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ABSTRACT

Convergence of iterative processes in C* of the form

xH—r“ = a.fix"""'i"l + (1 - af-‘)Pj.x"’

where j, €{1,2,...,n}, i=1,2,..., is analyzed. It is shown that if the ma‘trices
P,..., P, are paracontracting in the same smooth, strictly convex norm and if the
sequence {j,f7-; has certain regularity properties, then the above iterates converge.
This result implies the convergence of a parallel asynchronous implementation of the
algebraic reconstruction technique (ART) algorithm often used in tomographic recon-
struction from incomplete data.
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INTRODUCTION

This paper is motivated by two recent developments: (1) the asyn-
chronous parallel implementation of iterative algorithms for solving nonsin-
gular systems whose coefficient matrix is inverse positive, (see Bru, Elsner,
and Neumann [3]), and (2) the close relationship between SOR and the
algebraic reconstruction technique (ART) (see Natterer [14], Nelson and
Neumann [15], and Elsner, Koltracht, and Lancaster [5]). These develop-
ments have led us to seek parallel implementation of the ART algorithm.

Projection methods for solving linear systems of equations have been
known for quite some time and probably originated in a 1937 paper by
Kaczmarz [10]. Renewed interest in these methods in the early 1970s was
spurred by their successful use in computed tomography; see Herman [9] and
references therein. In the tomographic literature these methods came to be
known collectively as the algebraic reconstruction technique (ART), a term
which we adopt here.

In applications of computed tomography to situations where the imaging
data from any direction is available, e.g. in X-ray scanners, techniques based
on the inverse Radon transform are currently preferred. However, in the
absence of complete projection data, as in geophysical cross-hole tomography
for example (see Dines and Little [2]), the ART algorithms remain useful.
This is because these algorithms can be used for arbitrary systems of linear
equations Rx = f which are inconsistent, underdetermined, and of very large
size; see [9, 14, 5] for example.

The description of a general 2-D tomographic problem with incomplete
data and its solution using the ART algorithm are given in Section 1. The
analysis of the convergence of the parallel asynchronous implementation of
the ART algorithm is based on our main results, which are presented in two
theorems in Section 2.

A matrix P € C** is called paracontracting with respect to some vector
norm ||| if

Px#x o | Px| <|x].

Let Py, Py,..., P, be paracontracting matrices with respect to the same norm
I-Il and for each i=1,2,....n let

M= N(I—_Pi)

be the nullspace of I — P;. Consider the sequence of vectors {x -1 ec*
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generated by the iterative process

xi=Pj'xg'-1a i?‘l, 1%_]}%1!, xOECk.

Our first theorem establishes the convergence of this sequence to a limit y
which belongs to the subspace M = N, ;M,, where ] is the set of integers ¢
appearing infinitely often in the sequence {jJ/-1.

The limit y can be characterized more precisely if the norm ||- || is smooth
and strictly convex and each of the integers 1,2,...,n appears infinitely often
in the sequence {j,)-1. (Such a sequence is called admissible.) If the norm
in which P, P,,..., P, are paracontracting is smooth, then P* P*,..., P}
are paracontracting in the dual norm. In this case the subspaces M and

M¢ =span{R(I - P,.)|i= 1,...,n},

where R(I — P,) denotes the range of I — P;, are complementary, and y is
the projection of z, onto M along M".

This generalizes results of Amemiya and Ando [1] and Youla [17] for the
2-norm. The generalization is necessary for the analysis of the parallel
asynchronous process of the form

Xigr, T QX p -1 +(1 - aj,-)Pj,-xi’

where @), a,,...,a, are in (0,1). The convergence of this process is estab-
lished in Theorem 2 under the additional assumption that the sequence
{7.)=1 is also regulated, that is, there exists an integer T such that during
the computation cycle of length T each integer 1,2,...,n appears at least
once, namely,

{1,2,...,n) C (s dks 1o+ Jrar-1)

for any k.

Theorem 2 is used in Section 3 to prove the convergence of a p.arallel
asynchronous implementation of the ART algorithm for the SOlUtl(.)l'l of
Rx = f in the case when the system Rx = f is consistent. The limit y is the
minimum norm solution of such a system. The minimum norm least squares
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solution in the inconsistent case can be found, following Miller and
Neumann [13), as a part of the minimum norm solution of the consistent

o w)(t)=(2)

1. TOMOGRAPHIC RECONSTRUCTION FROM INCOMPLETE DATA

In this section we describe the problem of reconstructing certain proper-
ties of a medium from measurements of its response to probing signals taken
on its boundary. Consider the standard two dimensional problem with
limited access to boundary. It is assumed that the medium is confined to a
rectangle as shown in Figure 1, and that one has access to any two or three
sides of the rectangle.

The rectangle is divided into NM rectangular pixels, and it is further
assumed that the property of interest of the medium does not change within
each pixel and is quantitatively characterized by the unknown values
X1, X3,...,Xyy- A probing signal can be transmitted from one side of the
rectangle, and the response of the medium is measured at different locations
on other accessible sides of the medium as shown in Figure 2. It is also

X X
1 2 XM
XM+1 XM42 : : i XM
X X -
M(N-1)+1] “M(N-1)+2 AN

Fic. 1. Rectangular medium with unknown densities constant in each pixel.
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Sp+1

Dsp+q

Fic. 2. Response of the medium to a signal transmitted from location ¢ received

at locations sy, s,,...,5,4,-

assumed that the signal travels along straight lines and that the measurement
at the receiver, s, represents the integral (along the line segment connecting
the transmitter ¢ and the receiver s;,) of the piecewise constant function
defined by its unknown values x,%,,..., X yp-

For example let us consider the geophysical cress-hole tomography model
as shown in Figure 3. Electromagnetic or acoustic signals sent from one well
are received by a string of geophones in the second well. The travel times of
the signals are measured. If v denotes the velocity of the signal in earth,
then the travel time of the signal from the transmitter to the geophone equals

folvf )

where L is the line segment connecting the transmitter and the geophone.
For more details about the cross-hole tomography models see [2], McMechan
[12], and Koltracht, Lancaster, and Smith [11].

Thus, if the section of earth is discretized as shown in Figure 1 and the
velocity is assumed to be constant in each pixel, the unknowns x,,%g,..-, % N
represent the attenuation (the reciprocal of the velocity) of the signal in

Y
R

[
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SURFACE

::("'
[
Y

U
DU!

WELL WELL

Fic. 3. Geophysical cross-hole tomography model.

corresponding pixels. It is now clear that each line integral (1) can be written
as follows:

do NM

f.-=j"‘v—= Z T i=1,2,...,n, (2)
L i=1

i

where the index i=1,2,... . n corresponds to some ordering of the transmit-
ter-geophone pairs, r,; is the intersection length of the ith line segment with
pixel number j, and f; is the measured travel time of the signal.

The system of equations (2) can be rewritten in matrix form as follows:

Rz = f, (3)

where R € R™"M x & R™™ and f € R™ It is clear that the matrix R is very
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large; for example, if N =M =100 then R is 10,000 by 10,000. It is also
sparse, as only O(N + M) pixels have nonzero intersection with any given
line segment. Moreover, the system (3) is in general inconsistent (there is no
solution) and underdetermined (the nullspace dimension can be quite large;
see [12, 11]).

A technique frequently used in geophysical tomography for approximate
solution of (3) is the algebraic reconstruction technique (ART). This is an
iterative method which makes proper use of the sparseness of R, and of the
fact that the matrix R can be generated row by row whenever necessary. The
convergence properties of ART have been investigated; see [9, 14, 15, 5] and
Hanke and Niethammer [8].

Let us briefly describe this technique. Let

(HH
R}

| B7)

n

be the row representation of R. Let P, denote the following matrices:

R,R]

P.=I-wRiTRi,

t

where w €(0,2). Consider the iterative process

i imodn, i#kn .
.= } y = ’ ? =1,2,..., 4
x: I}ixi_l'i"wR}-;RjiRji’ ]i {n’ i=kn, ' ( )

where x, is any vector in R™. Then the cyclic iterates x,,Xg,, X35
converge, and if the system (3) is consistent, they converge to its minimum
norm solution plus the component of x, in the nullspace of R. If the system
is inconsistent, then the cycle limit converges to the minimum norm least
squares solution of (3) with normalized rows (plus the component of x4 in
the nullspace of R) when @ — 0. In general the distance from the limit to
this minimum norm least squares solution is proportional to the distance
from f to the column space of R (for more details see [5] for example).
The rate of convergence of ART is governed by the relaxation ]E)arametejr
@. However, the optimal choice of @ remains an open question. It is

A
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important therefore to investigate ways of improving the convergence of the
ART algorithm other than the search for an optimal relaxation parameter. At

present a plausible approach to this problem is the use of parallel computa-
tion.

2. MAIN RESULTS

Let ||-]| denote a norm in C*. As in Nelson and Neumann [15], a matrix
P € C** s called paracontracting (with respect to || ||) if

Px#tx o ||Px||<l|x|. (5)

We denote by .#(||- |]) the set of all k X k paracontracting matrices. In [15] it
is shown that if P& #(||-|) then 3lim,__P" It is well known (eg
Berman and Plemmons [4]) that the existence of this limit is equivalent to the
following conditions being satisfied: the subspaces N(I— P) and R(I— P)
are complementary subspaces in C* and all eigenvalues of P other than 1 lie
in the interior of the unit circle. Here N(-) and R(-) denote the nullspace

and the range, respectively. It is further shown in [15) that if P, Qe 4D
then PQ € #(||-|) and

N(I-PQ)=N(I-P)NN(I-Q). (6)

In what follows assume that P, ..., P, are given matrices in .#(I|'}]). Let
M,=N(I-P),i=1,....,n,and let M= N .1 M,. We first wish to study the
convergence of sequences of vectors defined by

(7)

where x, is an arbitrary vector and {jY-1isa sequence of integers such that
1<j,

<n forall i>1 Sucha sequence of integers is called admissible if

each one of the integers 1,....n appears in it infinitely often, and it is called
regulated if there exists an integer T > 0 such that

{l,2,...,n}C{jk,...,jk+T_1} Vk>1.

We call T a computational cycle (of the sequence).
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Our first main result is the following;

Tueorem 1. Let ||-|| be a vector norm on C*, and suppose that P, €
A D i=1,....,n. Let {j Y-, with 1< j,<n, i=12,..., be a sequence of
integers, and denote by | the set of all integers which appear infinitely often in
{(j.Jr=1- Then for any x, € C* the sequence of vectors x;= P, x,_,, i>1, has a
limit y € N, ;N(I— P,). If, in addition, the sequence { jJi=1 is admissible
and ||| is smooth, then y = Py yex,, where M= N]_N(I-P), M°=
span{R(I — P,)|1 < i < n}, and Py - is the projection on M along M".

To prove Theorem 1 we need several lemmata.

Lemma 1. If P,eCk* i=1,...,n, and M° is the subspace given in
Theorem 1, then PAM)C M, i=1,...,n.

Proof. Suppose & € M°. Then since (I — P,)é € M, we must have that
PigeMC,i=l,...,n. ]

LEmwma 2. Let ||]|, and |- ||g be vector norms on C*, and suppose that
P.e 4| |,) and P* € ./I/(||-||B), i=1.....n. Then the subspaces M and M*
given in Theorem 1 are complementary.

Proof. First, by (6), M=N(I—-P - P) an(i Nr NI - P*)=
N(I — p*... Pl*)' Second, - M° =[ﬂ?=1N(I - Pi*)] =R(I—-P, - P,,),

Since P,--- P, € .#(|"||,), the conclusion now follows. n
Lemma 3. Let ||-|| be a smooth norm on ck If P A4, then
P& 4 lp)

Proof. 1t suffices to show that ||P*¢]p=1€llp implies P*¢ = ¢&.
There exists 1 with ||g]| =1 such that

|P*£]|, = R((P*£)*n) = R(£*Pn),
where R denotes the real part. As
1€l p = R(£*Pn) < lllpll P7ll;

we have ||Py|| = ||n|| and hence Pn = 7. Thus there exist two vectors {, = £
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and {, = P*¢ such that

REX) =HENplnll. i=1,2,

and so, due to the smoothness of ||-||, {, =¢,. Hence P*¢£ = ¢£. u

Remark. The matrix P = diag(1, 1) is in A7 |I,) but not in A (|| ||..)-
This illustrates that in general we may not drop the assumption that ||-| is
smooth in Lemma 3.

Lemma 4. Let ||| be a norm on C*, and suppose that P,e A4(||-|),
i=1,...,n. Then for any x, € C* and for any admissible sequence {j )., the
iteration x; = P, x,_,, i=1,2,..., converges to a limitin M= N"., M,

Proof. Let {x,};_; be a sequence as above. Since Nzl = lix; sl i=
1,2,..., the sequence is bounded and hence has an accumulation point, say
Y. Suppose y & M. Then there exists an 1 <7 < n such that after possible
reordering the P;’s, P,y =y for i <r and Py+yfori>r. Let {x,,‘_}?=1 be a
subsequence of {x.}., such that x, =y as i »>», Construct now a subse-
quence {y, -, as follows: As {j,}'-, is admissible, for each i > 1 there exists a
smallest integer g, > p, such that Jq.+12 1. Observe that, as X, —Y=PFyF,
e Par(xp‘_ — y) for some 1< a,<r, 0<i<t, we have lx, —yll<llx, — yll
for all i, showing that x g, > Y as i > Now at least one of the numbers
r,...,n must occur infinitely often among the numbers Jg.. i 1. Assume
that it is . Consider the subsequence of {x 4Ji=1 for which Jo,,, =1 Callit

{yJi-1. Then {y,5'~1 and {P.y,);i_\ are subsequences of {x,J;=1. Hence
lyl| = i‘j?l"!l.’” = lim || Pyl =|P,y||.

so that y = P y. This contradicts P,y # y for i > r. Hence yeEM
We next show that x, >y as i >, Let €>0. Then, there exists an
integer 1< j such that %5, — yll < €. Then for some 1 < s <n,

I%,,,, = Il =Bz, = Pyl <, ~ yll <e,
and we see that ||x, — y|| <e for all ¢ > J- This concludes the proof. -
Proof of Theorem 1. For some integer S > 0 the sequence { j5+i}:°=i is

admissible with respect to J. Hence, on applying Lemma 4 to ] (instead of
{1,...,n}), it follows that the sequence {x }i| has a limit y € N e N - P,).
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Suppose now that {|- || is smooth. By Lemmata 2 and 3 the subspaces M and
M* are complementary. Decompose x, into x, = xp + 1, where 1, € M
and x,,. € M, Assume, in addition, that {j};-, is an admissible sequence.
Consider the sequence of iterates x, = P; x,, i =1,2,..., with x, replaced by
£ By Lemma 4 its limit is in M. However, by Lemma 1, the limit must lie
in M° and hence it must be zero. The final conclusion of the theorem is now
obvious. [ ]

Motivated by [3], we next consider a miodification of the iteration (7
which can be implemented using parallel processors in an asynchronized
manner. Let {jJi.| be a regulated sequence and consider the iteration
Tk -1 +(l-_a1i)PJ}xi’ (8)

xl"’r‘

where P,,...,P, are the k Xk matrices which were introduced at the
beginning of this section. Here aj,..., @, are numbers from (0,1), and r,,
i=1,2,..., are integers satisfying 1<, <T, T being the computational

cycle. The underlying model of computation is this: We have n processors
..., T,. At time i processor m; retrieves the global approximation x,,
which resides in some shared memory, and computes a local iteration P; x;.
If the global approximation in the shared memory has been updated r; —1
times while processor j, computes its local iteration, then the global approxi-
mation is updated as in (8), yielding the approximation at time i + 7.

The second main result of this paper gives conditions under which the
sequence (8) converges.

Tueorem 2. Let ||-|| be a smooth and strictly convex vector norm on ck
and suppose that P& 4 (||-|), i =1,....n. Let { j.Yi=1 be a regulated sequence
of integers, 1 < j, < n, with a computational cycle T. For eachi=1,2,..., let
r; be the smallest positive integer s such that j, ., = j; For a given vector
z € C* consider the sequence defined in the following way:

i s 9
xsz ajix +(l—a_).)ljj,xl’ S=i+ri>T'

s—1

Then

lim x, = Py pe?s (10)

s —» 00

where M = ﬂ}‘=1N(I - Pj) and M° = span{R(I — Pj)ll <j<n}

i
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Proof. Consider the kn-vector £,, i > T, partitioned into n k-subvectors
as follows:

(£)s
£ = ,
(&),

where, for m=1,...,n we have (£),, =x,, and t is the largest integer not
greater than i satisfying j, = m. Let g > 1. Then

§u=Bu§u-l’ (11)

where B, is the kn X kn matrix given in a block form ((B,)s.0)¢.c=1, where

o, 1 s#j,or s=j,andt*j,,4, 4,
(B#)s,t= 1_aju)Pjp Szt:jﬂ-’
a;l s=j, and t=j, _,.

Next, define a norm on C"* by

n;
lnlll = = ma’i |71, ’nmEC", m=1,...,n.
nn sms<sn
Now for u>T +1,
(B#n)j“=(1-_aju)P.i:?j“+aj:?jp.—l (12)
and
(Bum),,=m.. v#ij,. (13)

Because P, A4 (I-|), i=1,....n, it easily follows that || Bl < linll
For u > T + 1 define the matrices

C,= B,u+2T—1B,u +2r-2 " "' B,. (14)

7
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We claim that C, € #(|j|- |||). It suffices to show that || Colll = lln i
implies that C,n =7. Consider B,n. Either |KB,n), |l < 7| or, by (12)
and the strict convexity of |||, we “have that (B, =m, = n,,_, Proceed-
ing in this manner with B, 1., B, .1, we infer, using the regulanty of the
sequence {j ), that there is either a » < T such that

< il (15)

lI(Bp,+va+v—l...B )_].u_,_
or
m=my=-""=m, and 7m,=PFmn, i=1...n (16)

If (16) holds, then C,m=m, while if (15) holds, then we can deduce
that |||C L < lEn il contradlctmg the assumption that [||C (|| = |7l
Hence C, € .#7(||| - ).

Because there are only a finite number of distinct matrices among the
C,’s, the first part of Theorem 1 applies and we see that the sequence
{§2VT}:=1 has a limit

&

oy
]

£n
and ¢ =C_ ¢ for some r > T +1. Hence, by (16), £,,§,,... f =iy € M. As
Bb=¢forall u>T+1and || B L < NN for all ¢ € C*, we conclude
that €, €& as p oo and it follows that x, = y as v =,

To prove that (10) holds it suffices to let z € M°¢ and observe that, by
Lemma 1 and (9), all iterates and hence also their limit y lie in M*. Since

IIl is smooth, M and M¢ are complementary by Lemmata 2 and 3. Thus
¥ € M N M° ={0}. This completes the proof. »

3. PARALLEL IMPLEMENTATION OF THE ART ALGORITHM

In this section the general results of Section 2 are applied to the ART
algorithm given in (4). First we remark that the matrices

R.R
P.=1-

f wR?-Bi, i=1,2,-~-,ﬂ,

S
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are paracontracting in the 2-norm. Indeed, the spectrum of each of them
consists of 1 and 1 — w only. The subspace M® as defined in Section 2 is now
the row space of the matrix R, that is,

M¢=span(R,,...,R,),
and the complementary space M is the nullspace of R,

M=kerR.

Clearly in this case M =(M°)*

The algorithm (4) can be implemented on a parallel architecture in an
asynchronous manner as described in Section 2. Specifically, assume that
there are n processors ... ,, with local memory, which are independent
of each other. Each processor m, is connected to a shared memory. Before
the iteration (4) starts, the local memory of each processor is supplied with
the ith row R, of the matrix R (or the code which allows the processor to
generate this row), the weight a, € (0, 1), the relaxation parameter w, the ith
coordinate f; of f and the initial vector x,. The shared memory contains the

initial vector x,. Each processor 7, executes an identical code:

(a) Retrieve the current vector from the shared memory, say y.

(b) Compute the convex combination of y with the current vector in the
local memory, say z:

z=a,y+(1-a,)s.

Store z in the local memory and in the shared memory.
(c) Perform the ith step of the ART algorithm on z, namely, compute

w,. R
RTR

it

z=Pz+

i*

(d) Go to (a).

It is further assumed that the communication time between local and
shared memories is negligibly small relative to the updating time in steps (b)

and (c) and that no two processors access the shared memory at the same
time.
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It is clear that the process we just described can be expressed as follows:

wfj_
xi+ri=a'ixi+r,-—l+(l~a',)(P'ixi+ T ‘ R.i
! ! ! RjiHji !

2

where {x.} is the sequence of vectors subsequently stored in the shared
memory and r; is the time for the processor 7, to perform steps (b) and (c).
Moreover, the sequence {j -1 is admissible. On choosing a computational
cycle T to be greater than any of the updating times for each processor, we
see that this sequence is also regulated. First consider the consistent case.

Tueorem 3. Let R,,...,R, € C* be the rows of an nXk matrix R;
w€(0,2); a,€(0,1), i=1,...,n; and x,=x, + x be any vector in C",
where x,, € M and x,,. € M. Suppose the equation

Rx=f (17)

has a solution. For i =1,2, ... define

: (18)

RTR

Wi,
Ji
xi+r'=ajixi+ri_l+(1—aj‘)(l’jixi+ . R;
Jim T

where

i=1,2,....n, (19)

R,R]
Pt.=I——wR{Ri,

and where R, and j, are as described above. Then

lim x; = £+ xy, (20)

k>

where £ is the unique minimum norm solution of (17). In particular, if x (; "S wn
the row space of R (e.g. x, = 0), then the limit is the minimum norm sotution

of (D).

Proof. Since £ is the unique minimum norm solution, we have Rf::_f
and £ € span(R,,..., R); see Groetsch [6], for example. In particular R; £ =

S

&
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f] Thus (18) can be rewritten as
waR}'
xi+r,=ajvxi+r|*l+(l-aj:) Per‘+_——le ’

Subtracting £ from both sides of this equality and denoting ¢, = x;, — £, we
get

Cisp =Q; €., +(l— aj‘)Pj e,.

,

Since £ is in the row space of R, it follows that the component of ¢, in the
nullspace of R equals x,,. Thus it follows from Theorem 2 that

lim e, = x,,,

k—x

and hence (20) holds. .

In the inconsistent case we suggest an approach along similar lines to
Miller and Neumann [13].

LEmMma 5. The vector £ € R* is the minimum norm least squares solution
of (17) if and only if the vector (£,5)" € R**" is the minimum norm solution

of the consistent system
( 0 RT)(S) (0 ) 21

We can now apply the parallel ART algorithm to the augmented matrix of
(21) and obtain the minimum norm solution of (21). The first k entries of this
solution give the minimum norm least squares solution of the original
equation (17). Even on a sequential architecture the additional computational
effort required in the solution of (21) can be justified by the improved quality
of the tomographic reconstruction given by the minimum norm least squares
solution.

We comment that the solution of the augmented system on a parallel
architecture amounts to the addition of k processors. Furthermore, also in
the consistent case one cannot always expect that the number of processors
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will match the numbers of rows, n. However, given p processors, one can
partition the matrix R, or the augmented matrix of (21), into p submatrices

and let each of the processors work as a sequential processor on rows fror.n
the corresponding block of rows. Thus step (c) as described earlier in this
section would become a sequence of identical updates for each row from the
corresponding block.
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