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ABSTRACT

We derive some new bounds for the distance between the roots‘Of two POl)"}Om"
als in terms of their coefficients and for the distance between the eigenvalues of two
Matrices in terms of the norm of their difference.

1. INTRODUCTION

Let f and g be two monic polynomials of degree n with comple();
coefficients a,,...,a, and b,,...,b, respectively. Let a,,...,a, an
Bi....B, be their respective roots:

n

— 1)
—af zn~l+...+an= (,Z CY:-), (
f(z) =2" +a, Il
- (2)
n—1 . e n = —-pB;).
g(z)=z"+bz"" '+ - +b, il;ll (z—B.)
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One of the basic problems of interest in perturbation theory and numerical
analysis is to estimate the distance between the roots a; and B, in terms of
the coefficients a, and b;,. Let

= max (la,|'/*.1b1"/*), y=2T. (3)

1<kgn

A celebrated result of Ostrowski [12, p. 276] states that the roots of f and g
can be enumerated as «,,...,a, and B,,..., B, respectively in such a way
that

n

. n 1/n
mylai—B.-l%(%*l)( )y fak—bm""*} : (4)

k=1

This result was improved by Elsner [6], who showed that the factor 2n —1
accurring in the right hand side of (4) can be replaced by n —1 when n is
even and by n when n is odd. See also [1, p. 91].

Our first result gives a significant improvement of the above by replacing
the factor 2n — 1 in (4) by a constant smaller than 4 for all n. We have:

Tueorem 1. Let f, g, and y be as defined in (1), (2), and (3) above.
Then the roots of f and g can be enumerated as a,,...,a, and B,,....B, in
such a way that

n 1/n
mf‘l“a:"ﬂs|\<-4><2_l/"{ Y |ak—bk|7"_k} . (5)
i g

Next consider the space #(C") of linear operators on C", identified as
usual with the space M(n) of n X n complex matrices. A problem similar to
the one stated above is that of estimating the distance between the eigenval-
ues of two matrices in terms of that between the matrices themselves.

Let || {| be any norm on the vector space C™, and let ||-|| also denote the
induced operator norm on #(C"), ie., for A€ B(C") define |All=
Supyy=1llAx|l. Of particular interest is the case of the usual Euclidean norm
I-l; on C" and the operator norm |||, on #(C"). The latter is often
referred to as the spectral norm in the numerical analysis literature.
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let A,B be any two n X n matrices with eigenvalues A,,...,A  and
Koo, #, respectively. It is well known that these eigenvalues can be
enumerated in such a way that

max|A, — u | <c(n)(|All +11Bll)' ~/"IA - BlY", (6)

where ¢(n) is a constant growing with the dimension n. See [1, Chapter 5]
for a survey of such results and for reference to earlier work. The best result
of this type was obtained by Elsner [7). who showed that (6) is true with
c(n)=nor n-1 according to whether n is odd or even.

it has long been conjectured (see, e.g., [9]) that the constant c(n)
occurring in (6) can be replaced by an absolute constant independent of n.
This conjecture was recently proved by Dennis Phillips [13]. Our next two
results are improvements of this result of Phillips.

THEOREM 2. Let A and B be any two n Xn matrices. Then their
etgenvalues can be enumerated as Ap..A, and w,..., p, in such a way that

max|A; — u,| < 4X27 (Al + 1Bl T IA=BIY". (7)

Turorem 3. Let A and B be any two n X n matrices. Let ||| be any
Operator norm on the space of matrices. Then the eigenvalues of A and B can

be enumerated as Ap....A, and p,,..., 1, in such a way that

max|A, — < 4x2 V7 x n1/2(2M)' T A- B, (8)

where M = max(]|A||, ||B]).

(We should warn the reader here that in the monograph [1] the symbol
"Il is consistently used for what has been called |- ||; above.) .

In Section 2 we give proofs of these results. In Section 3 we discuss how
sharp these estimates are and how they could possibly be improved. Section

4 contains some related remarks. ' .
There are two crucial ingredients in our proofs. One is the use oha
homotopy method which has been repeatedly employed (see [4‘-{5, .12])-- '1;1'3
other is ap ingenious use of Chebyshev polynomials made. by Phillips in ‘ tl}f
Tecent paper {13]. Using this, Phillips obtains the inequality (7) above wi
the constant 8 instead of 4 and a similar result for other operator norms.
ile our proofs of Theorems 2 and 3 are simpler and our results stronger
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than the corresponding ones in {13], the essential ideas used in our proof are
the same as used there by Phillips.

2. PROOFS OF THE MAIN RESULTS

A common ingredient in all the proofs will be the following:

Lemma 1. Let T be a continuous curve in the complex plane with end
points @ and b. Let A,...,A, be any given points in the plane. Then there
exists a point A on T such that

nl,\_AJ; 2211—1 : (9)

Proof. Let L denote the straight line through a and b, and let S be the
segment

S={z:z2=a+t(b—a),0<t<l}.

Given any point z in the plane, we denote by z’ its orthogonal projection
onto L. Then |z — w| > |z'— w'| for all z and w. For the given points A, let
their projections A be parametrized as A}, =a + (b — @) for some t,ER,

i=12,...,n. Let z be any point on L given by z =a + t(b — a) for some
t €R. Then

i=1 i=1

]EI|z—A,.'|=]'n'[|(t—ti)(b—a)|=|b—ay"ﬂ|t—t,.|. (10)

By a classical result of Chebyshev, if p is any monic polynomial of degree
n, then

1
)| > ——— (11)
02‘?21“’( )| S5

See, e.g., [10, p. 194] or [14, p. 31). So from (10) we can conclude that there
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exists a point z on the line segment § such that

[Tz~ 24> o5 (12)

Since I' is a continuous curve joining a and b, there exists a A on I such
that A'=z. Since |A— A >z — Ayl for all i=1,2,...,n, the inequality (9)
follows from (12). .

Proof of Theorem 1. Let t €[0,1], and let A be a root of (1—¢)f + tg. It
is known that |A| <y, where y is defined by (3). See [12, p. 277]. Since
(1= f(A)+ tg(A) =0, we have

| FO) =1t £(A) = g(M)]] <] f(A) ~ g(N)]

< X lag —bly"~ (13)
k=1

2 (ay=b)r*
k=1

Let
Q={z:zisarootof (1—¢)f + tg for some t, 0 <t <1}.

Let (' be a connected component of the set () in the complex plane. Then
by a familiar homotopy argument [1, 12] ' contains as many roots of f as of
g So, if d is an upper bound for the diameter of €)', then the roots of f and
g lying in ¥ can be enumerated as a,...,a, and B,,....B8,, respectively,

in such a way that max, _, _, |e, — B, < d. .
Let a and b be any two points in ()'. By Lemma 1 we can find a point

in £} such that
n a—b|"

|f()]=TTIA=-al> 5=

i=1

So from (13) we get

L n—k
|a—b]"€22n_l Y lay = bily"
k=1
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and hence

n 1/n
la—b|<4x2“/"( )» lak*bkl‘y""‘) . (14)
k=1

Since a,b were any two points in ', and ()’ was any connected component
of 1, the right hand side of (14) is an upper bound for the diameter of each
connected component of (). So, by our remark above, we get the theorem. B

Proof of Theorem 2. Let ' be any connected component at the set
defined as

2 ={z:z is an eigenvalue of (1—¢)A + tB for some t, 0 < t <1}.

Then by the same argument as used in the proof of Theorem 1, £’ contains
as many eigenvalues of A as of B. So we only need to show that if a and b
are any two points in (), then |a — b| is bounded by the right hand side
of (7).

Assume ||A}|, < ||B]|, without any loss of generality. By Lemma 1, we can
find a point A in {}’' such that

n b.__ n
[det(A - AD)|= [TIA=A) > 2r

i=]

(15)

22n—l -

Recall from (7] that if X and Y are two n X n matrices and if A is an
eigenvalue of Y, then

|det(X — AL} | < [IX = YYI,(IX}, + 1Y lI)" "

Apply this to (15) with X =A and Y=(1-t)A + tB, where ¢t is a point in
[0,1] such that A is an eigenvalue of Y. This gives

|b—al” <22~ Y|A - Blly(J|A]l + 11Bll,)"

T?ki!)lg nth roots, we see that |b — a| is bounded by the right hand side
of (7). L
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Proof of Theorem 3. Let 1, Y be as in the proof of Theorem 2, and let
A be as in (15) above. Let ¢ be a point in [0, 1] such that A is an eigenvalue of
Y=(1-1)A +¢B.

If ||-)| is any operator norm on #(C"), we have from [9] for any two
operators S and T

|det § —det T| < nf|S — T{|[max(||S|l |TH)]" " (16)

Let S=A - AI T =Y - AL Then note that

detT =0, (17)
IS—T| <||A - Bj, (18)
max(|IS|I, IT|f} < 2max(||A|},||B]}) = 2M. (19)

The relations (15) to (19) together show that the right hand side of (8) is an
upper bound for the diameter of €}'. So the theorem follows as before. [ |

3. SHARPNESS OF THE BOUNDS

The bounds derived above can all be slightly improved by an ar gument
mentioned in [13). A modification of the usual proof of (11) shows that if p is
4 monic polynomial of degree n vanishing at 0, then

T -2n
max [p(t)l>2"2”(cos-—) : (20)
0<tgl 4n

Now, in the proof of Theorem 1 we could choose the point a to be a root of
the polynomial f. This, then, leads to an improvement of the inequality (5)

by a factor cos? (7 /4n).
By the same argument the inequalities (7) and (8) can also be improved

by the factor above, .
We believe that a more substantial sharpening of (5) might be poss ible.

However, we show now that the factor 4 occurring in this inequality cannot

be replaced by anything smaller than 2.
For polynomials f and g defined by (1) and (2) let
(21)

o(f.g) =min max la, = By
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where o varies over all permutations on n symbols. Let

1, n

G(f,.e:)={ E!ak“bmﬂ'“‘} . (22)
A =1 /

where v is defined as in (3). Let

v(f.g)
O(f. )

c(n) = sup . f, g monic polynomials of degree n \ . (23)

We have shown above that

T
c(n) <4x27 " cos® —. (24)
n

¢ = supc(n). (25)

n

We will show that ¢ > 2. So the bound (24) is off by a factor not larger than 2
from the best possible bound for c(n).

We remark that Ostrowski [12, p. 280} showed that ¢(3)>2'/?. The
construction of our example below is inspired by Ostrowski’s example.

We shall construct, for each positive integer n, monic polynomials f and
g of degree n with the following properties:

(i) f has 1 as a root with the multiplicity {(n +1)/2], and its remaining
roots lie in the disk {z:[|z| < 1};

(ii) g has 0 as a root with multiplicity [(n +2) /2], and its remaining roots
lie in the disk {z:|z — 1| < 1};

(iii) if f and g are expressed as in (1) and (2), then a,=b, for
k=12,....,n~1,

“nz(—l)["/zl([r;;;])—l’

and b, = 0 [this is a consequence of (ii) above].

Here, as usual, [x] denotes the integer part of x, and (2) denotes the
binomial coefficient.
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Notice that the above conditions imply

o(foe)=1, (26)
n-1)"" ;
ﬂ(f’g)n([n,@]) . (27)

Now, using Stirling's formula for large factorials:

m'=y2mrm -m"e "™,
we get from (27) that @( f. g) approaches 1 as n becomes large. So once we
establish the existence of f and g satisfying (i), (ii). and (iii) above, we shall

also have shown that ¢ > 2.
Let s and k be positive integers. Using the binomial theorem

s+r—l);r

W
1
——
-~ !
=]
g
i
oy
o
g
et
ﬁ

(1-z)7"
we see that the polynomial

e 4 e

r=20

has a root of order k +1 at 0. Hence

k
(=) X (477 )= a2, (28)
r=10

where f__ . is a polynomial of degree s—1. Multiply both sides by the
constant ¢,  defined by

<Pk.s=(_1)s(s+llz_l)—l’ (39

and write the resulting equation as

z_l)spk_s(z)=‘Pk.s+zk+IQs—l.k+l(Z)’ (30)
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where p; , is a monic polynomial of degree k given by

pk,s(z)=(8+§")—l Zki (w;-l)z,’ (31)

r=0

and ¢,_, x,, is a monic polynomial of degree s — 1. This polynomial can be
explicitly found by making the substitution w =1— z in (30). This leads to
the identity

qs—l,k+1(z) = ( —l)s_lps—l,k-i-i(l_z)’

and so we can rewrite (30) as

(z=1)'pe () =ep  + (1) " 2*p _ o (1-2). (32)

Put k = s —1 in the above equation to get

(zul)sps—l,s(z)=¢s"l,s+(_1)s—lzsps—l,s(1—z)’ (33)
where
__qys-if2s—2) 7!
®yrp= (=" (202) (34

Put k =5 in (32) to get
(z-1)'p, (2) =0, ,+(=1)"""2*p,_, (1-2), (35
where
s - -1
e =(=D'(F71) (36)

Now let n be any odd integer n =25 —1. Let f(z)=(z —1)°p,_, ,(z). Then
f is a polynomial of degree n having 1 as a root with multiplicity s. The rest
of its roots are the roots of p,_, .. If we write this polynomial as

ps—l,s(z)=8033—l+slz"2+ T +83-1, (37)
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then using (31), we find that the coefficients d; in (37) satisfy

Hence, by the Enestrom-Kakeya theorem [12, p. 99] all roots of p,_, , have
modulus smaller than 1. Thus the polynomial f has the required property (i).

Let g(z)=(-1)""2*p,_, (1 - z). The same reasoning shows that the
polynomial g has the required property (ii). From (33)

f— g = (Ps-—l,.g! (38)

and property (iii) now follows from (34) and (38).

If n is an even integer, n = 2s, then using (35) and (36) in place of (33)
and (34), we obtain f and g satisfying (i), (ii), and (iii) by the above
construction. As remarked earlier, this shows that ¢ > 2.

4. SOME REMARKS

Remark 1. We could derive bounds for the distance between roots of
the polynomials f and g by going over to their companion matrices and then
appealing to Theorem 2 or 3. The latter seems more suited to such an
application. Let

0 1 0 0
0 0 1 0
Cf T T T R R (39)
0 0 0 1
- 4a, —a,- — 4y -4

be the companion matrix of the polynomial f given by (1), and let C, be
defined analogously for g. The roots of f and g are the eigenvalues of .Cf
and C, respectively. Let |C;| denote the matrix obtained from C; by taking
the absolute values of each of its entries. Let u; = p(ICsD, w?lf.:re p denotes
the spectral radius of a matrix. Then u s is also the unique positive root of the

polynomial equation

zn_lallzﬂ_l_ . e _laﬂlz."o_ (40)
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The polynomial in (40) is called the comparison polynomial for f. Let
po=max(u,, u,). (41)

Define a norm |- li,, on the space of n X n matrices by setting

”A"(M)* max ztaikl#k—i, (42)

1<i(nk___l

where a;; are the entries of the matrix A. Let ||-]|,, be the operator norm on
M(n) associated with the [, vector norm on C". Then in particular

lAl= max ¥ layl

R T
If X is the diagonal matrix with entries 1, u,...,u" "' down its diagonal, then
one can see that
1Al ., = I1X7'AX],,, (43)

and hence it indeed defines a norm. In fact, it is an operator norm corre-
sponding to the vector norm

"x”(mz" lgliaénuili—Hll = “X_lx”oo

defined on n-vectors x =(x,,...,x,). From the definition of u given by (41)
one can check that

”Cf”(#) =K, ”Cg”(p,) =M. (44)

Now apply Theorem 3 for A=C;, B=C

and the norm |||, Using
(44), we get

g’

n 1/n
max|a, — B,| < 4><2“/"n‘/"(2u)“‘/"{ Y |ay —bkm‘"""}
¢ k=1

n i/n

— 1-2 1/n -

=4x217%/ "l { L lag = bylw” ")
k=1
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Now if y is defined by (3), then M <y, as remarked earlier. So we have

1/n

max|a, - g,| $.4><2"2/"n’/"{ Y |a, —bkly""k} . (45)
! k=1

This estimate is surely weaker than (5). The reason we have derived it above
is that if some argument were found to improve the matrix estimate (8), then
we would get 4 corresponding improvement of (45) which could possibly be
better than (5).

Remank 2. In [4] and [5] bounds for the distance between the eigenval -
ues of matrices A and B were derived by using their characteristic polyno-
mials, If f and g given by (1) and (2) are the characteristic polynomials of A
and B respectively, then it was shown in [4] that

la, —bklgk(Z)M"“uA—Bu (46)

for k = L2....n where M= max(||Al], || B} and ||| denotes the spectral
norm (f-11,. This inequality, however, remains valid for several other oper;f(?l‘
noms. Let || be any operator norm such that || PAP]| < ||A|| whenever li_
4 projection operator in C" corresponding to a subspace spanne(? by some (zi
the coordinate axes. Then using (16) and the fact that the coefficients a; an

b, are the sums of the g: principal k X k minors of A and B respectively,

We see that (46) holds for all such norms. This is true, in particular, if the
underlying vector norm is an absolute norm. All [, norms, 1< p<?°, ta}:e
examples of such norms. Combining (46) with Theorem 1, we obtain the
estimate (8) of Theorem 3 for all such norms.

REmark 3. Motivated by some problems in combinatorics, some authors
(sce, e.g., [11]) have studied the polynomial

- +a), (47)

n ' -1 r L n—2 .
per(zl —A)=z"+ajz"" +ayz" "+

where per A denotes the permanent of A. It is known that

pzlvzaw? (48)

Iper A —per B| < nM, " '|A — Bl

. tor norm {[x||
where lAJl,, denotes the operator norm induced by the vector n P
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and where M, = max(||A||,,||B||,). For p =2 this was shown in [3], and for
p=1, in [8].

It is also known [11] that the roots of (47) lie in the union of the
Ger$gorin disks of A. It follows that these roots are bounded by p(]A)), the
spectral radius of the matrix |A| obtained by taking the absolute value of each
entry of A Hence these roots are bounded by ||All;, ||A]l., and |||A]lls,
though not necessarily by ||A)l,. Following the proof of Theorem 3 with
“det” replaced by “per” and using (48) instead of (16), we can show that the
roots X', of (47) and the roots ', of per(zI — B) can be arranged so that we
have for i=1,2,...,n

X, — il < 4x 27/ mel/n(2M) VA - BYY ", (49)

for p=1,2,0 Here M,=M,=max(||A|,||B|l,) when p=1 or =, and
M}, = max([| Al lg. || Bl 1)

RemARk 4. Since this paper was submitted for publication, the inequal-
ity (48) has been proved for all values of p, 1< p<x (R. Bhatia and
L. Elsner, On the variation of permanents, Linear and Multilinear Algebra, to
appear).

L. Elsner would like to thank the Indian Statistical Institute, Delhi Centre,
for a visiting appointment during which this work was done.

Note added in proof:. The Chebyshev polynomial argument used in our
Lemma 1 and by Phillips [13] has been used earlier in a similar context by

Schonhage. See A. Schonhage, Quasi-GCD computations, J. Complexity
1:118-137 (1985).
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