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ABSTRACT

We develop the theory of convergence of a generic GR algorithm for the matrix
eigenvalue problem that includes the QR,LR,SR, and other algorithms as special
cases. Our formulation allows for shifts of origin and multiple GR steps. The
convergence theory is based on the idea that the GR algorithm performs nested
subspace iteration with a change of coordinate system at each step. Thus the
convergence of the GR algorithm depends on the convergence of certain sequences
of subspaces. It also depends on the quality of the coordinate transformation matrices,
as measured by their condition numbers. We show that with a certain obvious shifting
strategy the GR algorithm typically has a quadratic asymptotic convergence rate. For
matrices possessing certain special types of structure, cubic convergence can be
achieved.

1. INTRODUCTION

The QR and LR algorithms are well-known procedures for calculating
eigenvalues and eigenvectors of matrices. There are other not so well-known
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20 D. S. WATKINS AND L. ELSNER

algorithms, e.g. SR and HR, which can be useful in special situations. All of
these algorithms have very similar theories, and they also have similar
practical implementations. The results are scattered in the literature. We felt
it would be useful to develop a general theory that includes all of these
algorithms as special cases. A step in this direction was taken by Della-Dora
[14], who proved a convergence theorem for algorithms based on subgroup
decompositions. His theorem covered the QR,LR, and other algorithms
simultaneously, but it was limited to the unshifted case and dealt only with
matrices whose eigenvalues have distinct moduli. Our objective is to study
the algorithms as they are really used, ie. with varying shifts and multiple
steps. In this paper we present a general convergence theory. In a subse-
quent article [25] we will discuss issues associated with the implementation
of implicit versions of the algorithms.

We begin by introducing (in Section 2) our object of study, a generic GR
algorithm, and listing several examples. The GR algorithm is an iterative
procedure that begins with a matrix A, whose eigenvalues we would like to
know, and produces a sequence of similar matrices (A ) that (hopefully)
converges to upper triangular form, exposing the eigenvalues. The transform-
ing matrices for the similarity transformations A, =G 'A,_,G, are obtained
from a “GR decomposition” p,(A;_,) = G,R,, in which R, is upper triangu-
lar and p; is a polynomial. The degree of p, is called the multiplicity of the
ith step. Until recently workers have focused their attention on single and
double steps, i.e. steps of multiplicity one and two, respectively. In recent
years it has been recognized that steps of higher multiplicity are sometimes
useful. For example, in the SR algorithm [9] it is natural to use steps of
multiplicity four. Recently Bai and Demmel (1] have experimented with QR
steps of multiplicity as high as 20, the objective being to improve the
opportunities for parallelism in a QR step. Since we allow steps of any
multiplicity, our theory covers all of these cases.

In Section 3 we show that every GR algorithm is a form of nested
subspace iteration in which a change of coordinate system is made at each
step. This insight is the key to a clear understanding of why the algorithms
converge. The connection between subspace iteration and the LR algorithm
has been known for a long time. It was pointed out by Bauer in his earliest
work [3] on Treppeniteration, a form of subspace iteration. The connection
between the QR algorithm and subspace iteration was reported in Wilkin-
son’s book [26] and elsewhere, but its utility as a vehicle for understanding
the QR and similar algorithms and proving that they converge seems not to
have been appreciated until Buurema’s dissertation [11] The message was
subsequently reinforced by Parlett and Poole [21] and again by Watkins [24].

In Section 4 we present several simple lemmas concerning distances
between subspaces. These are used in Section 5 to help prove our basic
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convergence theorems for subspace iteration. While proofs of convergence of
subspace iteration have been given before (e.g. [11, 21]), they have focused
on the unshifted case. Our theorems are concerned with nonstationary, i.e.
variable-shift, subspace iteration. These are then used in Section 6 to prove
theorems about the convergence of the GR algorithm. It is interesting that
the convergence of all GR algorithms is based on the convergence of the
same sequences of subspaces, assuming the same sequence of shifts is chosen
in each case.! What sets the various algorithms apart from one another is the
varying quality of the transforming matrices G, used to perform the change
of coordinates at each step. Qur theorems guarantee convergence only if the
condition numbers of the accumulated transforming matrices G, = G,G, - -

G, remain bounded as the iterations proceed.

Our global convergence theorem holds for shifting strategies that con-
verge. Unfortunately no one has ever been able to devise a practical shifting
strategy that is guaranteed to converge for all matrices and can be shown to
converge rapidly.? Indeed, there appears to be little hope for a universally
valid, global convergence theorem for shifting strategies that are used in
practice. Batterson and Smillie [2] have even shown that one well-known
strategy, the Rayleigh-quotient shift, can behave chaotically. The set of
matrices on which chaotic behavior occurs has positive Lebesgue measure in
the space C"*". It may well be that other shift strategies can also exhibit
chaotic behavior, although this is not something that has been observed
frequently.

For local convergence the situation is better. We are able to show that for
a particular practical strategy, which we call the generalized Rayleigh-quo-
tient strategy, the local convergence rate is typically quadratic. For matrices
having certain types of special structure, it is cubic. For example, the QR
algorithm applied to a normal matrix typically converges cubically. This is a
known result, at least for the case of single and double-step algorithms. As a
second example, the SR algorithm applied to Hamiltonian matrices typically
converges cubically.

Earlier proofs of the quadratic convergence of the QR algorithm have
been based on the fact that the QR algorithm can be viewed as inverse
iteration, in particular Rayleigh-quotient iteration. Qur approach makes no
reference to inverse iteration whatsoever. That such an approach should be
possible is made clear by the duality theorem discussed in {24, Theorem 4.1},

'Similar observations have been made previously by Bauer [4] and Parlett and Poole [21).

%Success has been achieved for the important special case of tridiagonal Hermitian matrices.
On this class, the QR algorithm with the Wilkinson shift strategy has rapid, global convergence.
See {20, §8-10].
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which illustrates the fundamental connection between direct and inverse
subspace iteration.

2. THE GENERIC GR ALGORITHM

Our results will be stated in terms of a generic GR algorithm, which is in
turn based on a generic GR decomposition. A GR decomposition is any

well-defined rule by which every matrix C in some large class of matrices €
can be expressed as a product

C=GR,

where G is nonsingular and R is upper triangular. In other words, a GR
decomposition is a rule that assigns to each C € € a unigue nonsingular G
that “reduces C to triangular form,” in the sense that G~ 'C is upper
triangular. This second statement of the definition reflects the way in which
GR decompositions are often computed in practice. Given a GR decomposi-
tion, we can define a corresponding GR algorithm, in fact, a whole family of
algorithms. Let A be a matrix whose eigenvalues we would like to know. The
GR algorithm generates a sequence (A,) of similar matrices as follows. A, is
taken to be A or some convenient matrix similar to A, say Ay = G; 'AG,.
Given A;_,, let p, be some polynomial such that p,(A,_,)€ €. Then
pLA;_) has a GR decomposition: p(A,_,)=G,R,. Define A, by A;=

G 'A,_,G,. The step from A;_, to A, can be expressed succinctly by the
two equations

pi(Ai-—l) =GiRia (1)
A, =C{'1A‘-_1Gi. (2)

Under suitable conditions the sequence (A,) will tend to upper triangular, or
at least block triangular, form, yielding information about the eigenvalues.
Information about eigenvectors and invariant subspaces is obtained by accu-
mulating the transforming matrices G,. The choice of the p, has much to do
with the rate of convergence. The simplest choice is p(A,_)=A,_ |, which
yields the basic GR algorithm. If we wish to have the sequencé converge
rapidly, we must make a cleverer choice. The Rayleigh-quotient shifting
strategy often works well. We take p(A;_ )= A;_, ~ 6,1, where the shift o,
is taken to be the (n,n) entry of A;_,. Another good choice is p(4,_,) o
(A, — o XA, — 1), where o, and r, are the eigenvalues of the lower
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right-hand 2X 2 submatrix of A,_,. Both of these strategies are special cases
of the generalized Rayleigh-quotient strategy to be discussed in Section 6.

The degree of p, is called the multiplicity of the ith step. If p, has
degree 1, it is a single step. If the degree is 2, it is a double step, and so on.
Writing p, in factored form: p,(A)=a, (A — XA - o) (A—a®),
we call the roots of"),...,a) the shifts for the ith step. Each step of
multiplicity m has m shifts. A procedure for choosing the p, is called a
shifting strategy because the choice of p; implies a certain choice of shifts
o,...,0%. The p, are usually chosen to be monic (a; = 1). This is a minor
point, for all of the GR algorithms that we will consider have the following
property: If p(A) has the decomposition p(A) =GR, then for any a # 0 the
GR decomposition of ap(A) is GR, where R = aR. This property implies
that the outcome of a GR step is invariant under rescaling of p.

If p,(A;_,) is nonsingular, then R; must be nonsingular, and it is easily
shown that A, =R,A,_ R;'. Therefore, if A,;_, is in upper Hessenberg
form, A; will also be in upper Hessenberg form. It is common to choose Go
so that A, is in upper Hessenberg form. Then all A; will be in upper
Hessenberg form, as long as all p,(A, _,) are nonsingular. While nonsingular-
ity is the rule, singular p,(A;_) do not cause problems in practice: in fact
they are good news.

ExampLi 2.1 (QR decomposition). Let € = C"*". Every C € ¢ can be
expressed as a product C=QR, where Q is unitary and R is upper
triangular. One can specify rules for calculating Q and R so that they are
uniquely determined. For example, one could say that A is to be reduced to
upper triangular form by reflectors, as in Algorithm 5.2.1 of [17]. The QR
decomposition gives rise to the famous QR algorithm.

ExampLE 2.2 (LR decomposition). Let € € C"*" be the set of matrices
whose n —1 leading principal minors are nonzero. Every C € € can be
expressed uniquely as a product C = LR, where L is unit lower triangular
and R is upper triangular. This decomposition and that of the following
example give rise to variants of the LR algorithm.

ExampLe 2.3 (LR decomposition with partial pivoting). Let ¢ = C"*",
Every C € € can be expressed as a product C = KR, where K and R are
uniquely determined by the rules of Gaussian elimination with partial
pivoting, as determined by e.g. the subroutine SGEFA from LINPACK [15].
The matrix R is upper triangular, and K has the form K = P,L,P,L, -
P._,L,_,, where each L; is a Gauss transformation whose entries all have
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modulus less than or equal to 1, and each P, is either a transposition or the
identity matrix.

ExamrLe 2.4 (SR decomposition). Define | € R27>2n by J=
diag{}], J...., J}, where
& 0 1
=123 3]

A matrix § € R®"*%" is symplectic if STJS = J. (This is the shuffled form of
symplectic matrices.) Let € be the set of C € R2"*2" qych that the leading
principal minors of C*JC of even order are all nonzero. Every C € ¢ can be
expressed as a product C =SR, where § is symplectic and R is upper
triangular [16, Theorem 11; 7, Satz 4.5.11]. Algorithms for producing unique
factors § and R are given in [7], [9], and [10]. The SR decomposition gives

rise to the SR algorithm, which can be used to solve the algebraic Riccati
equation [9, 10].

ExampLe 2.5 (HR decomposition). Let J €C™™" be a diagonal matrix
with +1’s on the main diagonal, and let € € C**" be the set of all matrices
with nonzero leading principal minors. Every C € ¢ can be expressed as a
product C = HR, where R is upper triangular, and H satisfies H*JH = PTJP
for some permutation P [6, 16, 8, 7]. The HR decomposition gives rise to the

HR algorithm, a generalization of the OR algorithm that can be applied
effectively to certain eigenvalue problems.

ExampLe 2.6 (Complex orthogonal QR decomposition). In certain appli-
cations [12] one needs the eigenvalues of complex, symmetric (not Hermi-
tian) matrices. For this purpose a complex orthogonal QR decomposition is
useful. Almost all A € C"** cap be expressed as a product A = QR, where R
is upper triangular and Q is complex and orthogonal (not unitary). The

resulting complex orthogonal QR algorithm preserves the complex symmetry
property. See Cullum and Willoughby [12] for details,

3. THE GR ALGORITHM AS SUBSPACE ITERATION

The most important thing to understand about the GR algorithm is that it
is a form of nested subspace iteration in which a change of coordinate system
is made at each step. In the basic version of subspace iteration, we choose a
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subspace ./ and form a sequence of subspaces (-#) by #, = and
S =AS_,,  i=1,23, ...

Then ./, = A'” for all i. This is just a multidimensional form of the basic
power method. Under mild conditions on A and .~ the ./, converge to an
invariant subspace of A. In an effort to improve the convergence rate, one
can consider a nonstationary subspace iteration scheme in which A is
replaced by a shifted matrix A — ;1 at the ith step. We will consider even
more general nonstationary schemes of the form

S=p(A)A_, i=123,...,

in which (p;) is some sequence of polynomials. Letting p, = p; ‘" PPy, WE
have

Z=p(A)S, i=1,23,... . (3)

In Section 5 we will state and prove some precise conditions under which
(#]) converges to an invariant subspace of A.

Now let’s see how the GR algorithm can be interpreted as subspace
iteration. The ith step of the GR algorithm begins with the GR decomposi-
tion

pi(A;_)) =GR, (4)

To keep the discussion uncomplicated, we will assume p(A,_,) is nonsingu-
lar. Let g,, g,,..., g, denote the columns of G;, and let e, e,,...,e, be the
standard basis vectors in C". Since R, is upper triangular and nonsingular, it
follows easily from (4) that for every k €{1,2,...,n), the space spanned by
the first k columns of p,(A,_,) is the same as the space spanned by the first
k columns of G,; that is,

pil Ay )ey,ne) =g s gy
Thus g,,..., g, is the space obtained from one step of subspace iteration,

starting from (e,,...,e;). To finish the GR step we perform the similarity
transformation

A;=G 'A,_G,

which we view as a change of coordinate system. A,_, and A, are represen-
tatives of the same linear transformation with respect to two different
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coordinate systems. Given a coordinate vector x that is the representation of
some “physical” vector with respect to the old A,_, system, the coordinate
vector of the same physical vector with respect to the new A, coordinate
system is G 'x. Thus the vectors that are represented by g .-, g in the
old system are given by G 'g,,...,G 'g, in the new system. But the latter
are obviously just e,,...,e. Thus the space that is represented by ¢ Elre s &1
in the old coordinate system is represented by <e,,...,e;) in the new
system. To summarize: Each step of the GR algorithm performs one step of
subspace iteration on {e,,...,e, ), resulting in some space (g, ..., &) A
change of coordinate system then maps {g,,..., &) back to {e,,...,e;).
After this transformation we are ready for the next step, which performs
another step of subspace iteration on this same space. We conclude that the
GR algorithm performs a sequence of steps of subspace iteration, starting
with ./, =(e,,..., e; ). Furthermore, at each step it performs a change of
coordinates, so that the space .~ obtained after i steps is represented by
(e,,...,e;) with respect to the newest coordinate system. Thus, instead of
having a fixed matrix and a sequence of subspaces, we have a fixed subspace
and a sequence of matrices. If the subspace iterations converge as hoped,
(e,,...,e,) will become closer and closer to being an invariant subspace of
A;. If it were exactly an invariant subspace of some A,, that A; would have
the block triangular form

Ay Ap (5)

0 Ay

where A,, € C*** But (ei,...,ek) is not exactly an invariant subspace of
any of the A, so what typically occurs is that (A,) approaches the form (5)
as i — o,

So far we haven’t specified k. In fact the subspace iteration takes place
for all k €{1,2,...,n} simultaneously. Thus we actually have a nested family
of subspace iterations. If each of these subspace iterations converges, then
(A;) will (typically) tend to the form (5) for all values of k simultaneously;
that is, (A,) will tend to upper triangular form, exposing the eigenvalues on
the main diagonal. Even if convergence fails for some values of k, the
sequence (A;) will still converge to a block triangular form that will usually

be useful. Precise conditions under which convergence can be guaranteed
are given in Section 6.

4. DISTANCES BETWEEN SUBSPACES

Given a subspace . of C”, let P _» denote the orthoprojector of C" onto
. To gauge the convergence of sequences of subspaces we will define the
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following standard metric [18, 17] on the set of subspaces of C™:
d(-*, 9 )=P,— P|;.

Since P ,. =1— P ,, we see immediately that d(.~+, 7 +)=d(.”~, 7).
An equivalent definition is

d(#, 7 )= sup d(s,7 )= sup inf|s—tl; (6)
e ||Su€’/1“Ey
§llg = §llg =

if dim(.#)=dim(.9"), and d(.#,.9") =1 otherwise.
Given a matrix § € C"**, let R(S) denote the range or column space
of S.

LEmMmAa 4.1. Let . and I be two k-dimensional subspaces of €™, and
let S&C"** be a matrix with orthonormal columns such that . = R(S).
Then there exists T € C™** with orthonormal columns such that = R(T)
and (IS — T, <v2d(.~, ).

Proof. . and 7 have orthonormal bases of principal vectors [5, 17]
§1,..., 8§ and f|,...,f,, respectively, such that

(5,8)=0 if i=j, (7)
and the angle between §; and f; is 6, the ith principal angle between .

and . The principal angles satisfy 0<6,<0,< '+ <8, <m/2, and
sin @, = d(.», .9"). Therefore, for all i,

15, — £.ll2 = 2sin( 6, /2) <V2 sinf, <V2d(S/, T).
Let $=[5,,...,5 ) and T =[£,,...,{,]&€ C"**. Using (7), we see that

IS = Flly = max lI§, - £l <VBd(A, T).

I1<i<k

Since R(S)= R(S), and both S and~S- have ortho_normal columns, ther_e exists
a unitary U € C*** guch that § =SU. Let T = TU. Then R(T)=R(T) =7,
and |IS = T, ={ISU~ TUIl, = IS - Tll, <vV2d(~, I). u

Lemma 4.2. Let  and T be two subspaces of C" of the same
dimension, let V€ C"*" be nonsingular, and let 7=V~ and I =
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V- T Then

d( A, T ) <x,(V)d(.7. T).

Proof. In (6) the supremum is attained, so there exists s € .7 with
lislla=1 such that d(.”, 9 )Y=d(s, T). Let §=V 5.0 = I$ll2, and §=
o~'3, so that ||§ll; =1. Notice that ¢ <||V~'ll;. Pick €9 such that
1§ = fll, = d(5, Z7). (This is an infimum, but it also is attained.) Since
ISl =1, d(5, 7)< d(#,&). Let f=0T and t=Vi. Then d(.#, )=
d(s,7')<||8—tl|2=||V(0(§—f))||z~<JlV||2||V—]||2||§—ﬂ|2<K2(V)d(./,-7)- o

Lemma 4.3, Let .# and F be subspaces of C" of the same dimension,

and let % be the orthogonal complement of .. Then .7 N% ={0} if and
only if d( A2, T)< 1.

The proof of Lemma 4.3 is an easy exercise.
The final lemma of this section begins to deal with subspace iteration.

LEMMA 44, Let T = (er,....er) and %= ey, ....e,) let A cC’
be a k-dimensional space such that ” N % ={0), and let = d(.7, ") i
Let T € C"*" be a block diagonal matrix T = diag{T,,T,}, where T, €C""";

let p be a polynomial such that p(T,) is nonsingular; and let 7' = P(T)] '
Then

B
1- g2

d( A, 5) < Ip(T) | (1)) 7,

Proof. Given x=lx,x,..,x Fe 2 let t'=[x,,...,x, ] € C* and

x”=[xk+l,...,xn]T e Crk, Clearly d(x,j)=||x"||2 and d(x, %)= t"llz2.
We will begin by demonstrating that

B

e |la 8)
m “x ”2 (

for all xe.”. We can assume, without loss of generality, that |lx|lz=1.
Since [[x"llz = d(x, ), we have lx"llz < B. Since lIx'lI2 + [[x”]|2 = 1, we also
have [lx'll; > /1- 82 > 0. The inequality (8) follows.

PR
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Given any x € ./ and y = p(T)x, we have

y'=p(T))x, y"=p(Ty)x".

Since p(T,) is nonsingular, x'= p(T,)"'y’, and

lx’ll; < ||p(T;)‘l||2||y'Hz- (9)

Now choose y € p(T)” = " such that ||yl =1 and d(#", T )=d(y, I).
Then there exists * € .7 such that y = p(T)x, and

d(7,.F) =yl < | p(Ty) | "z (10)

The proof is completed by combining (10), (8), and (9), and noting that
ly'll; < 1. |

5. CONVERGENCE OF SUBSPACE ITERATION

We present two theorems on the convergence of nonstationary subspace
iterations. The first concerns simple matrices.

Tueorem 5.1. Let A€C"*" be a simple matrix with eigenvalues
AL Ay, ..., A, (in any convenient order) and associated linearly independent
eigenvectors v,,v,,...,0,. Let V=[v, v, -+ 0,]€C" " and let k(V)
denote the condition number of V with respect to the spectral norm. Let k be
some integer satisfying 1 <k <n—1, and define invariant subspaces T =
(1,...,0;) and U = {v3,,,...,v,). Let (p,) be a sequence of polynomials,
and let p,=p, - - p,p, for all i. Suppose

pA)+0, j=1,.,k, (11)
for all i, and let
AL
) e [B()]
min ﬁi(/\j)l

1<jsk
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Let . be any k-dimensional subspace of C" satisfying
~ N % ={0}. (12)

Let /=p(A)S, i=12,..., as in (3). Then there exists a constant C
(depending on ) such that for all i,

d(A#, T )< Cryo(V)r,.

In particular /> 7 if r,— 0.

Remark.  The subspace condition (12) is almost certain to be satisfied by
a subspace ./ chosen at random, since dim(.#)+ dim(%) = dim(C"). In the

context of the GR algorithm we will be able to guarantee that (12) is
satisfied.

ExamrLE 5.2. Consider a stationary iteration in which p(A)= p(A) for
all i. [If we take p(A)= A, we have basic subspace iteration.] Then $,(A)=

p(A). Order A,,..., A, so that lp(ADI 2 p(A) > - -+ 2 1p(A ). Suppose k
is such that

A,
_ k+rln<a;(<n‘p( J)I _ 'P(Ak+1)| <1
 Min ip(4,)] [ p(AL)] '
<j<k

Then r; = p', s0 .#, .7 linearly with the contraction number p-

ExampLe 53.  Given k, suppose we can order Als..., A, so that the sets
{’\l""r’\k} and (A, |....,A,} are disjoint. Let m = n — k,andfor j=1,....m
let (") be a sequence such that o> Ay, as i >, and o & Ay, A

for all i. For each i let p, be the polynomial of degree m given by
PR = (=)A= of?) - (r = o).

Let p(A)=(A= A, XA=2,,,) - (A— A,). Then, as { = o,

=0 if k+1<j<n
AA )= p(A sJsn,
pA,) = p(A) {M P s
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Therefore for every p > 0 there exists i, such that for all i > i,

ax {AA.
k+1in<]'<n p'( J)l <p

. . A o .
1?1'12k|p'( “’)|

It follows that there is a constant K such that r; < Kp' for all i. This is true
for every p > 0, so r, — 0 superlinearly. Therefore /,—  superlinearly.

Proof of Theorem 5.1. The assumption (11) implies that any null vectors
that $,(A) might have must lie in %. Thus we see from (12) that ./ contains
no null vectors of $,(A). It follows that .~ =p,(A)” has dimension k for
all i. Therefore the distances d(.#}, 9") are given by 6). Let =V~ 1.7,
A=Vis, T=V'T=(ep...er), 4=V 'U=Cery, .¢€,), and
D=V~ AV = diag{},,...,A,}. Then 7= p(D)” and # N% ={0}. By
Lemma 4.2,

WS T) <xa(V)A( S T ), (13)

It now suffices to prove the theorem for the diagonal matrix D.

Let T, = diag{A,..... A0 € Ckxk and T, = diagld;, .- -» A} €
Clr-bx(n=k) oo that D = diag(T,,T,}. By (11) p(T)) is nonsingular, so by
Lemma 4.4,

d(A. ) <Cl(T) a1 7',

where C = d(],?)/%l—d(],ﬁp')z. Combining this inequality with
(13), and noting that 1H ATl = maxy 41 ¢ j<n | Bi(A)] and 11p(T)) 7 lly =
[min“jdlﬁ,.(/\j)ll“, we are done. =

Rewarks. The size of the constant Ck,(V) is of some practical impor-
tance. If A is normal, V can be chosen so that k,(V)=1. Otherwise
k(V)>1. As A approaches a defective matrix, ko(V) = . The constant

A2
\/1—(1(/’,9")2
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is a measure of how well .7 (the transformed initial guess) approximates the
invariant (under D) subspace 7. We can make C arbitrarily close to zero by
taking 7 sufficiently close to 7. On the other hand, C = as d(.7, ) > 1.

Since virtually every matrix that arises in practice is simple, Theorem 5.1
is adequate for most needs. However, in order to make our coverage more
complete, we will prove another theorem in the same spirit that is valid for
both simple and defective matrices. Here our hypotheses are more restric-
tive, but they are satisfied in typical applications of the GR algorithm.

Tueorem 5.4. Let AEC""", and let p be a polynomial of degree <n.
Let A,,...,A, denote the eigenvalues of A, ordered so that |p(A))] = Ip(A,)]
> 2 |p(A)| Suppose k is a positive integer less than n for which
IpA > Ip(Ag 1 ), et p=1pCA,, DI/ [p(AL), and let (p,) be a sequence of
polynomials of degree <n such that p,~p as i > and p(A;)#0 for
j=1L,....kand all i. Let  and % be the invariant subspaces of A associated

with Ay,...,A, and Ay, \,...,A,, respectively. Consider the nonstationary
subspace iteration

‘/2 = pi(A)‘),;ml’

where A, = 7 is a k-dimensional subspace of C" satisfying . N % ={0}.
Then for every p satisfying p < p <1 there is a constant C such that

d(A#,T)Y<Cp', i=123,....

Remark. By p; = p we mean convergence with respect to the unique
norm topology on the finite-dimensional space of polynomials of degree <.
This hypothesis implies that p, (M) — p(M) for any complex matrix M.

Remark.  The theorem shows that convergence is at least linear in the
contraction number j. Rapid convergence can be achieved by taking p to
have degree m=n -k, say p(x)=(r - o) -(x —a,), where a,...,0,

are chosen to be good approximations to At 415> A,. The optimal choice is

;".- =Ag4 for 1=1,...,m, since then p =10, and the convergence is super-
inear.

Proof. Forall i, /= p(A).”, where Py =p; " pyp, as before. As in
the proof of Theorem 5.1, the assumption that p{A)#0for j=1,....k and

;;h‘; SUl;TP.aCE condition . N % ={0) imply together that ./, has dimension
or all i.
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Let V€C™ " be any nonsingular matrix such that V~IAV is a block
diagonal matrix of the form T = diag{T,,T,}, where T, € Ck>k and T, €
C-kX(-k) are upper triangular matrices with main-diagonal entries
Ap...,Ag and Ay, ..., A, respectively. For example, diag{T,, T,} could be

the Jordan canonical form of A, or it could be obtained from the Schur form
T by a similarity transformation W~ ITW, where W has the form

[o 1

(cf [17, Lemma 7.15D. Then 9 =(v,,...,t;) and LU ={Vgppr 2 Vp)s
where v,,...,v, are the columns of V. Let T =V 1T ={e,....e), #=

-

V% =(et,1,....e,), S =V A, and # =V~ Then 7 N% =1{0}
and = p(T).7. The condition p,(A))+0 for all i and for j=1,....k
implies that p,(T,) is nonsingular. Thus by Lemmas 4.2 and 4.4,

d( A, T) <Cry(V)

(T | p:(TD 7', (14)

where C=d(],ﬁ)/\/1—d(t/7,9:)2. Let v=|p(A ;)| and &=
| p(A,)], so that p=v /8. Given g with p<p <1, choose p so that p < p <p.
There is a unique € such that 0 <e<d and p=(v+¢e)/(6—e) Let
S=v+e and 5=06—€>0, so that p=7/8. There exists i, such that
for all i>ip, max,,,;<alPi{A)I <¥ and min, ¢ ; <1 P:(1;)1 > 8. Let
Cy=Ip, (Tl and C, = i, {T}) " "llz. Then

T1 (1)

J=t

“ ﬁ.(Tz) "2 < C2

2
and

l—[ pj(Tl)—l

jmig+!]

|

p(T) 7|, <€

2

The matrix p(T,) is upper triangular, so it can be expressed as a sum
p(T,) = D + N, where D =diag{p(A;.,),....p(1,)} and N is strictly upper
triangular. Each of the matrices p(T,) has an analogous representation
p{T,)= D, + N,. Since p; = p (in any norm) as j =, we have also p(T;)
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= p(T,), D;— D, and N;- N. Thus there is a constant K such that
”1\5-“2 <K for all j. Also, by definition of i, ||Dj||2 <v for all j>i, Now

i i

n pj(T2)= 1_[ (Dj+Nj)’

which can be rewritten as a sum of 2: 7% terms, each of which is a product of
i — i, diagonal (D;) and strictly upper triangular (N,) matrices. Since the
matrices are of order m, each term that has m or more strictly upper
triangular factors must be zero. For each h < m, each term having h strictly
upper triangular factors must also have i — i, — h diagonal factors. The norm
of each of the strictly upper triangular factors is bounded above by K, the
diagonal factors by ¥, so the norm of the entire term is bounded above by

K*pi~#%~h For each h < m there are (l _hlo) terms having exactly h strictly

upper triangular factors, so

m—l ._. . .
1p:(T) ], <C, ¥ ( hto) Khimioh
h=0

Since (‘ ;10) is a polynomial in i of degree h, the second sum is just a

polynomial. Thus

18T |, < mo(i) 7, (15)

where m, is a polynomial of degree at most m —1. The same sort of
argument can be applied to [|#(T,)"'ll. The matrix p(T,)~" is upper
triangular and can be expressed as a sum p(T,)"'=E + M, where E =
diag{p(A)" ... p(A) " Y and M is strictly upper triangular. Each pj(T,)_1
has an analogous representation pT) '=E + M,. Since p(T,) - p(T,)
as j—=oo, we also have p(T)™' > p(T)™}, E;—~ E, and M,—» M. Thus
there exists K’ such that HMjllggK' for all j. Furthermore, for j> i
IE,ll; € 87", Thus, reasoning as before,

|pT) ') < 7 ()5 -, (16)
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where | is a polynomial in i of degree at most k — 1. Combining (14), (15),
and (16) we find that

d(A, T) < Cry(V)m(i)p',

where 7 is a polynomial. Now 7(i)p' =[m(iXp /p)'1p’ Since 0<p/p <1,
and 7 is a mere polynomial, m(iXp/p) — 0 as i —. In particular this
factor is bounded. Therefore there exists C such that d(./, 97 ) < Cp' for
all i. |

6. CONVERGENCE OF THE GR ALGORITHM

Consider the GR algorithm (1,2), starting from A,. For i=12.3,...
define the accumulated transforming matrices

R =R, R,R,

i i i

G,=GG, G
Then from (2),
A, =G 'AG, (17)

for all i. The accumulated transforming matrices also satisfv the fundamental

identity
ﬁf(Ao) zéiﬁi’ (18)

where p,=p, - p,p,, as before. This is easily proved by induction. For
i=1 it coincides with the case i =1 of (1). For i = j>1 assume (18) holds
for i = j —1. Then ﬁj(Ao)'“' pj(AO)éj—-iﬁj—-l = Gj—l[éj——l]pj(Ao)éj—!]Rj—I
=éj-lpj(Aj_;)Rj_l =Gﬂj“,GjRjﬁj_, = éjﬁj. Equation (18) is the key to
our analysis. It not really anything new; every convergence proof of which
we are aware for algorithms of this type makes use of an equation like (18).
However, our use of (18) differs from the way it has been used previously. In
the QR case, (18) gives the unique QR decomposition of p,(A). Wilkinson’s
convergence proof in [26), which is typical, is based upon this fact and the
continuity of the decomposition C = QR as a function of (nonsingular) C.
The same approach can be applied to the LR algorithm without pivoting, the
SR algorithm, and various other GR algorithms whose GR decomposition is
defined by membership of the factor G in some closed subgroup of GL (C)



36 D. S. WATKINS AND L. ELSNER

(e.g. unitary, unit lower triangular, or symplectic group). See Della-Dora
[14]. However, there are certain important algorithms to which this approach
does not apply, for example the LR algorithm with partial pivoting. In our
approach, by contrast, the hypotheses do not imply that (18) gives the GR
decomposition of p,(A,), nor do they imply that the GR decomposition is
continuous. Since we do not rely on these properties, our analysis applies to
the LR algorithm with pivoting, as well as the other algorithms.

In Section 3 we observed, by looking at the algorithm one step at a time,
that the GR algorithm is just subspace iteration. Equation (18) yields the
same observation in cumulative form. Assuming (for simplicity) that p,(A,) is
nonsingular, (18) shows that the space spanned by the first k columns of G;
is just p(Ay)ey,...,e;). Being the result of i steps of subspace iteration
starting from (e,,...,e; >, this space is (hopefully) close to an invariant
subspace, in which case A, =G, 'A,G, is (hopefully) close to block triangu-
lar form. Notice that the sequence of subspaces p,(A,Xe,,...,e;) is deter-
mined by the choice of polynomials p, and does not depend explicitly on
which GR decomposition {e.g. QR, LR, SR, etc.) is being used. The choice of
GR decomposition affects the sequence of matrices A, through the cumula-
tive transformation matrices G,. We cannot guarantee convergence unless
these are reasonably well behaved. Precise conditions for convergence are
given in Theorem 6.2, which relies heavily upon the following lemma.

Lemma 6.1. Let A€ C™™*", and let 9 CcC" be a k-dimensional space
that is invariant under A. Let G € C"*" be a nonsingular matrix, and let /
be the space spanned by the first k columns of G. (Think of ./ as an
approximation to J.) Let B= G~ 'AG, and consider the partitioned form

B= [Bu By, ’
By, By
where B,, € C*~*>k Then

1Boyll2 < 2V2 k0 (G) Al d( 7, 7).

Proof. Consider the decomposition G = QR, where Q is unitary and R
is upper triangular. Making the partition Q =[Q, Q,], where Q, € Ccrrk, we
have . = R(Q,) and . * = R(Q,). Using the partition

R= Rll R12 kxk
0 Ryl where R, € C**¥,
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one easily verifies that By, = R;,'Q¥AQ,R,,. Noting that ||R,,lls <Rl =
IGllz and IRz <IR™ 'z =G ™ llz, we conclude that

1By, llz < ko, (G)IIQFAQ, 5. (19)

By Lemma 4.1 there exist T,€C"** and T, €C"*™ with orthonormal
columns, such that R(T,)=9 and R(T,)=9 *,

10, ~ Tyl <V2d(#,.77), and 11Q;— Tolls<V2d(A*, T ).
Now QFAQ, can be rewritten as
FAQ, = (Q, — T;)*AQ, + TSA(Q, — T)) + TF*AT,.
Since  is invariant under A,T;*AT, = 0. Therefore

1QFAQ,llz < lIQ, — Tsllz 1Al NQ,llz + ITollz ANl 11Q) = Tyl
< 2V2llAlld(#, T7). (20)

Combining (19) and (20), we are done. L

THeoreM 6.2. Let A, € C"*", and let p be a polynomial. Let A,,..., A,
denote the eigenvalues of A,, ordered so that |p(A)=Ip(A)= -+ >
|p(A,)\. Suppose k is a positive integer less than n such that |p(A )| > |p(A; ),
let p=1p(A,, DI/ |p(A), and let (p,) be a sequence of polynomials such that
P> pandp(A)+0 forj=1,....k and all i. Let I and % be the invariant
subspaces of A, associated wzth Al..sAg and Agiy,..,A,, respectively,
and suppose (el, .. exyN% ={0). Let (A,) be the sequence of iterates of the
GR algorithm using these p,, starting from Ay If there exists a constant :’(’
such that the cumulative transformation matrices G, all satisfy xo(G,) <
then (A,) tends to block triangular form, in the followmg sense. Write

N
AG)  AG) ?
21 22

where AQ) € C*** Then for every p satisfying p<p<1 there exists a
constant C such that |AG)ll; < Cp* for all i.
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Remark. It follows that the eigenvalues of AY{) and A%} converge to

Ap-.yAp and Ay, y,...,A,, respectively, as can be shown by standard
techniques.

Proof. Let ./ =(e,...,e,) and .7~ = p(A,).~ for all i. All of the
hypotheses of Theorem 5.4 are satisfied, so for every g satisfying p <p <1
there exists C such that d(.7#, 7)< Cp' for all i. Consider the partition
G, =[G G4], where Gl e C"** As we remarked above, (18) implies that
the columns of G{”span .#; that is, ./ = R(GY"). This is true regardless of
whether or not $,(A,) is nonsingular, since . and R(G!") have the same

dimension. Applying Lemma 6.1 with the roles of A, G, and B played by A,
G;, and A, respectively, we conclude that

1AR N2 < 2v2 x,(C A N.C5' < Cp',

where C = 2\/-2_f”A0|fzé- »

It is usually the case that the hypotheses of the theorem hold for many
values of k simultaneously, and the sequence (A,) converges to a corre-
sponding block triangular form. In the ideal case, in which the hypotheses
are satisfied for all k, the limiting form is upper triangular.

In practice the p, are polynomials of some low degree m <« n. When the
GR algorithm functions as intended (and this is usually the case), the
limiting polynomial p has eigenvalues of A as jts roots. Thus, if we take

k=n—m, then p=0, and the iterates will effectively converge after just a
few steps to the block triangular form

A, A,
0 Ayl
with A,, € C™ ™, Since m is small, it is a simple matter to compute the
eigenvalues of A,,. The rest of the eigenvalues of A are eigenvalues of A},
so subsequent GR steps can be applied to the reduced matrix A,,. Since the
hypotheses of Theorem 6.2 are typically satisfied not just for k = n — m, but

also for many values of k < n — m, Ay will almost certainly already have
made some progress toward convergence. Thus the remaining eigenvalues
will be easier to extract.

We noted earlier that the GR algorithm is generally applied to upper
Hessenberg matrices. An upper Hessenberg matrix is called irreducible if all
of its subdiagonal entries are nonzero. Given an upper Hessenberg matrix
that is not irreducible, we can reduce its eigenvalue problem to two or more
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subproblems involving irreducible matrices, so we can restrict our attention,
without loss of generality, to irreducible upper Hessenberg matrices. For this
class of matrices the subspace condition (e,,...,e; )N % ={0} is automati-
cally satisfied [19]. Indeed, suppose x €(e,,...,e;) is nonzero. Its last
nonzero component is x,, where r <k. Since A, has irreducible upper
Hessenberg form, the last nonzero component of A jx is its (r + 1)st, the last
nonzero component of A%x is its (r +2nd, and so on. It follows that
x,Aox, Adx,...,A%x are linearly independent, where m = n — k. Therefore
the smallest invariant subspace of A, that contains x has dimension at least
m +1. Since % is invariant under A, and has dimension m, x € 2. Thus
(el,....,ep YN % ={0).

Theorem 6.2 shows that there are two questions whose answers deter-
mine whether or not the GR algorithm converges: (1) Can we choose p, so
that the subspaces converge? (2) Can the condition numbers k,(G,) be kept
under control? Unfortunately, we cannot answer either of these questions
definitively, except in special cases. We will discuss the second question first.
In the case of the QR algorithm the conditioning of the transforming
matrices is not a problem; the G, are unitary, so they satisfy k,(G,) = 1. Thus
one can concentrate on question (1). In all other cases steps must be taken to
control the condition numbers.

In the LR algorithm with partial pivoting, the interchanges are a heuris-
tic attempt to control k,(G,). Each G, has the form P,L,P,L,P,L," "
Pin—1yLin-1) Where the P; are permutations, and the L; are Gauss transfor-
mations whose multipliers have modulus no greater than 1. The P, all have
condition number 1, and each L, is reasonably well conditioned: x,(L;) <
nk(L;) < 4n. Unfortunately this does not guarantee that the product of
many such transformations will be well conditioned. In practice the condition
number usually does remain at a reasonable level, and the algorithm (usu-
ally) works quite well.

An exception to this last statement is given by matrices of the form

_r_|a b
Ay =C [b 0J

where |a| <|b|; cf. [26, p. 511]. A single step with shift zero, i.e. p(A,_)=
A;_), yields A, = A,_,; the algorithm is stationary. This is not due to failure
of the underlying subspaces to converge; they usually do converge. For
example, if a and b are real and a # 0, C has real eigenvalues of distinct
modulus, so the subspace iterations converge. The failure can be attributed
to growth of the condition numbers of the transforming matrices. An easy
calculation shows that the transforming matrix G, is just b~'C. If the step is
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repeated many times, we have G, = b™'C", so k,(C,) = k,(C") = k,(C)'. The
last equation holds because C is symmetric. Thus x5(G,) = . The rate of
growth of the condition number is just enough to offset the convergence of
the underlying subspace iterations.

In this example, the symmetry of the matrix C is not essential. Every
matrix of the form

[,‘j g] where |a| < min{|bl,lcl},

exhibits similar behavior: each step reverses the positions of the entries b

and c. These examples have analogues in higher dimensions. For example,
the matrix

a b ¢
d 0 0
0 e 0O

exhibits cycling of the entries ¢, d, and e, provided that a and b are
sufficiently small relative to c, d, and e. Matrices of this type do occasionally
Crop up in practice, and any practical implementation of the LR algorithm
with partial pivoting must have a mechanism for dealing with them.

For the other algorithms, which do not use any pivoting, the following
type of strategy, called an exceptional shift strategy, is often employed. Each
p; is chosen with an eye to making the subspaces converge. As the ith step is
taken, the condition number of G, is monitored somehow. For example, the
size of certain multipliers can be checked. If G, is found to be too ill
conditioned, the step is restarted with a different choice of p,. This is called
an exceptional step. The hope is that if the G, are controlled, the (3,. will not
get too bad. Of course this is only a heuristic strategy, but it has been used
with some success [9, 13). The typical experience is that the exceptional steps

are needed only in the early stages. Once the algorithm begins to converge,
exceptional shifts are unnecessary:.

It is of historical interest to mention
algorithm) for which the condition numbers
be guaranteed to remain bounded. Consider the stationary case (p, = p) of
the LR algorithm without pivoting. Suppose p(A,) has eigenvalues of
distinct modulus. Then if A, satisfies two other mild i
can be slnown that the sequence (G,), which we denote (L) in this case, has
a limit L. Thus the condition numbers K

o(L,) are certainly bounded. Since
the condition that the eigenvalues have distinct modulus (together with

certain mild technical conditions) also guarantees that the subspaces con-

one case (other than the QR
of the transforming matrices can
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verge for k =1,...,n —1, the sequence (A;) of LR iterates must converge to
an upper triangular matrix. Rutishauser’s original proof [for the case p(A) =
A] of the convergence of the LR algorithm [22] followed roughly these lines,
although he used very different terminology. He showed that the L, have a
limit, then used that to conclude that the A, converge. Instead of using
arguments involving subspaces, he used determinants. (The mild technical
conditions that we have mentioned are subspace conditions like . N % ={0}.
Rutishauser formulated them as conditions on determinants.)

Choice of Shifts

We now address the question of how to choose the p,. There are many
possible strategies. We will focus on the obvious strategy, one that usually
works well in practice. After i —1 steps, we choose p, to be the characteristic
polynomial of A%, Y, the trailing m X m submatrix of A,_,. We will call this
the generalized Rayleigh-quotient shift strategy, because in the case m =1 it
is just the Rayleigh-quotient shift. If [[A47Vlly is sufficiently small, the
eigenvalues of AS; ! will be good approximations to eigenvalues of A;_,, so
we expect this strategy to have good local convergence properties. Experi-
ence has shown that the global convergence is usually satisfactory as well,
although no global convergence theorem is possible. There is a famous
example [27, p. 362] for which the QR algorithm with the generalized
Rayleigh-quotient strategy fails to converge, regardless of the choice of m,
excluding the ridiculous choice m=n. We also mention once again the
chaotic behavior demonstrated by Batterson and Smillie [2] in the case
m=1. As for the local convergence, it is typically quadratic, as the following
theorem shows.

Tueorem 6.3. Let A, € C**" have distinct eigenvalues. Let (A,) be the
sequence generated by the GR algorithm starting from A, using the general-
ized Rayleigh-quotient shift strategy with polynomials of degree m. Suppose
there is a k such that k,(G,) <R for all i, and the A, converge to block
triangular form, in the sense described in Theorem 6.2, with k = n — m. Then
the convergence is quadratic.

Proof. Let {{A,,...,A;}.{A; ..., A,}} be any partition of the spectrum
of A, into two subsets containing k and m elements, respectively, and let &
and % be the invariant subspaces of A, associated with A,,...,A; and
Ait1reosA,, respectively. Let Ay ={e,,...,e;) and A =p,(A)F_y, i=
1,2,3,..., as in Theorem 6.2. We will show that there is a constant M, which
depends only on A, such that for all sufficiently small € > 0, if d(./}, 7 ) =¢,
then d(.7, |, .97) < Me®. This suffices to establish quadratic convergence.
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Let d(.#, ) = €. Applying Lemma 6.1 as in the proof of Theorem 6.2, we
see that

IAQN: < 2V2 Rl Aplled( A, T ) = Mye,

where M, =2y2R[|A,ll;. The matrix A, is simple, so it has the form
Ay=VDV™', where D= diag{A,,...,A ). Thus A;=V,DV ! where V,=

1
A

G;'V. The block triangular matrix

0 AQ

is a perturbation of A, that differs from it by at most M 1€, so by the
Bauer-Fike theorem [17], its eigenvalues differ from eigenvalues of A; by not
more than (V)M e < M,e, where M, = RKko(V)M,. The polynomial p,,,
to be used for the (i +1)st GR step is

Pisi(A) = lljll (/\ = O'J(HI)),

where a{'*, .. o0*D are the eigenvalues of A%). Since these are eigenval-
ues of (21), they are within Mye of m eigenvalues of A,, say

lAk+,—o,(’+l)|<M2e, I=1,....m.

(By taking € sufficiently small we can guarantee that no two of the o are

within M,e of the same eigenvalue of A - If we make sure that M,e <1,
then for j=k +1,... n,

m
()= T, = o < My

where M, = 2llA,llz + )™ 'M,. Let y=d({A,... AL {0, ,....A D> 0.
As long as Mye <y /2, we have. for J=1,...k, |p|.+l(Aj)| > (y/2)". Thus

(T8 P il)

,min1pii(2)))

<Me, (22)

where M= M3(2/y)’"._
let 7 = V_EL/:,?= V-l = Sel, ..,€), and ¥ =V '@ =
(€xip-ov€,). Then 7, = p,, (D)., Define T,€C** and T,eC™" "



CONVERGENCE OF EIGENVALUE ALGORITHMS 43

by T, = diag{A,,..., A} and T, = diag{A; ..., A,), so that D =diag(T,,T,}.
Then P+ (T))is nonsmgular by (22). By Lemma 42, d(F, T ) < k(V)e, so
we can make d(.7, 7 ) <V3 /2 by taking ¢ sufficiently small. This implies
# N % ={0} by Lemma 4.3. Thus we can apply Lemma 4.4 to obtain the
inequality

d(ﬁ/ﬂiﬂ )<

B
)< \/T:B—?" Pt T) |l

where B=d(.7 (7”-)<K2(V)€ Since B<V3 /2, we have y1-B%>
Furthermore ||p,+1(T) = (min, ;i lp oAD" and lp; (T, )llz—
Max,, | ¢ j<nlPi+1(A,)]. Applying these results to (23), and using (22) and
Lemma 4.2, we conclude that

Pi+1(T1)Al||.2’ (23)

d( A, T)<2kHVIM, e = = Me?,

where M = 2x2(V)’M,. o

For certain classes of matrices possessing special structure, the general-
ized Rayleigh-quotient strategy yields cubic convergence. In order to prove
this we will need the following lemma, a variation on the Bauer-Fike
theorem.

Lemma 6.4. Let A=diag{A,, A,})€C"™" be a block diagonal matrix
whose blocks are simple: C'A,C, = D, = diag{u,,...,pt,} and C;'A,C, =

D, =diag{p; . (..., u,} Let
0 E_.
E=[ ”}
E,, 0

where E, € C" "0k If A is an eigentalue of A+ E, then

min I#J"‘/\' min ll-lj—M~<~Kz(cl)"z(cz)”l':lz"2”Ezalli- (24)

<<k k+1<jgn

Proof. Let x be an e:genvector of A + E associated with the eigenvalue
A. Let C = diag(C,,C,} and z =C'x. Then C™'(A + E)Cz = Az; that is,

21 2y
= A ,

D, Ci'EpGC,
C; 'ExC, D,
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where we have partitioned z in the obvious way. This equation implies

(AI— Dl)zl =CI_1E12C232

and
(A= Dy)z,=C;'Eg\Cyz,.
If either Al — D,y or AI — D, is singular, (24) is trivially true. Otherwise
7 =(Al- Dl)_lcl— 'E oCy(AI - D2)_1C2—1E21C131-
Taking norms of both sides and dividing by [|z,|l;, we obtain
1< (L= D) AT = D) e CORu ColErgls IEnls

from which (24) follows. .
Tueorem 6.5.  Under the hypotheses of Theorem 6.3, suppose that each
of the iterates
L {Aa*z A(:g}
lag sy
satisfies |AQl = |AQ |l for some fixed norm ||-|l. Then the iterates converge
cubically if they converge.

Proof. The proof is the same as that of Theorem 6.3, except that in this
case the shifts, which are eigenvalues of

(i
[A“ 0 , (25)

0 AY)

can be shown to differ from eigenvalues of A, by only O(e?). First of all, by
the Bauer-Fike theorem we can show, just as in the proof of Theorem 6.3,
that there is a constant M,, independent of i, such that the eigenvalues of
(25) differ from those of A, by not more than Mge. By taking e sufficiently
small we can guarantee that no two eigenvalues of (25) are within M, e of the
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same eigenvalue of A,. Let u,,...,p; and p;,,,..., 1, denote the eigenval-
ues of AY) and AY) respectively, and let A,..., A, denote the eigenvalues of
A, ordered so that |A, —pl|<Me for j=1,..., n. Letting y =
d({A,, ..., AL {4 1-., AD), assume that € is small enough that |A; — u,| >
y/2forh=1,....,k and j=k +1,...,n. Applying Lemma 6.4 with A given
by(25), A+ E=A,and A=A, k+1<j<m, we find that

2
|#j - Aj| = \ +{F22s”|#h - ’\jl < ;Kz(cl)"z(cz)”Ag“b HA 2,
for j=k+1,...,n, where C=diag{C,,C,} is a matrix that diagonalizes
diag{ A}, A%)}. Certainly such a C exists, provided € is sufficiently small.
From Theorems 3 and 5 of [23] it follows that k,(C,)«x;(C,) can be bounded
above independently of i, provided e is sufficiently small (i.e. i is sufficiently
large). Since the norms ||A9}ll; and 1|A§)]l2 are both of order e, there must
be a constant Mg such that

|uj~Aj|<M552, j=k+1,...,n.

i+1) (i +1)

Since ., ,,...,p, are exactly the shifts of'*",... 0", we can now
proceed as in the proof of Theorem 6.3 to obtain
, max pii(d))]
T
min |p,_(A;
1<j<k Pimil4
in analogy with (22), and ultimately d(.7,, ,, .7 ) € Me>. n

Remark. It is clear from the proof that we have not used the full
strength of the assumption JAGl =llA}3[l All that is really needed is that
NAT < M-[JADI! for some M- independent of i.

Exavpie 66. If we apply the QR algorithm to a normal matrix A,,
then all A, will be normal. Hence they will satisfy A1y = |AG}ll . Thus
the QR algorithm with the generalized Rayleigh-quotient shift strategy
applied to normal matrices converges cubically when it converges.

ExavrLe 6.7. A matrix A € R2"*2" is called Hamiltonian if it satisfies
(JAY = JA, where J is as defined in Example 2.4. The SR algorithm
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preserves Hamiltonian matrices. It is this property that makes the SR
algorithm useful. The algebraic Riccati equation is a disguised eigenvalue
problem whose matrix is Hamiltonian. One can preserve this important
property by using the SR algorithm [9, 10]. Hamiltonian matrices satisfy
HADI F = IAD]|F, provided m is even. This is not a serious restriction; the
eigenvalues of Hamiltonian matrices always occur in pairs, so m should
always be taken to be even. Thus the convergence rate of the Hamiltonian
SR algorithm is typically cubic.

ExampLE 6.8. Let _# be the subgroup of GL (C) whose members are
the diagonal matrices whose main diagonal entries lie in {1, —1}. Given
J€ £, a matrix A€C"*" is said to be J-Hermitian [ J-skew-Hermitian] if
(JA)* = JA [(JA)*= — JA] Let J,,J, € £ have the same inertia. A matrix
HeC"™" is called (],, J,)-unitary if H¥*] H=],. If A is ] -Hermitian
[],-skew-Hermitian] and H is (J,, J,)-unitary, then H 'AH is J,-Hermitian
[J,-skew-Hermitian]. The HR algorithm produces a sequence (A,) by A, =
H7'A;_,H,, where H, is (J,_,, J)-unitary, for some (J,). We cannot control
the J;, except that we get to choose J,. The accumulated transforming matrix
H;=H,--- H; is (J,, ])-unitary. If A, is J,-Hermitian [ J,-skew-Hermitian],
then A; is J-Hermitian [],-skew-Hermitian]. Matrices with any of these
symmetries satisfy |[AQIl = |AS)|I 7.

ExampLe 6.9. Complex symmetric and skew-symmetric matrices are
preserved by the complex, orthogonal QR algorithm of Cullum and

Wi(ll)oughby [12]. Matrices of either of these forms obviously satisfy |AQMF =
A 5.
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