to PROLOG, this
procedural semantics is independent from the content of a knowledge
base. It is build up of five rules, which only look for concepts,
modified concepts, and instances in the premise. Starting with a few
goal concepts, recursive applications of these rules results in a
search tree, which is the skeleton of the search tree of the analysis
process. Out of the skeleton, the search tree is generated because of
procedures, which do not produce an unique result but competing
values. For example, one noun may result in more than one instance of
the concept noun, because there are different values for the
attribute casus, which compete each other.

In order to illustrate the five rules, an example of an analysis
process is chosen in Fig.4-6a. It is assumed that up to this
situation the instances are yet created. Three of them are shown in
the figure. They are denoted by in,F(A) , Where A is a concept and i
the index for the instance. The words, which are assumed to be the
major content for the instances are also shown. Additionally, the
instances are placed at those positions, which are established by the

corresponding concepts. The snapshot on the knowledge is chosen with
respect toFig.4-4.

The most basic rule is
RULE 1: IF for a concept A or a modified concept mod(A) with respect
to one obligatory set of a modality of A, instances for
those concepts exist, which are referred to by the following
slots inAor slots inherited to A without modification:
- concrete AND
-part, if the item context dependent in the 1link
description is equal to NO
- one of context of, if this slot is not equal toNO
THEN build up a partial instance ;'anl (A) as follows
- construct an empty instance of A
- connect the instance with those referred to by the premise
- activate the attached procedures in the sequence:
restrictions of 1links, calculation of attributes,
restrictions of attributes, tests of relations, judgement
Because of context depending parts and optional links, values do not
exist for all arguments of the activated procedures. Nevertheless the
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knowledge of existing values of arguments and the procedure itself
can be used, if the following strategy is applied. The selection
values are also transferred to the procedures. The procedures
themselves decide whether the existing values and the selections are
sufficient for the estimation of results. In the case of attributes,
this estimation is a new, more restrictive selection. For the other

Ccases, which all are tests, the estimation must be optistic. Except

the creation of an empty instance the same action takes place for the

second and the third rule.

RULE 2: IF a partial instance :lnpl {A) of a concept A exists AND
instances for all those concepts exist, which are refferd
to as part with item context depending is equal to YES in
the 1link description and are members of the obligatory set
which was used for the construction of inpj (A)

THEN build up new instances i.nk (A) out of J'.npj (A)

RULE 3: IF aninstance in’ (A) of a concept A exist AND
at least one instance of a concept exist, which is optional
due to the modality used for constructing inj (A)

THEN build up extended instances ink (A) out of inj (A)

In the situation of Fig.4-6a, the premise of RULEl is satisfied for

the concept S _SOURCE. Because no context dependent parts are

referred, RULE2 can be applied immediatelly after RULEl. The result
is the instance iv_(S_SOURCE) which is partially shown in Fig.4-6b
together with the most relevant definitions of the concept S _SOURCE.

The analysis attribute "mask" is a vector, where every position

stands for one frame of the input signal. By "-" free positions are

marked. The "x"-es represent positions of words which build up the
instance.

The information represented by the instances ivm(S_SOURCE) and
in(Ve) is able to restrict the concept S_VF_FAHREN. Based on such a
modification it would be also possible to restrict the concepts
S_OBJECT and/or S GOAL. For the modifications of concepts the
following rules are introduced:

RULE 4: IF for a concept A or amodified concept mod] (a),

a new modified concept or a new instance were created for
a concept, which is referred to as
part, or concrete, or context of

by the concept A



, THEN create a new modified concept lodk(A) out of A or modi (A),
I respectively, as follows
i - construct an empty modified concept of A
- connect this modified with all instances referred to by
the premise and those, which are already referred to by
mod] (A)
- activate the procedures like in RULE1
RULE 5: IF for a concept A or a modified concept nodl (A),
a new modified concept or a new partial instance were
created for a concept B, which is referred to as
part_of, or concrete_of
by the concept A
THEN create a new modified concept mod (A) out of A or modi(A) p
respectively, as follows
- construct an empty modified concept of A
- connect this modified with all instances referred to by
the premise and those, which are already referred to by
modj (A)
- activate the following procedures in the sequence:
inverse restriction of link descriptions of B, inverse
calculation of attributes of B, inverse tests of
relations of B, restictions of limks of A, calculation
of attributes of A, restrictions of attributes of A,
tests of relations of A, judgement of A
The premise of RULE4 is satisfied for the concept S_VF_FAHREN. The
differences between this concept and the resulting modified concept
mod, (S_VF_FAHREN) are illustrated by Fig.4-6c. Notice, that no value
but only a new selection is calculated for the attribute "mask". With
mod, (S_VF_FAHREN) the premise of RULES holds for the concept S_GCAL.
The modified concept modn(S_GOAL) can be created, Fig.4-6d. Besides
the new selection for "mask", the domain of the two concret
descriptions is restricted. The verbframe "fahren" requires special
semantic classes for S_GOAL and a special syntactic realization.
These are notified as restrictions in the corresponding 1link
descriptions in the concept S_VF_FAHREN. The inverse procedures of
i these restrictions modify the corresponding domains in mod_ (S_GOAL) .
= The first three rules are suffient to create and to extend
§ " instances with respect to optional links. RULE4 and RUL5 make it




[ S,

VF_FAHREN

part / \
S _GOAL  5_SOURCE con S_OBJEXT
7 X

toh
me__ur) tnlPP) Inj{vP) NP
‘Minchen* ‘von Monchen' ‘féhrt”

PP
[ P,
P PP

Fig.4-6a: Snapshot of a Search Graph Node

S_VF_FAHREN

PART: source
DOMAIN:S_SOURCE
PART: goa!
DOMAIN:S_GOAL
PART: object
DOMAIN:S_OBJELT
CONCRETE: wverbal_phrase
DOMAIN: VP
ANALYSESPARAMETER: mask
ARGUMENT: goal.mask.
source.mask,
object. . mask,
verbal_phrase. mask

RELATION: adjacency
ARGUMENT: goal.mask,
source.mask

od | S_VF_FAHREN}

PART: source
DOMAIN: 15, (S_SOURCE)
PART: verbai_phrase
DOMAIN: in;{VP}
ANALYSESPARAMETER: mask
ARGUMENT: goel.mesk,
source.nadk,
object.nask,
verbal_phrase.mask
SELELTION: [3000a====-~==~ XIOOKK == === J
VALUE: [eemmmmmmmer ot mmm o= ]
RELATION: adjscency
ARGUMENT: goal.mask,
source. mask
VALUE : ———

Fig.4-6c: The Concept S_VF_FAHREN
and a Modified Concept

§_SOURCE:

CONCRETE: sem_class
boMAIN:N_LOC
CONCRETE: synt_realization
DOMAIN: PP
ANALYSESPARAMETER: mesk
ARGUMENT: soem_cless.mesk,
syht_reslization.mask

ARGUMENT: sem_class.mesk,
synt_reellzation mask
VALUE: o——-

1ng(S_SOURCE}

CONCRETE: sem_cless
OOMAIN: tn (N LOC)
CONCRETE: syni_realizetion
DOMAIN: in, (PP}
ANALYSESPARAMETER: mask
ARGUMENT: sem_class.mask,
syni_realizatton.mask

VALUE; [ameoonmmmmnaas, XO00000(= = ===~ J
RELATION: partial_identity
ARGUMENT, sem_class.mask,
synt_realization. mask
VALUE: 8.9

Fig.4-6b: The Concept
S_SOURCE and an Instance

S_GOAL:

CONCRETE: sem_class
DOMA IN: SUPER_SEM_CLASS
CONCRETE: synt_realtzation
DOMAIN: PP, NP
ANALYSESPARAMETER: mask
ARGUMENT: sem_class.mask
synt_realfzation.mask

VALUE: [-remrmmmmcmmm e e ~+]
RELATION: psrtial_identity
ARGUMENT: sem_cless.nmesk
synt_realization.mask
VALUE: -—

Rod,(S_GOAL }

CONCRETE: sem_class
OOMAIN:N_LOC, A LOC
CONCRETE: syni_reglization
DOMAIN: PP
ANALYSESPARAMETER: mask
ARGUMENT: sea_class.mask
synt_reslization. nask
SELEXTION: [##N#g-~===c-=~ ORNIRNO =~ ==~ - ]
VERT: [ e ]
RELATION: partial_tdenttty
ARGUMENT: sem_class.mesk
synt_resalizetion.mask
VALUE: -

Fig.4-6d: The Concept S_GOAL
and a Modified Concept



feasible to adjust and therefore to restrict a complete knowledge
base to every new instance by creating modified concepts. RULE5 can
be applied recursively until concepts which have an empty premise
with respect to RULE1. These concepts are exactly those which build
up the interface between the declarative part of the knowledge base
and the module which generates word hypotheses.

5. ANALYSIS STRATEGY AND JUDGEMENTS

In the last subsection the inference rules were presented. Their
recursive application build up the skeleton of the search space of
the analysis process. Competing word or word chain hypotheses
together with competing intermediate results split up this skeleton
into the complete search space. The A'—Algorithm /NIL 82a/ in
combination with judgement vectors, which scores both instances and
search space nodes, is used to guide the analysis process. This
process itself can be divided into the following major subprocesses.
First of all, based on a few word hypotheses so called "goal
concepts" are selected out of the knowledge base. For these concepts
it is required, that they are located at the conceptional sub-system
"pragmatics" of the knowledge base. Each of the selected word
hypotheses forms a successor of the start node in the search space.
By the second subprocess, nodes of this space have to be judged with
respect to the required properties of judgements for the A'-
Algorithm. We use judgement functions, which are based on the content
of the node. This subsumes all the instances and modified concepts
which were created on the path from the start node to the node to be
judged and the a priori knowledge base. The third kind of
subprocesses expands search space nodes by applying rules of the rule
set, which was described in the last subsection. Depending on the
applied rule and the underlying concept, one or more new instances or
modified concepts are created. If the application of a rule results
in exactly one new modified concept, no successor is generated for
the actual search space node. In all other cases one successor node
is constructed for each created instance or modified concept. All the
three subprocess types use judgements on search space nodes,
instances, modified concepts, or concepts. Before we give an outline
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of the complete analysis process, the different scoring values which
build up the judgements of the different objects are explained.

5.1 Knowledge Based Priority Scores

A priori for each concept of the network the concept priority
vector is defined. These vectors can be calculated automatically only
based on the different links of the network but independent of the
special content of the concepts. They give answers to the following
questions:

- What is the maximal distance via concrete links to the very
bottom level? Concepts which have such a maximal distance belong
to the conceptional system "pragmatics®, of the network. ( prio1)

- What is the minimal distance via concrete links toc one concept
at the very bottom level, i.e. the conceptional system "word
related hypothesis" , of the network ? (prioz)

- What is the minimal distance via concrete and/or part links to
one concept at the very bottom level of the network ? (prioa)

- How special is the concept ? (prio o)

- How complex is the concept with respect to the part relationship

(prio )
5 I3 -
A concept A is of higher priority compared to a concept B, if in
lexical order for bottom-up rules the vector

(Pri01,pr102,prios,prio4,prios) of A is greater than that of B ar'1d
for top-down rules the vector (-prioz,-prioa,prio4,-pri05) of A is
greater than that of B. Modified concepts inherit their priority
Vector from the corresponding concept.

Besides this static priority measurement two dynamic priority
scores are defined for modified concepts and for instances. The first
one is called the pragmatic priority pP /EHR 87a/. For many words in
the dictionary a possible set of pragmatic conceptions can be
determined. With this property for each word a pragmatic bit vector
pbv(w) is defined. Each bit represents a conception. The conceptions
themselves are organized in a tree structure with the most general
one as root. The pragmatic bitvector is defined as an attribute or an

analysis attribute in each concept of the network. For a word w the

Pragmatic bitvector has "1" for those conceptions that could be

realized by the word or that can realize the domain of a part. If the



word is a pronoun or a determiner, it gets the "1" with respect to
its semantic class. For this there exist a mapping function from
semantic classes to pragmatic conceptions. The pragmatic bit vector
of agroupof wordsw ,...,w_ is defined by

pbv(w1 e wn) = pbv(w1) AND ... AND pbv(wn)

The pragmatic priority PP(W, ... W) is defined as the number of "1"
in the pragmatic bitvector and has the following properties:

- If the pragmatic priority of a group of words is equal to O,

then the group is pragmatically inconsistent,

- The smaller the priority the better the hypothesis with these

words
For instances and modified concepts the pragmatic bitvector is
calculated respectively estimated on the basis of the underlying word
hypotheses and the selections of the attribute "pragmatic bitvector"
which are a priori notified in the concepts.

Additionally, also for modified concepts and instances a semantic
priority /EHR 87a/ is defined. This priority measurement is only
calculated for modified concepts and instances which represent verb,
noun or adjective frames. But it is also transferred to other
modified concepts and instances by the application of the rules. If a
concept A represents such a frame, the semantic priority is defined
as a fuzzy membership function which depends on the number of
realized parts in relation to the obligatory and optional parts for
one modality description. This function takes into account that a
hypothesis, i.e. an instance or a modified concept, does not become

always more probable the more parts of a frame or a sentence are
realized.

5.2 Statistical Modelling of Hypotheses Scores

The acoustic dissimilarity scores for word or word chain
hypotheses provided by Dynamic Time Warping or Viterbi algorithms
usually do not merely reflect the goodness-of-fit of the hypothesized
unit but, moreover, the temporal duration of its acustical evidence.
This can be seen by the fact that DIW distances or negative logs of
HMM probabilities are in essence being built by summing up local,
segmental distances, whatever subword unit these segments may
represent (e.g. phonemes or centisecond labels).
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A simple but useful model for this would be to neglect
segmentation errors, or time registration effects resp. at all and to
assume the acoustic score as the sum of independent random variables,
identically distributed by (ks otz) in case of correct hypotheses,
or by (u,, 5'2) in case of failing hypotheses. If the duration of
the acoustical evidence covered by the hypothesis is L (taken as the
number of segments involved), the quality score gq of correct
hypotheses is distributed with

u‘(L)=l-':(q'|L,correct)=L,ut
and

af(L)=var(q‘|L,correct)=Lat2,
and the analoguous formila holds for the incorrect ones.

This linear dependence of quality score means and variances on the
duration (if duration is measured in terms of the units used by the
word matching process) as forecasted by our model has been
empirically verified by statistical evaluation of word hypotheses
Scores generated by the EVAR word recognition module /SCH 87a/. 1In
addition, the guality model means and variances have been estimated
for this recognizer by a regression analysis.

Note that a scoring spread decreasing with L. as stated above
gives a good explanation to the frequent observation that reliability
of word recognition seems to rise with their temporal duration. This
fact is used to attach a certainty score to each hypothesis. The
duration dependent Bhattacharyya distance between the quality
distributions of correct and incorrect hypotheses reflects such a
Certainty. Under normal density assumption, the respective

distributions are given with the above means and variances.

The judgement of a hypothesis is meant to help the overall system

strategy to focus on promising partial solutions. Its value is

usually computed on the basis of the quality score and it should

reflect the hypothesis’ chance of being part of the/a correct

interpretation covering the whole utterance. In order to fullfill

the admissibility requirements /NIL 82a/ of the A#* graph seanj_'h
strategy that we use, judgement should always be an optimistic
estimate of the optimal gquality achievable by extending the partial
interpretation in question.

Provided that the qualities are additive, this estimate is usually
given as the sum of the hypothesis quality and an upper (lower in
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case of dissimilarities) bound on the qualities of interpretations
covering the remaining part of the utterance. If analysis is
proceeding strictly from left to right, the shortfall method which
estimates the remainder by the sum of segmentwise optimal qualities
proves to be optimistic and therefore leads to an admissible search
/W00 82a/. If we make allowance for the by far larger search space
using an island-driven strategy, admissibility can be achieved by the
density method, i.e. by extrapolating the average within-hypothesis
quality to the remaining utterance.

Our approach is to enforce a more goal-directed search as is
possible with the "hypercautious" shortfall score by retaining the
(relatively) small search space connected with the left-to-right
conditions. For that, we include our knowledge concerning the
statistical behaviour of the quality scores into the estimates
mentioned above.

Let us assume the qualities of correct hypotheses to be
distributed with pu(L), az(L) , depending on their duration.
Expectation and variance for the quality of an interpretation
covering the by now uninterpreted part (of N segments duration) with
correct hypotheses in general strongly depends on the assumptions of
the statistical distribution of hypothesis duration. We are treating
the three most simplifying cases:

Fine model: the remainder consists entirely of single-segment
hypotheses, implying Hoom (N)=Nu (1) and aremz(N)=Naz( 1).

Coarse model: the remainder consists of exactly one N-segment
hypothesis, implying K (N)=p(N) and orem2 (N) =a° (N).

Uniform block model: the remainder consists of N/B hypotheses of
durationBeach, implying oo (N)=N/Bu (B) and oremz (N)=N/Baz(B) .

Now we are able to loosen the requirement for an optimistic estimate
in a reasonable fashion. As a lower quality bound for the not yet
covered acoustic input we choose s(N,c)=pmm (N)-co (N) . The
constant factor c is adjusted to satisfy a given probability of this
bound being optimistic /SCH87b, SAG87a/.

Recalling our finding that the dependence of quality means and
variances on hypothesis duration can be viewed as linear, the quality
statistics of the remainder utterance reads as p (N)=uN and
ammz(N)=ozN, regardless of the duration model involvedrfm With that,
the quality bound reduces to s(N,c)=u.N—caN'/2, which guarantees a



rather deep search especially in the initial pbhase of analysis, when
N is relatively large.

5.3 Outline of the Analysis Stratagy

As mentioned before, the analysis process starts with the
selection of a few goal concepts out of the knowledge base. Beginning
at the word level, modified concepts are constructed bottom-up by
applying RULE4. This iterative process is based on the best few word
hypotheses with respect to the acoustic score and the pragmatic
priority. After the word hypotheses are chosen the process that
modifies concepts up to the pragmatic level starts. It is guided by
the concept priority vectors. This results in one successor node in
the search graph for each selected word hypotheses and in further
successors if a word hypothesis forms more than one potential goal
concept.

The further expansion of nodes is done by applying the rules
which build up the procedural semantics of the network language. If
in one node more than one rule is applyable, the rules which create
instances are prefered. The second selection criteria is the concept
Priority vectors of those concepts for which the rules can be
applied. Note that there are instantiation processes which activate
word hypothesing. The described recursive procedure leads to a search
tree. The process is finished if a goal concept is instantiated and
if the signal is mostly covered by the resulting interpretation.

The search strategy inside this tree is the A*-Algorithm. Each
node in an intermediate state of search is judged with respect to the
actual modification of the goal concept which is associated with this
node. In detail, for search tree nodes the following judgement vector
isused

( structural consistency, acoustic score + quality bound,

certainty, pragmatic priority, semantic priority )
The first decision is whether in all the modified concepts and

instances, which were created at the path to the actual node, satisfy
The second and third component are based
But in both cases

The comparison

the structural conditions.
on the statistical modelling of hypotheses scores.

not the exact value but only intervals are used.
between two nodes is defined by the lexical order of their judgement

PR+



vectors. Exept the semantic priority all the components and therefore
the lexical order of the vectors themselves fulfill the requirements
of the A'—Algorithm for scoring functions.

6. CONCLUSION

After a detailled discussion of system architectures for knowledge
based speech understanding, a homogenuous architecture based on
semantic networks was develloped. The problem independent procedural
semantics of this network lanquage allows a flexible control of
analysis processes. The A.-Algorithm builds the overall monitor of
the system. Special judgement vectors reflect knowledge based and
acoustic scores and they are admissible for the graph search
procedure. So fare, the system was successfully tested in a prototype

version. An efficient realization is presently under progress.
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