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The self-consistent determination of the damping rate of a fast moving fermion in a hot QED
plasma is reexamined. We argue how a detailed investigation of the analytic properties of the
retarded fermion Green’s function motivated by the cutting rules at finite temperature may resolve
ambiguities related to the proper definition of the mass-shell condition.

PACS number(s): 11.15.Bt, 12.38.Mh

I. INTRODUCTION

Recent studies of damping rates of fast moving parti-
cles in a hot QED (or QCD) plasma have raised some
interesting problems [1-11]. The difficulties start from
the infrared sensitive behavior of these rates: A logarith-
mic divergence remains even after including the pertur-
bative Braaten-Pisarski resummation [12,13], which only
screens the infrared sensitivity down to scales of O(eT).
In the case of QED, which has no magnetic mass to serve
as infrared cutoff at the scale O(e2T), a self-consistent
determination of the rate v of a fast moving fermion in
the plasma is the most elegant solution, as first suggested
by Lebedev and Smilga [2]. Here v also plays the role of
the infrared cutoff. In the analysis considered until now
it is always assumed (even explicitly) that the retarded
propagator of the fast fermion (more precisely its ana-
lytically continued form) has a true complex pole in the
lower energy half plane at the position E — iy, with E
the energy of the fermion. However, the presence of this
pole does not allow an infrared stable solution for v when
the on-shell condition at this complex pole is required [6]:
This is indeed the favorable and consequent condition in
the case of a true pole on the “physical” Riemann sheet.

Based on the analytic structure of the retarded Green’s
functions as deduced from the general properties of spec-
tral functions we argue in the following that the com-
plex pole in question is actually not on the “physical”
sheet, and we construct an explicit and simple exam-
ple which should represent the physical (realistic) situa-
tion and which may help to clarify the problem of self-
consistency for v [14]. By this attempt we take the point
of view that the damping rate of a fast moving fermion in
a QED heat bath is a physical quantity, contrary to the
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arguments given in Ref. [8]. Therefore an infrared finite
result is to be aimed for it.

II. RETARDED GREEN’S FUNCTION
AT FINITE TEMPERATURE

First it is convenient to illustrate some properties of the
retarded Green’s function G®(po, p) [16-20]. It is defined
as the boundary value of a complex function G(z,p) as
the complex argument z approaches the real axis from
above:

GR(I’O)p) = G(Z =Ppo + ie,p), (1)

where the function G(z,p) is determined by a spectral
function p(po,p) as

+oo dp'!
G = [ S E o r). 2)

If p(po,p) is a Lorentzian of the form

_ v/
PP = LT EEE

for all values of pg, —00 < pg < +00, then the retarded
Green’s function becomes

¥>0, 3)

oo

dpj v/
[po — E(p)]2 +~2

(4)

G (po, p) = /

—oo p6 - (PO + 7‘6)
_ 1
po + i€ — [E(p) — in]’

where we first keep pp on the real axis. However, this ex-
plicit function may be analytically continued to complex
values of po: For Im po > 0, GE is regular as it should be
from the definition (1), but for Im py < 0 the analytically
continued G has a true pole at po = E — iv. The origin
of this pole is easily understood when considering the sit-
uation in the pj plane [21,22]. As illustrated in Fig. 1(a)
for the continuous integration contour —eo < pf < +o00,
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FIG.1. Integration contour for the retarded Green’s func-
tion. Poles of the Lorentzian form of Eq. (3) are indicated by
®. In (a) po is real, while (b) shows the pole singularity for
Impe < 0 which arises from the pinching of the contour be-
tween the two singularities pp = po and po = E — iy of the
integrand.
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the singularities of the integrand are at py = po + i,
and, due to the Lorentzian at pj; = E =+ iv, indicated by
crosses. The contour for the retarded function is below
the pole at pf, = po + i¢, indicated by € > 0. In order
to continue GE into the lower half plane, Im py < 0,
the contour has to be deformed [Fig. 1(b)], and when
Po = po + i€ approaches pj = E — iy it is pinched, result-
ing in the pole of GE at py = E — iv. For the continuous
contour (Fig. 1) this pinch is always present when the
continuation to values for Im py < 0 is performed.

However, the situation becomes different when, for in-
stance, it is assumed that the spectral function p is non-
vanishing at some threshold po > pin, but otherwise it is
zero. If, for example, p is given for po > pin by Eq. (3)
with E(p) > pin, the retarded function is

=_1_ 1 ln[ Pth_Po“if
2mi | po — [E(p) — 7] |pen — E(p) + iy

In the pj plane the situation looks as in Fig. 2. One
immediately sees that when pj = po + ie approaches
py = E — iy, for example, the pj-integration contour
is not necessarily pinched, and so there is no pole at
po = E — ivy in the analytically continued GE on the
first (“physical”) sheet. Instead, there is an end point
singularity at pg = pn, which is a logarithmic branch
point, and the discontinuity across this cut on the real
axis is given (by construction) by the Lorentzian p(po, p)
of Eq. (3). With respect to this cut the pole has been
moved onto the other sheets obtained after continuation
of the logarithm, In(pyn — po — ¢€): This amounts to de-
forming the contour in such a way that a pinch is present
[cf. Fig. 1(b)].

The behavior with respect to pg = F + i+ is symmetric
with respect to the one at pg = F — i7y; on the first sheet
GE(po,p) of Eq. (5) is regular for Im po > 0 and for
Im pg < 0, with the only singularity on this sheet that of
the logarithmic branch point at pg = psn-

The case just described is in close analogy to the dis-
cussion of resonances (at zero temperature): With re-
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FIG. 2. Integration contour for Eq. (5), ptn < po < 0o,
indicating that there is no pinch singularity on the first sheet
at pp = po — E F iy with respect to the end point singularity
at Po = Pth-

_ 1 o | _Pth —Po —ie
po — [E(p) + 1] [Pth - E(p) - iv] } ®)

spect to the variable of the energy squared resonances
are on the unphysical sheet, and the branch point is de-
termined by the threshold properties of scattering ampli-
tudes.

III. FERMION DAMPING RATE

As the simplest case we consider the damping rate of a
heavy fermion (“muon”) of mass M in a hot QED plasma
of (massless) electrons and photons. The energy, the mo-
mentum, and the velocity of the “muon” are denoted by
E, p (p=|p|), and v, respectively, but the main interest
is in the limit v — 1 [6, 9, 10].

Since we are only concerned with the leading order
behavior e — 0 at high temperature T', for a fast muon
(E > M > T) a couple of approximations which simplify
the calculations and the discussion may be applied [1-
10]. With —(G®)~! = py — Z® and Eq. (4) we relate in
the usual way v to the imaginary part of the muon self-
energy by v(po,p) = —Im EF(py,p), with po real. The
explicit expressions are derived, for example, in detail in
[10], which we closely follow concerning conventions and
notation, and we start off with Eq. (17) of this reference.
To leading order v — 1 we have

dsq +e dqo
,p) = +e’T / / —= (o,
'Y(pO p) soft (21[')3 —a % pt(qo q)
xIm G®(po — g0, P — Q). (6)

The following remarks summarize the results for vy ob-
tained so far in the literature.

(i) Equation (6) is derived in the one-loop approxima-
tion, in which the hard energetic “muon” emits or ab-
sorbs one soft photon of four-momentum g¢#. As well,
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corrections of order 1/E are neglected.

(ii) Only the dominant transverse photon contri-
bution has to be taken into account, which follow-
ing the Braaten-Pisarski hard thermal loop resumma-
tion method [12] is determined by its spectral density
pt(go,q); its explicit form is given in [23], but for the
following we only require the (approximate) integral

+q
[ R =1/ 7
—q qo
when ¢ < eT' [6,9, 10].

(iii) All the complications due to the spin of the fermion
are suppressed in Eq. (6), in the sense that the heavy
fermion propagator is described by a (retarded) scalar

function GR. A
(iv) Inserting for a bare fermion —(G®)~! = py + i€ —

E(p), E(p) = /P2 + M?, into Eq. (6), we have

Im éR(I’O —qo,P — q)

gqo—0

~7mé(po — /(P —q)2 + M2), (8)

and one immediately finds the infrared divergent result

e? T dq
~F ~ —T —. 9
v(po = B,p) ~ / . (9)

This is mainly due to soft photon exchange, and it is the
origin of the problems with the hard fermion damping
rate. It also shows that to leading order only the infrared
sensitive region |go|] < ¢ — 0 has to be considered. It
is worth noting that the coefficient in Eq. (9) is gauge
parameter independent [3, 5].

(v) In hot QED there is no (nonperturbative) mag-
netic mass to provide a cutoff to the logarithmic infrared
divergence in Eq. (9) [19]. In QCD the magnetic mass
is expected to be on the scale mmag ~ T, with g the
strong coupling constant: Consequently using 17mag and
evaluating 7 on the real axis (po ~ E) a finite value may
be, and has been, argued for quarks in QCD |3, 4, 7].

(vi) From Eq. (9) v is “anomalous,” in that its mag-
nitude is on the scale e2>T (neglecting Ine factors for
the moment). Therefore it has been first conjectured
by Lebedev and Smilga [2] to use v itself as a possi-
ble infrared cutoff. This opens the possibility of a self-
consistent calculation of v by replacing G® in Eq. (6)
by the simple Lorentzian of Eq. (4) [2]. In Ref. [2] it is
shown that only the fermion propagator should be mod-
ified, but not the photon one; also no vertex corrections
are required.

(vii) The self-consistency requirement for the damping
rate requires, however, clarification of the “on-shell” con-
dition used to evaluate Eq. (6). On the one hand, as used
in Ref. [2], one can keep in Eq. (6) po on the real axis,
in which case pg = E(p) is used. As follows from the re-
marks after Eq. (9), such a self-consistent determination
of the damping rate will lead to a gauge invariant result
to leading order. On the other hand, one can generalize
Eq. (6) to complex po by demanding that it hold at the
complex pole p = E(p) — ¢y under the narrow width
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assumption v < E(p). It is crucial to point out that
under the assumption that G is given by Eq. (4) the
complex pole is on the first (and only) sheet in the en-
ergy plane; therefore the second case of self-consistency
could be argued as the physical one, and is in any case a
point at which gauge invariance can formally be proved
to hold [24]. However, as shown in Ref. [6], in this case
the infrared divergence is not screened by a nonvanishing
7. Therefore, this attempt fails for QED when Eq. (4)
is used as a model for the “dissipative” retarded fermion
propagator, and as such the narrow width condition in
the form Im ©(py = E) ~ Im ©F(py = E — i7) does not
hold.

In addition to this question of the proper on-shell con-
dition to use, it is not clear that this particular form of
the self-consistent determination of the damping rate will
lead to a gauge invariant result beyond the leading order
considered here. This and other considerations have led
some to conclude that the fermion damping rate in QED
is not directly observable [8, 33]. We however take the
point of view that the ambiguity associated with the on-
shell condition indicates that the ansatz of Eq. (4) for the
retarded fermion propagator does not reflect the proper
physical conditions, and that instead it is realistic to use
as a simple model of the spectral function the form given
by Eq. (5), which allows for branch cuts on the real axis
in the energy plane. Implicit in this viewpoint is the as-
sumption that a self-consistent scheme to determine the
damping rate in a gauge invariant manner can be found
which also works beyond the leading order.

IV. SPECTRAL FUNCTION
AND CUTTING RULES

When discussing the location of branch points and cuts
in self-energy functions at nonvanishing temperatures it
is useful to recall that Weldon [25] has shown, starting
from the one-loop approximation and extrapolating to
the many-particle case, that the branch points are de-
termined by the T = 0 masses of the particles in the
heat bath. One can see this by considering the spectral
function directly, where one notes that it is evaluated,
independent of T = 0 or T # 0, by using the energy
eigenstates of the (full) Hamiltonian, H|n) = E,|n). For
example, for fermions the resulting p at finite T' has the
structure 17, 18]

p(po,p )= (2m)*6(po — (En — Em))5(P — (Pn — Pm))

m,n

xe™Em/T (1 — =7/T) |(m|y|n)|?, (10)

where ¢ denotes the Dirac field operator. Obviously the
energies F,, and momenta p,, appearing in the § functions
are temperature independent, and therefore so are the
positions of the branch points according to the cutting
rules [25, 26].

Although the positions of the cuts do not depend on
temperature, the discontinuities across the cuts become
temperature dependent. Let us consider the one-loop
gy ¢ self-energy example of Weldon [25]. The cut struc-
ture for the fermion self-energy with mass M is repro-

duced in Fig. 3 in terms of the variable s = p2 — p?, as



50 DAMPING RATE OF A FAST FERMION IN HOT QED

L=%2-EZ
-(M2AD l M-A)

—

EM«&/\)Z

FIG. 3. Location of the branch cuts (in the one-loop ap-
proximation) for the thermal fermion propagator [25]. A de-
notes the T = 0 photon mass (A — 0), while M is the fermion
mass.

at zero temperature a small (zero temperature) photon
mass A is introduced, having in mind the limit A — 0
whenever allowed. The cut starting at s > (M + X)?2
is familiar from zero temperature. The cut between
—(M? — )X%) < s < (M — ))? is due to the absorption
or emission of photons from the heat bath, and van-
ishes for T — 0; in the limit M > T its discontinuity
is exponentially suppressed, and therefore this cut is ne-
glected in the following discussion. In Fig. 4 we plot
the discontinuity in this example for both hard and soft
regions of external momenta — we consider the two con-
tributions A(po,p)Yopo and M D(po,p) to Im Z&(p,, p).
We have kept the photon mass A small but finite in
these figures in order to differentiate between the two
regions 8 > (M + A)? and s < (M — A\)? — this is indi-
cated by the break in the curves. In the soft regime of
Fig. 4(a) we find that the Landau damping contribution
for s < (M — ))? dominates, as expected, but in the hard
regime of Fig. 4(b) the cut coming from s > (M + ))?
starts to dominate.

From this we deduce that the thermal spectral function
for the heavy, energetic fermion propagator —(G¥)~! =
po — Z%(po,p) has to have a contribution from at least
the branch cut for s > (M + ))2, ie., for |po| >
vPZ%+ (M + A)2. Note that, in this region, such a con-
tribution comes entirely from the self-energy %%, since
there is no pole contribution. Consequently we take as
a realistic ansatz for the determination of G® in Eq. (6)
the following.

(i) For positive energy there is a single cut starting at
Peh = /P2 + (M + X)?; this is smaller than the energy
of the thermally excited heavy fermion, which receives
contributions of O(eT) (23,27, 28], such that E(p) —pn ~
O(e?T?/E) for A — 0 and E > T. Except for this, in the
following the thermal contribution of O(eT) to the mass

|

07 1

5947

1000 e —r

100 3

0.1

0.5 _

L

10 100
po/2T

(b)

FIG. 4. The discontinuity of the one-loop fermion self-
energy example of Weldon [25]. In (a) we consider the soft
region, with M/2T = 0.2 and p/2T = 0.1, while in (b) we
consider the hard region, with M/2T = 15 and p/2T = 10.
The upper line in both figures denotes A(po)/A(po = o),
while the lower line denotes D(po)/D(po = 00).

is neglected because of the limit M > T.

(ii) Because of the narrow width condition v <« E(p),
near po ~ FE(p), the cut’s discontinuity is dominated
by the nearby “pole.” We assume that the pragmatic
parametrization of this discontinuity is given by the
Lorentzian of Eq. (3), assuming v to be momentum in-
dependent (as a calculational simplification).

(iii) In order to respect the symmetry properties of the
fermion spectral density [29], p(—po, P) = —p(Po, P), the
following ansatz is suggested:

1

p(po,P) =

The temperature dependence only shows up in v = y(T).

2rE(p) [B’o —E(@)*++2 - [po + E(p)]? + 12 O(|po| — Pen)- (11)

(iv) Under the strong assumption, which we accept for simplicity in the following, that Eq. (11) dominates p for all
values of pg, and not only in the neighborhood of E(p), one may require the sum rule to be satisfied by the ansatz

(11):

+o0
1=/ p(po, P) Po dpo;

—Oo0

(12)

this fixes the normalization given in Eq. (11) when terms of O(y/E) are neglected. This assumption leads to an
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overestimate of the damping rate when determined self-consistently.
Considering these points, we take as the retarded Green’s function for this simple toy model that following from

the spectral function of Eq. (11) [30]:

peh — E(p) +1v pen + po + i€

i 1n<pth+E(p)—f7 pu.—po—z:e)_(w_)_7)}+[E(p)_+_E(P)]}.

1
GE(po,p) = 4nE(p) { [Po +ie — E(p) + iy

(13)

This function, more precisely, its analytic continuation in pg, does not have poles at po = £ E +i+ on the first “physical”
sheet with respect to the branch points at pg = +p;;,. The discontinuity across the cut starting at pog = %pyy, is given,

by construction, by the Lorentzian of Eq. (11) for real values of pg, and near po ~

E > T, the narrow width condition

Im GR[PO = E(p)] ~
Im GR[py = E(p) —iv] ~

E(p) we find, for v <« E(p) and

(14)

V. SELF-CONSISTENCY FORMULATION

Although we have assumed the spectral function of the propagator has the form of Eq. (11) for all values of pg, in

the true situation we might expect that this would be only in a neighborhood of pg ~

E(p). Thus, for a self-consistent

determination of y we insert GF of Eq. (13) into Eq. (6) and evaluate the result at the point po = E(p); to leading

order we then have

v(po = E(p), p)_—T/ dq/+1dcoso

e?

eT
d
~ 27’2T/0 ?q arctan(g/7y) ~

where the infrared “screening” by + is explicitly exhib-
ited. This then reproduces the original self-consistent
derivation of the fast damping rate in Ref. [2], but in
this case without a singularity if one had used instead
the point po = E — iy on the physical sheet to evaluate
Eq. (6). This is consequently consistent with the nar-
row width assumption of the form Im £®[p, = E(p)] ~
Im B®[po = E(p) - 7).

With minor modifications the preceding mechanism
should be applicable to the case of QCD fast damping
rates and color relaxation times [31], without having to
introduce a magnetic mass as an infrared cutoff.

VI. LARGE TIME BEHAVIOR AND DISCUSSION

In order to interpret vy of Eq. (15) in the context of this
toy model, we study the time dependence of the Green’s

e—ipot

R oo
GM0 =2mizly [ Ao

2 (E+pen)/v
= — { wsin(Et)e " — / dz
E (E—pen)/7

+ c.c.

2 +1

~ 21:3 {rsin(Et)e~" + cos(Et) [e-"Ei(+t) — e™Ei(—t)] },

2-+~q cos 6

2
e_T/
47 ~

eT dq 82

— ~ —Tln£ ~ —TIn-,
q 4m ¥ 4m e

[

function G®(t). This is given by the Fourier transform

of the retarded Green’s function of Eq. (13),
+oo X

Gt = [ dpoGo)e ™, (16)

where we now suppress the reference to the spatial mo-

mentum p. Using the spectral representation of G¥(po)
we obtain, for times t real and positive,

== [ asotet) [ —
o P\Po Po

— 00 pO +p0—'ZE

+oo .
= 2m’/ dpo p(po)e P (17)

— 00

Inserting now the spectral function under consideration,
Eq. (11), into Eq. (17), we find

sin[(E — yz)t] }

(18)

where Ei(z) is the exponential integral [32] and the approximation E > T, for which (E—pin) < v and (E+ptn) > 7,
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has been used. One can consider Eq. (18) in two limits — if we assume ¢ >> 1, then we find
2 cos(Et) 1\°
R(g) ~ = 2020 = 19

GR(t) ~ & o +o(7t) , (19)

while if we assume vt < 1, then we obtain
t .
GR(t) ~ % sin(Et) + ”’E {2[ln(vt) + 1 — vg] cos(Et) — wsin(Et)} + O(vt)?, (20)

where g is Euler’s constant. Thus, as noted in Ref. I£17]
and stressed in Ref. [8], the time dependence of G*(t)
may not necessarily be of an exponential form, even for
very large times, and so care must be taken in these
cases in characterizing v as an exponential “damping”
rate. Even so, it is still a parameter within the context
of the ansatz for the Green’s function which remains to
be determined, and for this we can use the self-consistent
condition derived from Eq. (11): v ~ ~Im XE(py = E);
the relation ImX®(py = E) ~ ImEE(py = E — i) as-
sures us to this order that using the “complex” on-shell
condition py = E —ivy will lead to the same self-consistent
determination of ~.

This toy model thus suggests that a detailed analysis of
the singular nature of the propagator could provide a res-
olution to the ambiguity associated with the on-shell con-
dition to use in this approach for a self-consistent deter-
mination of damping rates of moving particles. However,
although a gauge-independent result was obtained here
to leading order, it is not obvious that using this “pole
position” on-shell condition is a gauge invariant proce-
dure to all orders in cases where the propagator involves
branch cuts [9,24]. As well, to go beyond this leading or-
der would require a systematic algorithm which, among
other things, most probably involves a (timelike) damp-

[

ing term for the internal “effective” propagator with a
more complicated momentum dependence than the con-
stant term assumed here [34,35]. Whether such a scheme
exists, which already at this leading order goes beyond
the hard thermal loop resummation of Braaten and Pis-
arski [12], and can give a gauge invariant result for the
damping rate in principle to all orders, remains to be
seen.
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