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Thermal n-point Green functions in the framework of quantum field theory at finite temperature
are considered. We reanalyze how analytic continuations from imaginary to real energies relate
these functions originally defined in the imaginary-time formalism to retarded and advanced real-
time ones. We described a new and rather simple method which is valid to all orders of perturbation
theory and which has the further advantage that it is independent of approximations often applied

in actual finite-order calculations.
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I. INTRODUCTION

In quantum field theory at finite temperature and den-
sity two convenient formalisms that enable the use of
conventional Feynman rules in momentum space are ap-
plied: the imaginary-time formalism (ITF) [1] and the
real-time formalism (RTF) [2,3]. (For books and reviews
on thermal field theory, see, e.g. [4-7].) The former one
is particularly suited for the evaluation of the static or
thermodynamic quantities of finite-temperature systems,
while the latter is preferred for the evaluation of time-
dependent quantities.

Studies of the two-point functions have a long history
[1-8]. The relationship between their representations, the
one obtained from ITF and the other from RTF, is well
known [8]. On the other hand the interest in the three-
and n(> 4)-point functions started rather recently [9-14].

An apparent difference [10] between the results for
three-point functions obtained from the ITF and from
the RTF has posed the following question: through an-
alytic continuations of the Green functions evaluated in
ITF, what kind of (combinations of) thermal Green func-
tions in RTF are obtained?

Several papers have been devoted to this issue. It
has been shown, either to one-loop order or in all orders
of perturbation theory, that the three-point function in
ITF, when analytically continued to real energies, be-
comes the retarded or advanced three-point Green func-
tion [11,12]. Recently, the n (> 4)-point functions have
been investigated [13,14] and it is shown that different an-
alytic continuations of the ITF result yield different RTF
Green functions, including the retarded and advanced
Green functions.

The purpose of this paper is to demonstrate a sim-
pler and clearer derivation of the general results known
from [13]. We are not claiming new relations, but show
how the most straightforward analytic continuation of
the nonamputated n-point Green function in ITF leads
to the retarded or advanced n-point Green function.
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In Sec. II, we introduce the n-point thermal Green
functions with time arguments on a, to a large extent ar-
bitrary, contour in the complex time plane. We then for-
mulate the problem of analytic continuation of the Green
function in ITF from imaginary to real energies. For the
purpose of illustrating our procedure, we discuss in Sec.
III the analytic continuation of the two-point function.
In Sec. IV, we carry out the analytic continuation of the
n-point Green functions evaluated in the ITF, and obtain
the retarded and advanced Green functions. Section V is
devoted to conclusions.

II. PRELIMINARIES

Throughout this paper we consider a real scalar field
¢(z). Generalizations to other kinds of fields are straight-
forward. The thermal Green functions are defined as the
statistical average of a product of Heisenberg fields:

G({t}) = G(t1,t2,...,tn)
= Tr{e PHTL[p(t:)B(t2) - - P(tn)]}/Tre PH
= (Te[d(t1)d(t2) -~ (tn)]) (1)

where B8 = T~! is the inverse temperature and H
is the Hamiltonian of the system such that ¢(t) =
e'Htp(0)e~*Ht. In Eq. (1) and in the following we sup-
press explicit reference to the space variables. The argu-
ments tq,tz,...,t, lie on the contour C running from an
arbitrary time t; down to ¢; — 73 in the complex time
plane. The symbol T, in (1) is the time-ordering oper-
ator along this contour C. That is, it prescribes that
the operators it is applied to be arranged in the order in
which their arguments lie along C, with those nearest to
the beginning at ¢; to the right, and those nearest to the
end t; — 10 to the left.

To perform the thermal trace (1), we insert a complete
set of states by choosing the Hamiltonian eigenstate ba-
sis:
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GUtNTre? = Y | T] 6clt; —t520) | 3 expl=iBi (tn — t: — i)
Pn | J=1 Iida,..\ln
*(L1|6(0) i2) H {exp[iEy, (t; — t;=1)] (16(0)|lj41)} (ot =), (2)

71=2

with 6. the contour step function. The summation here
is carried out over all permutations of n numbers p,, :

(1572) ®

Following common practice, we assume that the con-
vergence of the above trace sum (2) is controlled by the
exponential factors, so that it converges if, for every pair
of t; and t; such that 6.(¢t; — ¢;) = 1, Im(¢; — ¢t;) < O,
and Im(t, —¢;) < 8 with ¢, (¢;) the “smallest” (“largest”)
time. This condition guarantees the existence of G({t})
[Eq. (2)] as an analytic function of {t} = {¢t1,t2,...,t.}.
The limit of an analytic function on the boundaries of its
domain of definition, where it is still continuous, is a gen-
eralized function. This implies that the thermal Green
function G({t}) is well defined for Im(¢; — t;) < 0 when
0c(t: — t;) = 1, and Im(¢, — t;) < B. This imposes the
restriction on C that as a point moves along C from t;
to t; — ¢ its imaginary part is nonincreasing. Then, an
analytic continuation of G({t}) can be done by deform-
ing the contour C with the end points ¢; and ¢; — i3 held
fixed, keeping in mind the “nonincreasing” condition for
the imaginary part of the points on C.

Among the above class of contours, we consider first a
special contour Cj, a straight line from ¢; down to t; —:3,
which defines the ITF. We can choose any value for ¢y
because of the property of time-translation invariance of
(1), and we choose t; such that Ret; < 0 and Im¢; =0
[15]. (See Fig. 1.) Next we evaluate the Fourier compo-
nent of (1):

G({“’J}) - G(‘”l?w?v . '1wn)
=11 (/ dt; e—“’f‘f) Gty ta, ... tn),
g=1 \Cr
wj =2xl;/8, l; =0,£1,£2,...,+00 . (4)

It is to be noted that real (discrete) w;’s here are what
we call imaginary energies. By using once more the time
translation invariance we rewrite (4) as

t - ig ‘

|

FIG. 1. The contour C; in the complex-time plane, which
defines the ITF.

f

G({w}) = —iﬁ&(ij; 0) G(wa,ws, - ..

G(u)z,w;;, - ,wn)

n —1i3
= H </ dtJ e‘wjtj) G(O,t27-"5t‘n) . (Sb)
j=2 \’0

Here the integrations are performed along the imagina-
ry-time axis. In (5a) §(---; ---) denotes the Kronecker
6 symbol. In order to obtain (5) the Kubo-Martin-
Schwinger (KMS) condition [16], which represents the
invariance of the trace under the following cyclic permu-
tation [cf. (1)],

<¢(t1) ce ¢(tn—1)¢(tn)> = <¢(tn - Zﬂ)d’(tl) s ¢(tn—1)>

(6)

is used. In the ITF one calculates G or G as defined in
(5). In the following we focus our attention on how to
continue (5) from imaginary to real energies.

III. TWO-POINT THERMAL GREEN FUNCTION

Although the relation between the ITF and RTF is well
understood [8] for two-point thermal Green functions, we
start with the thermal two-point Green function in the
ITF for the purpose of illustrating our procedure:

G(wl,UJ2)
_ / dt / dty e~ @t teata) (T (8(t)p(t)]) . (7)
Cr Cr

As explained in Sec. II, the integrand of (7) is an analytic
function of ¢; and ¢, in the strip, —8 < Imt; < 0 (5 =
1,2) with t; # t2, and we may deform the contour Cy
keeping the property as mentioned above after (3). In
this way we may obtain the contour Cp = C; & C; &
C3 as depicted in Fig. 2: the contour runs along the
real axis from t; to tp, returns back to t; along the real

— S

FIG. 2. The contour Cr = C; @ C; & C3 in the com-
plex-time plane; the segments C; and C; lie on the real axis.
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axis, and ends at t; — i8. For a technical reason [7,15]
it is a common practice to give the contours C; and C,
infinitesimal downward slopes.

Because of time translation invariance G(wi,ws) is
nonvanishing only for w; +w, = 0 [cf. (5a)], and the inte-
J
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grand of (7), on the path Cg, is a function of ¢t —t;. This,
together with the above-mentioned analyticity property
of G(t1,t2), allows us to evaluate G(w;,w) by fixing ¢;
on any point on the contour Cr = C; @ C; @ C3. We
first fix t; on Cj, to obtain

G(w1,w2) = —if §(w1; —w2) [/(; dtz e™? =8N (T [§(t1)B(t2)]) + /c oc dts e 2271 (B(t5)p(t1)) (8a)
= —ifB§(w1; —w3) / - dty e “2(t2=1) [(T[g(t1)p(t2)]) — (H(t2)¢(t1))] + (contribution from Cj) . (8b)

The symbol T is the ordinary time-ordering symbol.
Equation (8) is now well suited for the purpose of an
analytic continuation of G(w1,w2) to real energies. In
order to arrive at the RTF with real energy p2o(= —p10)
we take the limit {7 - —oo and tp — +o00, taking into
account that t; may be chosen arbitrarily.

We realize (cf. [6]) that the term in the square brackets
in (8b) may be written as

(To(t1)9(t2)]) — ((t2)9(t1))
= 0(t1 — t2)([¢(t1), B(22)]) - (9)

Then, from (8) and (9), we learn that the above limit,
tr & —oo and tg — +00, can be taken if we continue to
the real energy as follows:

wa = —i(p20 — t€) , (10a)

or equivalently,

wp — —i(plo + l(:') ’ (10b)
with € an infinitesimal positive number.

The time path for G consists of two real-time segments,
namely C; from —oco to +00 and C; from +oo to —oo,
and of C3 from —oo to —oo — i¢f, the standard contour
which is employed in the literature [5-7]. The computa-
tion of (8) with (10) by perturbative methods, follows the
standard rules known from perturbative real-time ther-
mal field theory [3,5-7]: As far as the thermal Green
functions [such as (8) with (10)] with their finite time ar-
guments lying on C; and/or C; are concerned, the con-
tribution from C3 can be ignored, provided that |po| is
chosen as the argument of the statistical factors [7,17]
(see also [18]).

The analytic continuation of the energy conserva-
tion & function in (8) is given by the prescription [7]:
§(w1; —wz2) = 2miB~18(p1o + P20)-

Thus we obtain the analytically continued G with real
energies pjg and pao,

55120 G(p]_o + 1€, p2o — ’LG) = G++ — G+_ (11a)

= 270(p10 + P20)

x Lim, _m dt P20 =59 9(—t)([$(0), $(¢)]) , (11b)

[
where we follow, e.g., [6] and introduce

Gop(p10,P20)
= / dtl / dtz ei(p10t1+P2012)<Aaﬁ(t1’ t2)> ’ (12)

with the definitions

Ay (ts,t2) = 0(ts — t2)(t1)d(t2) + 0(t2 — t1)d(t2)(t1),
At (t1,t2) = ¢(t2)9(t1),

A__(t1,t2) = 0(t1 — t2)9(t2)P(t1) + O(t2 — t1)d(t1)9(t2),
A_i(t1,t2) = B(t1)d(t2) - (13)

The functions Gog (a,8 = +,—) in (12) denote Green
functions in the two-component real-time thermal field
theory, applying the closed time-path formalism intro-
duced by Schwinger and Keldysh [3]. It is to be noted, in
passing, that the A,g’s are not independent since they
satisfy the relation [6]

Aypy(ts,t2) + A__(ta,22)
- A+_(t1,t2) - A_.+(t1,t2) =0. (14)

It is important to note that the continued function G
in (11b) is identical with the retarded Green function.
In this way the “physical” representation as discussed
in [6] is established, where this function is denoted by
G = iG21(p10, P20); however, the primary quantities that
are calculated directly in real-time thermal field theory
are Gqop in (12).

When we fix ¢, instead of ¢;, on C1, and repeating sim-
ilar steps as above, we obtain the retarded Green function
with respect to ¢(t2), i.e., the advanced Green function
with respect to ¢(t,). Fixing the time variable as t; € C,
leads to the same result as above, (11), and likewise for
the choice t; € C;. Fixing t; on Cs, t; € C3, is not suit-
able for analytic continuations under consideration; this
is also the case for the choice t; € Cj.

Finally we may deform the contour Cy in (7) to the one
that is mirror symmetric to the one of Fig. 2. Changing
the time variable t; as t; = Ret; + iImt; — —Ret; +
ilmt;, we get back the time path C; & C> @ C3 of Fig.
2. Then, fixing ¢; on the upper path on the real axis in
the complex time plane, we deduce
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lim G(p1o — i€, p2o +i€) = -G + G_4

e—+0 (153.)

= —2md(p10 + P20)

oo

dt P+ 9(1)(($(0), #(£)]) , (15b)

oo

X lim
€e—=+0 J_

i.e., the advanced Green function.

_J
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IV. THERMAL N-POINT GREEN FUNCTION

We proceed in a similar manner as in Sec. III. Starting
with the thermal n-point function in the ITF, Eq. (4),
we deform the contour C; to Cp as depicted in Fig. 2.
Under the constraint ). w; = 0 [cf. (5a)], we evaluate
(4) with Cg for Cr by fixing t; on Cy, t; € Cy, which is
suitable for continuation to real energies. In place of Eq.
(8) we now have

G = —i346 s § dt; _“’J(t"_tl))
({w}) i3 zj:w] 0 JI;I2 (/Cleacz tie

X (Tc,@c,[6(t1) -+ - p(tn—1)B(tn)]) + -

(t1 € C1), (16a)

n tp
——ips [ T wj0 H(/ dtje‘“’i(ti‘t‘)>
J j=2

" {
Qa2,03,"

y0n=+,—

where

(1 -O‘J') ’ (17)

n
s =

J

and the notation of [6] is used: for n > 2 it becomes more
transparent to make the subscripts +, — explicit, which
indicate that the times t; assume values on either the
“positive” time path C; or on the “negative” one C3; e.g.,
this implies for all + subscripts time ordering, whereas for
all — subscripts antitime ordering. This generalizes the
expressions in (13) to the n > 3 cases (for n=3 explicit
expressions are given in [6]). In Eq. (16) the dots indicate
the contributions when some of the t’s among t5,...,%,
are on Cj; this portion may be ignored as in Sec. III.
Next we transform to the “physical” representation.

(_)B<T01902 [¢+(t1)¢a2 (t2) T ¢a,, (tn)D:l + -

(16b)

[
where 6 is the multistep function defined by 6(1,2,...,n)
=6(1,2) 6(2,3) ... 8(n — 1,n) with 6(1,2) = 0(t, — t2).
Equation (18) is the generalization of the two-point func-
tion case Eq. (9). The summation here is carried out over
all permutations of n — 1 numbers p,,_1:

( gg) (19)

Equation (18) tells us that t; is the largest time; there-
fore, we are allowed to take the limit t; — —oo and
tgp — +oo if we continue w; in (16b) to real energies as

Dol N

wj; = —i(pjo — t€) , | =2,3,...,n, 20a
By applying the procedure described in [6], we express ’ (Pso ) J (20a)
the term in the square brackets in (16b) as and
S0, w) - [B(t2), Blt)], (ta)] ], B w1 = —ilpio +i(n — 1)e] . (20b)
Pn-1
(18) Then we arrive at the Green function in the RTF:
]
el—ig-lo Glpio +i(n — )¢, {pjo —ie; j =2,3,...,n}] = (=)°G+,0,....an (21a)
A2y, 0n=4,—
=276 [ Y pso | lim T (/ dtjei(p,-o—ie>(tj—z1>)
j=1 j=2 —oo
x 3 01,2, [B(t), B(t)]s B(t3)), -], B(tw)])  (21D)
Pn-1
=" 'Ga11--1(P10; - - -, Pro) - (21¢)
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where s is given in (17). Thus we have derived the Green
function (21c) in the “physical” representation, denoted

by Gai1..1 [6], which is the thermal n-point retarded
function as seen in (21b). In (21a), G4 q,,...,a, is @ Green
function in the RTF and it is defined [6] analogously to
(12) and (13):

Gdl yQ2,-.-,0n

S
X (TCI ®C; [¢C!1 (t1)¢02 (tz) - Pa, (tn)]> : (22)

As in the two-point function case, (14), there is one iden-
tity:
Y () Caenen =0 (23)

ay,..,0n=+,—

where

e1_i)13r10(:7(1’10 —i(n — )¢, {pjo +1i¢ j=2,3,...

V. CONCLUSIONS

In this paper we have addressed the question of what
kind of thermal functions in RTF emerge by analytic con-
tinuations of the n-point thermal Green functions defined
in the ITF. This amounts to performing analytic con-
tinuations in the energies of the external legs from the
discrete imaginary values to real continuous ones.

The thermal Green functions are defined on a path in
the complex-time plane, a path which is to a large extent
arbitrary. On the basis of this observation, we have car-

o = %2(1 —a;). (24)
i=1

It is worth mentioning that the primary quantities
that are evaluated in real-time thermal field theory are
Ga,,a3,....a, defined in (22), through which the retarded
Green function G in (21b) is obtained.

We have developed the derivation by fixing ¢; on C;.
Of course, we may proceed in a similar manner by fixing
other t; (2 < j < n) on Cy: n—1 different retarded Green
functions are the result.

In case Eq. (4) is evaluated with Cg for Cy by fixing t;
on C,, we obtain the same result as above, (21); t; € Cs
is not suitable for analytic continuations.

When we deform the contour C; in (4) to the one that
is mirror symmetric to the one of Fig. 2, and fixing t;
on the upper path on the real axis in the complex-time
plane, i.e., the counterpart of C; in Fig. 2, we derive the
advanced Green function

,n})

dt; eipiotie)(t; —tx))

[

ried out the above-mentioned continuations in the most
straightforward and familiar manner by deforming the
contour, starting from the one that defines ITF to the
one defining RTF. In this way, we show that ITF n-point
Green functions become retarded or advanced thermal
Green functions. Although the results obtained in this
paper, being exact and valid independent of the approxi-
mation used in actual, mainly perturbative, calculations,
are already known from [13], the simpler derivation pre-
sented here helps to enlighten the relation between the
ITF and RTF.
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