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ABSTRACT
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of iteration operators) slows down the convergence. One interpretation (?rmt tf::t'
results given in that paper was that increasing the number of pr(mffss?? m:”::, m o
when the current global approximation is updated by a local approxima mnh” varlier
of the processors, that local approximation was computed from a m.UCt . r/ate» (’)f
global approximation received from the host node. Hence the slowdown in '
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: Chfvin
convergence. The principal purpose of this paper is to remove (slome of th(tehs;;nrgifly; ogf
' i -mentioned paper and to prove :

assumptions that were made in the above-men 2 o
the results there hold under much more general conditions. Our present asm;}r:lep ions
do not yield a fixed iteration matrix which models the process as wfj- fhe cose
previously. This means that different tools have to be developed to establis
comparing the rate of convergence of two asynchronized processes.

1. INTRODUCTION

In a recent paper [3] B. Vemmer and the authors investigated theot;ffﬁi:
of varying the number of processors on the rate of converger:ice; of e
asynchronized parallel block Jacobi method. It was found that, un el e
simplifying assumptions, increasing the number of processors in rela on
the number of blocks (or, what comes to the same in more general se .utlgr:
the number of iteration operators) slows down the convergence. One in ]fer
pretation for these results given in that paper was that incr_easu-lg t}}e nu:f;ted
of processors means that when the current global approximation is up o
by a local approximation from one of the processors, tha&t local a‘pp:lO;ﬂm e
was computed from a “much” earlier global approximation receive rom | l
host node. Hence the slowdown in the rate of convergence. The Pnnc:l[])zt
purpose of this paper is to remove some of the simplifying assumptions -
were made in [3] and to prove that many of the results hold under m
more general conditions.

The asynchronized model which we have in mind is as follows: Let
A=MI"_NI, l=1,...,m,

. - -1 50,
be regular splittings of the n X n monotone matrix A, thf}t is, M t/'ces
N>20,and A7 > 0, let E,l=1,...,m be nonnegative diagonal ma n.n
whose sum is the identity; let { j¥°_, denote a sequence of integers satisfying

. L ; he
L<ji<mlet{r)_ bea sequence of positive integers; and consider t
problem of solving the linear system

Ax = b,

Then the asynchronized model is given by

x(i+r') = (I _ Eji)x(i+r'—l) + Ejiijl(Ni‘x(i) + b)’ i= 1,2 e (1'1)
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A possible realization of the model can be achieved with a parallel
machine with k processors and a host node in the following way: At time i a
processor, call it for now the subject processor, which has just completed a
previous task is assigned the task which is defined by the number j, (i.e.,
defined by E;, M,, and N,). This processor then locally calculates u =
E; M '(N, x + b). The number r, — 1 > O then represents the number of
similar tasks completed by other processors after time i and before the
subject processor completes the computation of #. When the local computa-
tion is complete, the sum x@*7) = (I — Eji)x(Hr‘“” + u is formed by the
host node, and the subject processor is assigned task i + r,, We comment
that it is possible to interpret (1.1) as saying that at time i + r; the host node
is updated by a local approximation which was computed from a global
approximation of r; units of time ago.

The principal assumption that was made in [3] was that among all
splittings, the amount of work per splitting is equal, so that it makes sense to
suppose that the sequence {},J7. , is cyclic and, furthermore, that the number
of processors updating the host processor before any given processor is ready
with its local update is a constant equal to the number of processors less one.
In this case our model takes on the following form:

RN ST (1- Eji)x(uk—l) n Ej;Mj_,-l(AGix(i) + b), i=12.... (12)

Using an idea of Mathias Pott, it was shown in [3] that if the weighting
matl’ices El, l = l, o.M, SaﬁSfy ElEl' = al,l'Ef’ then With

m
B= Y EMN,
I=1

and with ¢ = ¥I" | E,M[ 'b, the iteration (1.1) is equivalent to

x0 = (I -E)x0"V + E(B:“"" +¢c). (1.3)

This iteration is simpler to analyze because it involves working with just one
operator. Let

e =y — A1 i=0,1,...,
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where x' is given in (1.1). It follows from {2] that lim, , _ ¢® = 0. We
define the rate of convergence of (1.3) as

Z({j}. {r}) = sup limsuplle®)'/’, (1.4)

1@DeRpr i=x

where || - || is any vector norm on R".

The specific result which was proved in [3] is as follows: Suppose that B is
partitioned into the m X m block matrix

Bl] B12 B,, ‘
B B B.

B = .21 .22 - ‘2m (1-5)
Bml Bm2 e Bmm}

and the E’s are chosen such that

0 )

I
!
Poney

ar

. l=1,...,m, (16)

0)

where n; is the dimension of the Ith diagonal block of B. Then on taking the
sequence {jif7_, to be cyclic [viz., j, = i(mod m) + 1 V > 1], the sequence

s, with s, =k Vi > 1, and the sequence {r,}"_ | with r, =k’ Vi > 1 and
with k' > k, we have that

2L () <2({5}. (). (1.7)
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An equivalent formulation of our question is as follows: Suppose we have two
asynchronized parallel iteration processes such that one of the processes
always uses results of local iterations which were based on more recent global
approximations to update the current global approximation; then does it
follow that this process has a better rate of convergence than the process
which always uses updates based on local computations which always use
older global approximations? We shall call the iteration process associated
with the s,’s the more frequent updating process and we shall call the process
associated with the r,’s the more infrequent updating process.

To consider our question it is useful to embed the asynchronized process
(1.3), which takes place in the n-dimensional space, in the nT-dimensional
space as follows: For the positive integers T and m given above and for
integers l <t < Tand 1 <s<m, consider the T X T block matrix whose

blocks are specified by
[-E, when k=11=1,

(A(”) _ JE,B when k=11=t, (1.9)
s Jk.l [ when k=I1+11=1,....T -1,
0 otherwise.

Displayed, A" has the form

t blocks

I-E 0 0 EB O 0)
I 0 0 O
0 I :
. 0

Al) = .
Ry O O

0 0 0 I
. ‘ 0
0 ) . . 0 I 0,

It is readily seen that A! is the map from R"T to R"" given by

X, (I - E,)x; + E,Bx,

x

-2 4 x.l H (1'10)
Xy X1

where x, € R", i = 1,...,T.
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Using the operators on R"” introduced above, the asynchronized iterative
process given in (1.3) can be described as a sequential iteration process in the
nT-dimensional space as follows:

2@ = Az 0-D, (1.11)

where z () = [(e®) _ (gti-T+x I', in which a plain superscript ¢ refers to
the transpose.

Straight away let us give an example showing that without some restric-
tion, the desired result on the better rate of convergence of the sequence
which updates more frequently is not true generally: Let n=1, T =3,
Ey=I=(1),j;=1V¥i>1 andlet B =(p), p < 1. Next let

and

r =1, ry =3, ry =2, r, =3, and ry =2

F()r i > 6 let s, = Si(modS) and r,= ri(m()d 5)- F()l' wO =S RS set
~0) 0 A(s) L. Als)) i
~ Aj. Ajn Wy, Viz1,
and
y(r‘) = A,(f.ri) A;_:‘:)wo, Yix> 1.

Then it can be ascertained that

0 p*> 0
:(5’() — O p2 0 w“ Vk > 1
0 p%2 0
and
k
p* 0
y ' =1p2 0 0 w,. Vk > 1.

(24



ASYNCHRONIZED ITERATIVE METHODS 23

Thus
(). (s)) = 2% > p** =2({ji}. {r}).

In Section 2 we develop our main results. We introduce subcones of R
the' nT-dimensional nonnegative orthant, with several features. One of tﬁé
main characteristics of these cones is that their T subvectors of dimension n
.form a nondecreasing sequence of vectors as the index of the subvector
increases. We use these cones to show the main result of this paper
(Theorem 1). An example of the implications of this theorem is that if, in
addition to (1.8), ’

s, <5+ 1, Vizl (1.12)

then (1.7) always holds. What the result means is this: When s, ., >, * 1
for some i, > 1, then the more frequent updating process uses an older
global approximation to compute the (i, + Dith iteration then the approxima-
tion it has used to compute the immediately preceeding i,th iterate. There-
fore condition (1.12) says that when the more frequent updating process does
not “suddenly” use an older approximation in computing some iterate than it
has used in computing the previous one, the rate of convergence of the more
frequent updating process is at least as good as the rate of convergence of the
more infrequent updating process. In subsequent results we associate with
bOth the more frequent and infrequent iteration processes auxiliary processes
which, regardless of the condition (1.12), are always such that the auxiliary
process associated with the more frequent updates has a rate of convergence
at least as favorable as the auxiliary process associated with the more
infrequent updates. We conclude the paper with some upper bounds on the
rate of convergence of (1.13).

For more background material on nonnegati
methods with nonnegative iteration matrices see
and Varga [4].

ve matrices and on iterative
Berman and Plemmons [1]

2. MAIN RESULTS

of the iterative scheme (1.11) we

T define

' To study the rate of convergence
introduce subcones of R"T as follows: For each k =1.....

T = {[(x,)‘ (xT)']tER'lT:xl < -+ <xpand Bxkéxl}-
(2.1)

We begin by considering some basic properties of the Fi's.
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LEMMA 1.

O -V !
() ANZO ca" "Vl <t<T~1and ¥1 <5 < m.

Proof.  The proof of (i) is an easy consequence of the definition of the
cones 3t = 1,... . T. To prove (i) let x = [(x))' ... ()]} €7, Put
y = Ay and partition y in conformity with x. Then, using (1.10), we have
that

y1=(1-E)x, +EBx, < (I-E)x +Ex T TYSYy;s ot S Yy
and
By, = Bx, < (I —E)x + EBx, =y,

Hence y € 7'+ 1, -

With Lemma 1 in hand we can now make the following observation
concerning the iteration in (1.11):

LEMMA 2. Let {jJ_| be a sequence such that
1 <j, <m, i=1,2,...,

and let (). | be a sequence such that

1<t <T, i=1.2

3w e

and

tast+1, i=12. . (2.2)

Then, beginning with a vector 2( =
generated by

x € 1", the sequence of iterates
() A;:i)z(i-l), i=1.2. .

has the following properties:

2D e, i-1g (2.3)
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and

S0 gD =12, (2.4)

Proof. The proof is by induction, the case i =1 following immediately
from the assumption that =z € #7"". Suppose then that the result holds for
k =i — 1, and we shall prove the result is true for k = i. Assume therefore
that 20~ € #"). Then, by Lemma 1 (i), =z = Agf"z“_” e 7D, so
that, because of (22) and by Lemma 1 (i), " e i), Thus we have
proved (2.3). To show (2.4) note first that from the fact that 20 = Af,f")z(‘_ n
we have that (z'"), = (I — EXz“"") + E, B(z'""), < (z1), =
(z'"Y),. Next, for j=2,....T, the inequalities (=), < (z¢71), follow
from (1.10) and because z ™" € #"). L

In Section 1 we gave an example of two asynchronized processes, one
always with more frequent updates than the other, such that the process with
more infrequent updates has faster convergence. We therefore raise the
question: Under what additional conditions on the time lags in the process
with the more frequent updates are we guaranteed a better rate of conver-
gence than that of the process with more infrequent updates? Our main
result leading to subsequent conclusions in this direction is the following:

THEOREM 1. Let {jJ_, be a sequence such that 1 <j; <m, and let
(s )., (..., and {r)"., be sequences such that
1<s, <T, i=12,..., (2.5)

<t

S

and such that the elements of the sequence {t -, satisfy (2.2). For any
2@ € 2@ <y O, with 2 € K" define the iterative sequences

2 = Agf")x("“”, ) = Ay.-)z(i—l), and y(i) = Ag_:r,.)y(f—l), i=1,2....
Then

D <zW gy,  i=12.... (2.6)

Proof. Note first that as 2@ e Z4™, it is also in Z5. Thus, according

to Lemma 2, (2.3) and (2.4) hold for the sequence {z%;_,. We prove (2.6)
by induction, the case i = 1 being trivially true from the fact that s, <, <1

and (1.10). Assume that

LD ¢ MIERV)
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To show that x® < 2" it suffices to show that (x™), < (z™),. But, using

the inductive hypothesis and the facts that s, < t, and z"' " € F1, we have
on close inspection that

(zu))l _ (x(i))l - (] - E,,)[( :n—n)l _ (x“”),]

+ EIIB[(Z{I« ll):. . (x(i- l))q']

= (I - Ej,) [(5“_”)1 - (" “)I]
z 0 by induction

+E, B [( 2y — (gl ”),‘]

> O because /' D EJY;'"

+EjiB[(:(i—l))&| - (x(t-—l))&'] >0

2 0 by induction

The proof that 2 < y for all i > 1 follows similarly, .

A natural question to ask at this point is: Under which conditions on the
sequences {s,J7_, and {rJ_, with 5, < r. i=1,2..., does there exist a

sequence (tY_, satisfying (2.5) and (2.2)? We can prove the following
characterization:

THEOREM 2. Let {sJ_, and {rJ_, be two given sequences of real

numbers. Then the following are equivalent :

(i) There exists a sequence T3 | satisfying s. < th<riandt,, <t +1
Vix 1.

() Fori>1andfor 0 <k < i, one has s, < r,_, + k.

In this case, the sequence {(7.)_ | defined either by

T = min (ri—k + k) (27)
O<kgi—1
or, recursively, by
T, =r and Tior =min{r 7, + 1) (2.8)
i>1
satisfies the same requirements that the sequence {t.f_, satisfies in (i),

namely, s, < 7, <r,, Tiv1 < 7, + 1, and it also satisfies t, < 7, Vi > 1.
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Proof. If the conditions of (i) hold, then for any i3> 1 and for any
O<k<i—1 we have s, <t <t_, +1< = <t thk<r_+k
and so (ii) holds.

Suppose now that (i) holds, and define the sequence {u.J_, as in 2.7,
viz, u, = ming o, (ri ¢ + k), i>1 Thens, <u, <r, Viz ] and, as
u,_,=r_, ., +s forsome0 <s<i— 2 one has

t—§

u_,+12 min {r_, +k}=u.
O<kgi-1

Thus the sequence {u J_, satisfies all the requirements of (i).

Let {tJ., satisfy s, <t, <rjand t,., <t +1 for all i > 1. Then, as
above, t, < r,_, + k for 1 <k <i, and hence t;, < u,. To show that u, = 7;,
where 7, is given by (2.8), we see at once that this sequence satisfies (2.2).
Hence 7, < u,. To show that u, < 7, we proceed by induction. From u; < 7;
we have u,,, <u,+ 1 <1 +1 and, as u,,, < r;,,, we get that u,,, <
T+ Hence u, = 7, foralli > 1. n

REMARK. The preceding result can be interpreted in the following way.
The sequence {7,J7_, is the maximal sequence satisfying (2.2) not exceeding
the sequence {r,J;_,. One can also give the minimal sequence above {sJ-1
satisfying (2.2), namely,

v

v,.=sup{s,.+j-j} Vizl,

j>0

which is well defined. The condition r; > v;, i = 1, i the same as that in

Theorem 2 (i) and can be phrased in the more symmetric manner

izj = si—rjéi—j. (2.9)

We shall now assume that the sequence {j;};-, is, in the languag? of Bru,

Elsner, and Neumann [2], a regulated sequence on m integers. This means

that each of the integers I, ..., m appears at least once every § consecutive
elements, viz.,

{l,2,...,m} i{ji""’ji+s—l} Viz 1.
For the iteration process (1.3) with B given in (1.5), the condition means that

in the computation of the iterates, each one of the block rows of the bI?ck
Jacobi iteration matrix B of (1.5) is used at least once every S consecutive
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iterations. We comment that for this reason S was called in [2] the computa-
tion cycle of the asynchronized process. Under the condition of regularity it
will be shown in Section 3 that for any vector 2 & R"T and any sequence
{t¥_, with 1 <t < T, the sequence of vectors given by

L) — L S - (2.10)
satisfies

lim 2z = 0.

[—x

Let us introduce the rate of convergence of this iterative sequence as

follows: Given a vector norm Il on R", the rate of convergence of (2.10) is
given by

l%."({j,], {t,.}) = sup lim sup]lz(")lll/i. (2.11)

Z(O)GR"T i—>w

The rate of convergence of the asynchronized iteration (1.3) given in (1.4)

and the rate of convergence of the iteration (2.10) given in (2.11) can be
analyzed to show that

(). {t}) =2({5). (). (2.12)

To conclude that under the conditions of Theorem 1 the rate of conver-
gence of the more frequent updating process is at least as favorable as that of
the more infrequent updating process, we can assume, without loss of
generality, that our nonnegative matrix B (with B:= p(B) < 1) is irre-
ducible. Otherwise consider B = B + €], where | is the n X n matrix of all

I's, and let € { 0. Let x be a positive Perron vector of B, and construct the
positive nT-vector

T=[Bx" 2t o ] (2.13)
‘W‘—'——/
T ~ 1 times
Then ¥ induces the monotonic vector norm || ||; given by

||:l|f=inf{a>0| —afg:.gai}, s e R"T,
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In particular it follows that for any vector z € R™,
|zl < llzllz %,

where |z| denotes the nonnegative nT-vector whose entries are the absolute
values of the corresponding entries of z. Observe that f €73 V1 <t < T.

Now let o' = A(.f") A(‘:‘)fc' Vi > 1. Then it can be readily ascertained
that for #({j }, {¢,}) given in (2.11),

A({j), (1)) = lim sup |0V, (2.14)

i—» 00

As a consequence of Theorem 1 we obtain:

THEOREM 3. Let {jJ., be a regulated sequence on m integers, and let
{sJ_, and {r)., be two sequences satisfying (2.9). Then

‘Q?({]z}, {Si}) g'gs;({ji}’ {ri})'

The results of [3] which we described in the introduction are a special
case of Theorem 3 which we state here as follows:

CoroLLary 1 (Elsner, Neumann, and Vemmer [3, Theorem 1). Let
{j.Y_ | be the sequence defined by j; = itmodm) + 1Vi > 1, and let {s}_,

and {r);_, be sequences such that

k=s <r,=k' Viz 1.

Then
‘95({]:}’ {Si]) 4'9?({].} , {ri})‘

Prior to Theorem 1 we explained that without the main condition—(2.2)
—on which it relies, the inference that the asynchronized process which
updates more frequently has at least as favorable a rate of convergence as the
asynchronized process which updates less frequently is generally untrue.
Therefore it is of interest, if only a theoretical one, to note that from both
processes auxiliary iteration schemes can be derived such that regardless of

whether (2.2) holds, the auxiliary iteration schemes derived from the more

frequent updating process have at least as favorable convergence rates as the

auxiliary iteration schemes derived from the more infrequent updating pro-
cess. Here we shall give examples of two different auxiliary iterations.
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DEFINITION 1. Let {j )., be a regulated sequence on m integers, and
let {¢J7., be sequences such that 1 <t, £ T Vi > 1. Define the sequence

{t/%-, by
t;=t, and ¢/ =min(t, t/_, +1), i=2273. ...

Let 2@ e 7" The first auxiliary rate of convergence of the iterative
scheme 2 = AMz("D at 29 is given by

({7}, (£}, =) = lim supll g ©I"*,

P x

where ¢{® = 2@ gnd

{(i) = Ag:i')gti—l), i=1,2....

The following is an immediate corollary to Theorem 2:

COROLLARY 2. Let {j}7_| be a regulated sequence on m integers, and let

(s)i-1 and {r);_, be sequences such that 1 < s, <r, < T. Then for any
) ry)
2O ezl

({7 (). 2%) <R} (), 2®).

Proof. From the sequences {s)7., and {r);_, obtain the sequences
{s;¥., and {r/}"_, in exactly the same manner in which the sequence {t¥-

was obtained from the sequence {t}.| in Definition 1. The result now
follows by Theorem 1. o

REMARK. Observe that the auxiliary rate of convergence as defined
above is local in the sense that it is defined at a vector in the appropriate
cone. The relations between the true rates of convergence of the chaotic
schemes determined by the sequences of time lags {s,)7_, and {r)"_, and the

local rates given in the above corollary are that ﬁ({ jhis), 2 < j&{ i} {s.)

and Fj) (), 2) < (), 1s,), ”

There is a second possibility for defining the auxiliary rate of convergence.
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DeFINITION 2. Let {j .| and { J7_ | be sequences such that 1 <£ji<m
and 1 <5, < T, i=12... Forn® =z €7 define the sequence

ABT,).,,(:- } if <t +1,

h — . 2.15
L P T R SRR

The second auxiliary rate of convergence of the iterative scheme z =
£ - .
A e 20 g given by

;?([J:} , {ti} . ;(0)) = lim sup Hn“’ll”".

f—x

Using Lemma 2 one can ascertain upon inspection that for the second
auxiliary rate of convergence one has the following comparison result:

COROLLARY 3. Let {j,Y'_, be a regulated sequence on m integers, and let
{52, and {r)J | be sequences such that 1 <s, <r, < T Vi > 1. Then for
any Z(O} e%rt)’

‘é({.]:} ) {Si} > Z(O)) gﬂ({ji}, {r‘} ’ :’(0))'

This last corollary has the following implication: For any 1 <t < T and
I <5 < m consider in conjunction with our usual operator A" the operator

B(t) A(ST—])Ag;T—Q) o A(;* b lf t < T - 1’
’ I otherwise.

Then we have the following outcome:

COROLLARY 4. Let {j ]}, be a sequence such that 1 <j, <m Vi> 1,
and let {s,)°_| and {r)_, be sequences such that 1 <s; <r, <T Vi> 1

Then

im sup | B243) =+ (B5745)|

{— @

< tim sup (B ) - (B4

i => 00
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where

mi= Y (T-s) andn,= ¥ (T-r), i=12. ..
k=1 k=1

3. AN UPPER BOUND ON THE RATE OF CONVERGENCE

In this section we develop an upper bound for the rate of convergence of
the iteration (1.3). The proof of this upper bound is an adaptation of the
convergence proof given in [2, Theorem 2.2]. We remark that the assump-

tions and the results in that paper and those given here are not quite
comparable,

THEOREM 4. Consider the iteration (1.3), where {j.}_, is a regulated
sequence on m integers with computation cycle S and

l<r<T, i=12.. . (3.1)
Then
1
A} Ar)) <B™571, (3.2)

where B = p(B) < 1.

Proof. Without loss of generality we can assume that B is irreducible

and hence has a positive eigenvector x corresponding to B. Consider the
vector ¥ given in (2.13), and define the vectors w, by

w, =% and wyxAg”)w,hl, v=12....
We claim that
Wris_ | < Bx. (3.3)

To see this, partition the w,’s in conformity with the vector 7. Thus w, =
[(o,)i ... (@,)}]. We now prove by induction that

(0,),<Bx,s=1,....v+1, and (0,), <x, s<T, v>0. (3.4)
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This is obvious for ¥ = 0. Let v > 0 and let (3.4) be satisfied for all indices
less than ». Then

(w,), = (I - Ej,,)(wvﬂl)l + Ej,B(“’wl)r,

< (I —E;)Bx+ EBx=pr<r,

while because (w,).,, = (w,_),, we have the remaining inequalities of
(34). Now let u > T. Then (w,_,), < Bx by (3.4), and hence

(w,), < (I-E)w,1), TE, B2x. (3.5)

Let1 <k <n. Ifforsome », T < v < p, we have (E, ) = 1, then we
can conclude by (3.5) that ((w,),); < B2x,. Hence by the definition of the
computational cycle,

(“’T+s—1)1 < Bx,

as {jr,. .., jres-1} = {1,..., m}. By (34), (wp,s_)); < Bx for all remaining
indices s, and hence (3.3) is true. Finally, (3.2) follows from (3.3), (2.14), and
2.12). -

We remark that for S = 1 and r, = T, i > 1, the bound given in (3.2) is
BYT and is therefore sharp. We finally remark that if we consider two
sequences of time lags {s;);_, and {r;J;-, such that s, < r;, i > 1, then wbile
the upper bound for the convergence rate of the more frequently updating
sequence does not exceed the corresponding bound for the more infrequently
updating sequence, the counterexample of Section 1 shows that this does not

always reflect the exact situation.
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