A Note on the Hoffman-Wielandt Theorem

L. Elsner Fakultät für Mathematik Universität Bielefeld 4800 Bielefeld 1, Germany

Submitted by Hans Schneider

ABSTRACT

An elementary proof of a recent generalization of the Hoffman-Wielandt theorem to commuting m-tuples of normal matrices by Bhatia and Bhattacharyya is given. In the case m=1 this provides a derivation, which, though using the same tools, avoids some unnecessary calculations and is thus shorter than the original one and that to be found in the standard literature.

Let $A = (A^{(1)}, \ldots, A^{(m)})$ be an *m*-tuple of commuting normal *n*-by-*n* matrices. There exists a unitary matrix U such that

$$U^{H}A^{(j)}U = \Lambda_{j} = \operatorname{diag}(\alpha_{1}^{(j)}, \ldots, \alpha_{n}^{(j)}), \qquad j = 1, \ldots, m_{F}.$$
 (1)

The vector $\alpha_k = (\alpha_k^{(1)}, \dots, \alpha_k^{(m)}) \in \mathbb{C}^m$, $1 \le k \le n$, is called a joint eigenvalue of A. In [1], Bhatia and Bhattacharyya prove:

THEOREM. Let A, B be two m-tuples of commuting normal operators with joint eigenvalues α_k , β_k , where $\beta_k = (\beta_k^{(1)}, \ldots, \beta_k^{(m)})$, $1 \le k \le n$. There exist permutations σ , $\tilde{\sigma}$ of $\{1, \ldots, n\}$ such that

$$\sum_{k=1}^{n} \|\alpha_{k} - \beta_{\sigma(k)}\|_{2}^{2} = \sum_{k=1}^{n} \sum_{j=1}^{m} |\alpha_{k}^{(j)} - \beta_{\sigma(k)}^{(j)}|^{2} \leqslant \sum_{j=1}^{m} \|A^{(j)} - B^{(j)}\|_{F}^{2}$$

$$\leqslant \sum_{k=1}^{n} \|\alpha_{k} - \beta_{\tilde{\sigma}(k)}\|_{2}^{2} = \sum_{k=1}^{n} \sum_{j=1}^{m} |\alpha_{k}^{(j)} - \beta_{\tilde{\sigma}(k)}^{(j)}|^{2}. \quad (2)$$

LINEAR ALGEBRA AND ITS APPLICATIONS 182: 235-237 (1993)

© Elsevier Science Publishing Co., Inc., 1993 655 Avenue of the Americas, New York, NY 10010 236 L. ELSNER

Here $\| \cdot \|_2$ is the Euclidean vector norm and $\| \cdot \|_F$ the Frobenius matrix norm.

We give an elementary proof based only on

- (i) the Birkhoff-König theorem stating that the set of doubly stochastic matrices is the convex hull of the permutation matrices,
- (ii) the fact that a linear functional defined on a convex polyhedron achieves its optimal value on a set which includes a vertex.

Proof. Using (1) and

$$V^H B^{(j)} V = M_j = \text{diag}(\beta_1^{(j)}, \dots, \beta_n^{(j)}), \quad j = 1, \dots, m,$$
 (3)

for a suitable unitary matrix V, we get

$$A^{(j)} - B^{(j)} = V(W\Lambda_j - M_jW)U^H,$$

where $W = V^H U = (w_{rs})_{r,s=1,...,n}$ is unitary. As the Frobenius norm $\| \cdot \|_F$ is unitarily invariant, we have

$$\sum_{j=1}^{m} \|A^{(j)} - B^{(j)}\|_{F}^{2} = \sum_{j=1}^{m} \|W\Lambda_{j} - M_{j}W\|_{F}^{2} = \sum_{j=1}^{m} \sum_{r,s=1}^{n} |w_{rs}(\alpha_{s}^{(j)} - \beta_{r}^{(j)})|^{2}$$

$$= \sum_{r,s=1}^{n} |w_{rs}|^{2} h_{rs}, \qquad h_{rs} = \sum_{j=1}^{m} |\alpha_{s}^{(j)} - \beta_{r}^{(j)}|^{2}. \tag{4}$$

Define the linear functional $l(X) = \sum_{r=1}^{n} h_{rs} x_{rs}$ on the set \mathscr{M} of doubly stochastic matrices, and let $\hat{W} = (|w_{rs}|^2) \in \mathscr{M}$. By (ii) above, l achieves its maximum and minimum on vertices of \mathscr{M} , which by (i) are permutation matrices. Hence there are permutation matrices P_1 , P_2 such that

$$l(P_1) \leqslant l(\hat{W}) \leqslant l(P_2),$$

i.e., there are permutations σ , $\tilde{\sigma}$ of $\{1, \ldots, n\}$ such that

$$\sum_{k=1}^{n} h_{\sigma(k),k} \le l(\hat{W}) = \sum_{j=1}^{m} ||A^{(j)} - B^{(j)}||_F^2 \le \sum_{k=1}^{n} h_{\tilde{\sigma}(k),k}.$$
 (5)

The equality here is shown in (4). But (5) is exactly the statement (2).

We remark that for m = 1 this is the famous Hoffman-Wielandt theorem; see [2] and many standard books on matrix theory. The proof given above is also slightly simpler than that in [2], where the convexity argument is applied to the expression $||A - B||_F^2 - ||A||_F^2 - ||B||_F^2$.

REFERENCES

1 R. Bhatia and T. Bhattacharyya, A generalization of the Hoffman-Wielandt theorem, Linear Algebra Appl., to appear.

2 A. J. Hoffman and W. H. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J. 20:37-39 (1953).

Received 25 January 1992; final manuscript accepted 12 March 1992