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ABSTRACT

Two aspects of the perturbation problem for the eigenvalues of a unitary matrix U
are treated. Firstly, analogues of the Hoffman-Wielandt theorem and a We{yl—type
theorem proved by Bhatia and Davis are derived, which are based on a d'JfTe-rent
measure of the distance of spectra. Using a suitable parametrization of the unit circle
by an angle, the new results are called tangent theorems, in contrast to fhe first-
mentioned well-known results, which are sine theorems. Moreover, we illuminate the
unknown minimizing permutations in the above Weyl-type th:eorems. With respect tg
their angles the eigenvalues of U and U (the perturbed matrix) are naturally ordere
on the unit circle counterclockwise, after a point is cut on the unit circle. We prove a
well-known open conjecture; there exists a cutting point such that the Weyl-type
theorems, both sine and tangent, are true when the ordered eigenvalues of U and U
are paired with each other. Secondly, the Cauchy interlacing theorem for Herm:han
matrices is generalized. It is shown that certain modified principal submatrices of U
called the modified kth leading principal submatrices, have the property .that. their
eigenvalues interlace those of U. Finally we discuss block reflectors, appearing m_the
description of the modified principal submatrices, and generalize a result of Schreiber
and Parlett.
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1. INTRODUCTION

In recent years, numerical methods for the unitary eigenvalue problem
such as the QR methods [12, 25], the divide-and-conquer method {7, 26), the
bisection method {13], and some special methods for the real orthogonal
eigenvalue problem [2, 3, 17] have been developed. Applications, e.g. in
signal processing [16, 30, 33], in Gaussian quadrature on the unit circle [24_],
and in trigonometric approximations {32], have led to considerable interest in
these methods. In this note we give perturbation and interlacing theorems
which are required by the numerical methods for the unitary eigenvalue
problem.

Let us first describe the known perturbation results for eigenvalues of
unitary matrices. Let U and U be two n X n unitary matrices with spectra
EigU = {A}} and Eig U = {A}} respectively. The following distances between
the spectra of U and U were considered in [10, 11]:

d,(EigU,EigU) = min[|A — PAPl,, w=2F  (11)

where A = diag(A;), A= diag(xj), P runs over all permutation matrices,

and || llz, | I denote the spectral and Frobenius norms. By the Hoffman-
Wielandt theorem [27]

dy(Eig U, EigU) < |lU — Ullg, (1.2)

and more recently Bhatia and Davis have shown the corresponding result for
the spectral norm [10]:

d,(EigU,EigU) < Ilu - Tll,. (1.3)

Here we will study another measure for the “distance” of the spectra of U
and U, namely the relative error. More specifically, we define

(EigU.Figl) =~ min [(A + PRP) (A - PP w=2F.

(1.4)



UNITARY EIGENVALUE PROBLEM 209

For example, J,(Eig U, Eig U) € € means that there exists a minimizing
permutation 7 of (1,..., n} such that

-1%
1 - A%
-1%

< E, j=1...,n.

We will prove in Section 3 the following bounds:

dx(Eig U, Eig U) <[|(v + 0) (v - D) =lew D)l (15)
and
d,(Eig U,Eig U) w0y w-0) =lcwrt)l,. s
Here
c(U) =i(I+U) '(1-1) (1.7)
is the Cayley-transformation of U (where —1 & Eig U) mapping unitary
matrices into Hermitian matrices.

We can interpret (1.1) and (1.4) in terms of the angles of the eigenvalues
defined in (1.9) below. The Cayley transformation

x=i(l+A)"(1=-A), |A=1, (1.8)
maps the unit circle one-to-one onto the extended real line. Defining
6, = arctan[i(1 + 1) (1 = A)], (1.9)

each A on the unit circle corresponds to an angle 6, —7/2 < 6, < 7/2 (see
Figure 1). Equation (1.4) is based then on the distance function

-~

A—A
A+ Al

d(A, A) =|tan( 6, — 65)| = (1.10)

Also, the usual bound d(A, A) = A — Al can be expressed in terms of the
corresponding angles 6, and 6;:

|sin(8, — A5)| = 31A — AL (1.11)
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A

0

Fic. 1.

Introducing the angles of the eigenvalues

and the standard ordering
T <o 0 T <é 8 < il
~=<0,< <6, <=, -—-—x <0, <,
2 ! ) 2 b, < 2

the perturbation bounds (1.2X1.3) and (1.5X1.6) can then be expressed in the

following form: There are permutations m,, k = 1,...,4, of {1,...,n} such
that
- vz U - U
(Zsmg(”j - Bm(j))) < "_‘é“"—F (1.12)
J
. lv-0
m;tx lsin(ﬂj - Bﬂgu))l < _l.__é_l%, (1.13)

_ 1/2 _1
(Be(o- ) <hv sy '@t 1
J

max |tan(6, ~ 8,,0,)| <|(v+ 0) "W -l (19)

A natural question is whether the permutations 7, k=1,...,4, can be
chosen to be the identity. For the Weyl-type inequalities (1.13) and (1.15), as
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we will show in Section 4, this is true in a slightly weaker sense. To do this we
define

Al - A,
Gj(f) =arctan(i§+ j), 0](£) = arctan i::+ -J), j=1....n,

f_Aj

as angles of the eigenvalues of U and U according to a new cutting point ¢
on the unit circle, satisfying

We will prove that there exists a cutting point £ on the unit circle such that

_ lu - 0l
m;x!sin[e,-(g) - 6(8)]| < —'—3— (1.16)

max [tan[ 8,( £) - §(&)]| <l + O) 'w-o). 1)
J

Another topic that will be discussed, in Section 5, is interlacing. Some
earlier results on this topic are restricted to rank-1 perturbed unitary matrices
[4, 21]. For Hermitian matrices the eigenvalues of a principal submatrix
interlace those of the complete matrix, which is known as the Cauchy
interlacing theorem. Here we show that such a result holds also for unitary
matrices, if we define “principal submatrices” appropriately and define
“interlacing” in an obvious manner.

Given a unitary matrix U with —1 & Eig U, it is shown that for any
k < n, there exists a unique k X k unitary matrix U, such that

UE 0
—I|l=n—-k.
rank[( 0 _In—k)U ] n
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In other words, there exists a unique decomposition

U 0
U=( ¢ )c, rank(G — I) =n — k. (1.18)
0 _In—-k

We call U, the kth modified leading principal submatrix, and show that its
eigenvalues interlace those of U. More exactly, if U has eigenvalues Ay, ..., A,
ordered in such a way that the corresponding angles {8} satisfy

™ T

"—<91<92~<\“' gen<_9
2 2

and similarly for the angles {1}} corresponding to the eigenvalues { p.j) of U,
then

6, <7, <0, 1l<j<k. (1.19)

Our interlacing result uses a different description of the modified principal
submatrix in (1.18) via the inverse Cayley-transform. The matrix G in (1.18)
is actually a block reflector [8, 34]. It is of the form G = I — XDX*, where X
is an n X (n — k) matrix with orthogonal columns and D is a (n — k) X (n
— k) diagonal matrix satisfying (I — DXI — D¥) = I. One important apphi-
cation of this block reflector is that for any two n X k matrices E and F

satisfying E?E = FYF, there exists a block reflector G with rank(1 — G) < k
such that E = G¥F.

2. PERTURBATION THEOREMS. 1. SINE THEOREMS

In this section we recall the Hoffman-Wielandt theorem (see [27], where
more generally the proof for normal matrices is given) as Theorem 2.1, and
the Weyl-type theorem by Bhatia and Davis (see [10, 11], but the result is
wrong if “unitary” is replaced by “normal”) as Theorem 2.2. For comparison
with the tangent formulas in the next section we have formulated them in

terms of sines according to (1.11). The perturbed matrix U is conveniently
denoted by U = US, so the bounds are |U — Ul,=W1—-Sl,, pn=F,2

THEOREM 2.1.  Suppose that {6,} and {8} are the angles corresponding
to {A) and {X) with ) cutting poi '
) ar y respect to the cutting point —1. Then there exists a
permutation w, of {1,. .., n} such that

z [sin(6, ~ 6,.,,)| < 11—1—_—4-3—'@ @2.1)
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THEOREM 2.2.  Suppose that {6} and {(-);,} are the angles corresponding
to {Aj} and {Aj} with respect to the cutting point — 1. Then there exists a
permutation 7, of {1, ..., n} such that

max in(8, — )] < 2 e

J g 2
3. PERTURBATION THEOREMS. II. TANGENT THEOREMS

In this section, we shall give the perturbation theorems for the tangents of
the angles, which can be regarded as relative errors of eigenvalues of U, in
contrast to the absolute errors of the sine theorems. To do this we first prove
the following lemma.

_ LEMMA 3.1, Let A =diag(A),...,A) with [\l =1, j=1,...,n, let
A= diag(Aj) with I/\jl =1,j=1,...,n, andlet

£(0) =l(a + 0*R0) (4 - 0*AQ). (3.1)

Then min{ f(Q) : Q unitary} = f(P) for a suitable permutation P.

_ Proof. 1t suffices to prove the statement for the case that A, # A; and
A, # A for i # j. By compactness there exists a unitary (), minimizing f(Q).
Define for a given Hermitian matrix H

g(t) = f*(Qoe'™). (32)

As e'? g unitary, one has g(t) > g(0), and hence its derivative g'(t)
vanishes at 0: g'(0) = 0. A tedious calculation gives

g(t) = 4tr{[21 + V(t) + V”(t)]_l} —n,

where V(¢) = A"e‘“"Qé"ﬁQOe“H. Introducing V, = V(0) and
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A =21+ V, + Vy this leads to
0=g'(0) = —4tr{A2[A*(—iH)AV,
+V (i) + VIARGH)A + (—iH)V])
= —4itr[ H(—AV,A72A¥ + A2V, + AAT2VIAY — VA~2)],
whence, by Lemma 3.2, we have
—AV,ATIAY + ATV, + AATIVEAR —vliAT2 =0, (3.3)

Setting A~?V, = W = (w,)) and observing that A7V, = V,A %, we have
by (3.3)

—AWAY + W + AWFAY — wH =0,
or equivalently
(1— /\i/\j)(wij——'ﬁ)=0, 0<i,j<n.
By the assumption above, the numbers 1 — /\,.X]. are nonzero for i # j, and
hence A=W — WH = Q21 + v, + V{) 2(V, — V}!) is diagonal. Now we
prove that V, is diagonal. We have a spectral decomposition of V,, of the

form V, = XDy X", where D, = diag(d, L ,...,d, I, Jand d, # d, fori #j
and X is unitary. Hence

A = X(21 + D, + DY) *(D, — D¥)X".
But as A is diagonal, we have also for a suitable permutation P,
A = PJ(21 + Dy + D§) (D, — DE)P,. (34)
This shows that P, X commutes with the diagonal matrix
A=(21+D, +D¥)*(D, — D¥) = diag(A L ..., A, 1,.).

here A; # A; for i #+j, which can be easily verified. It follows that
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Py X = diag(X,, ..., X,) with the k, X k; unitary matrices X,, i =1,...,r.
Thus (P X)Dy(P,X)¥ =D, and V, = PID,P, is diagonal. But V, =
AQ{AQ,, and as A, are different, Q, is a permutation. |

LEMMA 3.2. Given a square matrix X. If for any Hermitian matrix H one
has t(HX) = 0, then X = 0.

Proof. Consider two special choices of H, =X+ X" and H, =
i(X" — X). Then from the condition of Lemma 3.2, tf(X + X¥)X] =0
and tf{(X¥ — X)X ] = 0. The sum of these two traces is 2tr{ X#X) = 0. So
X=0. ]

It is clear that the value of f(P) can be written as a sum of tangents with
the bound KI + S)7'(I - S)ir = KA + Q#AQ) (A — Q¥AQ)IF =
f(Q), where U = Q,AQF, U = Q,AQ, and Q = Q}'Q,. Thus Lemma 3.1
implies the following theorem.

THEOREM 3.3. Under the assumptions of Theorem 2.1 and (1.10), there
exists a permutation mw, of {1, ..., n} such that

)>

j=1

tn(6, - 6, )| <l(z+s) '-35

For the bound [KI + S)~'(I ~ S)llz, we have the following theorem,
which is directly obtained from Theorem 2.2.

THEOREM 3.4. Under the assumptions of Theorem 2.1 and (1.10), there
exists a permutation w, of {1,..., n} such that

max [tan(6, - 6, ,)] <ll(7 + $) (1 = 5) ]l (3.6)
j 1 o/

Proof. Let { B} be the eigenvalues of S, and their corresponding angles
be {n}; then Theorem 2.2 shows that

!sin(ﬂio - 5,,2(,0))1 < lsin 7 |,

where |sin(g, — 5,,2(,))| attains its maximum at iy, and [sin 0| at j,. Now we
have to prove

-~

Itan(B‘O - 8"'2('0)” < ftan niol
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This holds because tan 8 = x/(1 — x2)!/2, where x = sin 0, is an increasing
function in x. By the same argument

Itam(ﬂio - 5,’(,0)) = m'_ax ltan(()Il - 5,!“)”,

tan 7, | =l(1 + )1 = ).

So we have (3.6) with m, = 7,. .

4. PERTURBATION THEOREMS. IIIl. ORDERED EIGENVALUES

The eigenvalues {A}, {:\'1} of Hermitian matrices A, A can be ordered in
a natural way:

M <A< €A, A <A< KA
Moreover this ordering leads to optimal matchings in the following sense:

n n

3 12 I 2
LIy = AP < LIy = A0
=1 j=1

for any permutation 7 of {1,2,..., n}, and hence to sharper versions of the
Weyl theorem and the Hoffman-Wielandt theorem for Hermitian matrices.

We will show that a result analogous to the Weyl theorem holds for unitary
matrices (see Theorem 4.3).
Let us consider first the order of any two complex numbers on the unit

circle, A, and A,. After cutting the unit circle at £, we define the angles of A,

Gj(f) = arctan ig M )\j , j=12; (4.1)
§— Aj

and define A, < A,, if tan 6,(£) < tan 6,(¢). This means that when moving
around the unit circle counterclockwise from the point £ to the point £, one
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first reaches A, then A,. In this way we assume that the eigenvalues of U
and U have the order

A(E) K A(€) < <A(E).A(€) <A (€) < <A, (£) (42)

with respect to their angles

w T
_—Z"gel(f)gog(g)s..gan(§)<5,
(4.3)

w - - - w
— g <0(§) <6(§) < <6() <5

(see Figure 2).

Notice that {Aj(f )} is the same as {/\j} except for the ordering. For a
different cutting point the orders of the eigenvalues are only changed
cyclically. Moreover, for different cutting points the inequalities (2.2) and
(3.6) hold, as by a direct calculation

Ay — A
B,(£) — 0,(£) = arctan((—i) g Az)

is a constant with respect to £.

The following theorem is a natural extension of the Weyl theorem for the
Syminetric eigenvalue problem. Before proving that, we need two lemmas.
Throughout this section we use the notation (A, A;) to denote the open arc
from the point A, to the point A, on the unit circle counterclockwise.

A€)
N
"r
/> "2((}
| X
A1(E)

FiG. 2.
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LEMMA 4.1.  Suppose that —1 is the cutting point of the unit circle and
a, a, b, and b are complex numbers on the unit circle such that

a<b, a<b.

If in addition a < @ and the arcs connecting a, a, b and a, b, b lie each on a
semicircle, then

max({la — al,|b — bl} < max{la — bl b — dl}.

Proof. Letd, = max{la — bl,|b — al}. Under the ordering of a < b and
a < a < b, there are three possible situations for a, b, @, and b:

(1)a<b<&<§,
(2) a<a<b<b,
(B)a<a<b<b,

which are shown in Figure 3. The condition that a,4d, b are on the same
semicircle guarantees that the inequality

max{la — dal,|b - bl} < d,

a a

d

FiG. 3.
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holds in the first two cases, and the condition that &, b, b are on the same
semicircle guarantees that the above inequality holds in the third case. [

We remark that the cutting point ~1 in the above lemma is only used to
make the presentation easy. In fact Lemma 4.1 shows that for two pairs a, b
and @, b the minimum of the maximal norms of differences occurs when a or
b chooses its nearest point of @ and b as a partner.

LEMMA 4.2. Let A and Xj be counterclockwise ordered on the unit
circle with respect to the cutting point — 1. Then there exists an integer t
such that

mjaxl/\j — Xt+j—1' = m’irn m]{:lxl/\j - Xﬂ(].)l, (4.4)

where XHJ_I are naturally taken as Xt+j—l—n whent +j—1>n.

Proof. Let m, be a minimizing permutation of (4.4), and

d =1 — A, 4 = max]A, — &, )} (4.5)
J

Without loss of generality we assume that A, and Xj are distinct and
A, — Anpl <d for j # 1. The integer ¢ to be chosen in this case is just
t = gr,(1). )

It is no restriction to assume that A; < A, In the expression (4.5), each
eigenvalue A, is paired with i,,g( yand [A — A, | <dforj# 1 As A, is
paired with A, let us begin with the pairs A, with A, @) The idea is to
reorder A; without changing the minimal distance d in (4.5). In order to use
Lemma 4.1, we consider another pair: A, with A, ., where my(s) =¢ + 1
[if s =2, we begin with the pairs A; with X,,z(s) and A, with A, ., where
my(s) =t + 2]. We have to discuss two cases.

(1) In the case of A, < A,,,, we have A, < an(z)s as otherwise the
minimal distance (4.5) is reduced by exchanging m,(1) and 74(2) in 7, by
Lemma 4.1. It follows that A, < A,,; < A, ) and A, < A,, and the condi-
tion that A,, A,, |, A, () are on the same semicircle and A, ), A, @), A, are
on the same semicircle follows by the same argument, since d is the minimal
distance. Thus, from Lemma 4.1, wo(2), wy(s) can be exchanged in 7,
without changing the minimal distance d. ;

(2) In the case of A,,, <A,, we have directly A,,; <A, <A, and
Ai+1 < A, q Thus, from Lemma 4.1 we can again arrange a new permuta-

. )
tion such élat (4.5) is true and A, is paired with A,,,.

- ]

P—



e

220 LUDWIG ELSNER AND CHUNYANG HE

After the pair A, with A, and A, with A,,, have been fixed in the
expression (4.5) for the changed permutation 7,, in the same way we can
exchange 7,(3) with 7,(s) without changing d, where t + 2 = ,(s). This
process continues until 7, is changedinto (t,t + 1,...,n,1,...,t — 1. =

THEOREM 4.3. There exists a cutting point & by which {A(£)) and

{Xj( £)} are naturally ordered on the unit circle in the sense of (4.2) and (4.3)
so that

- Il — Sli.
mjgx lsin[ﬂj(f) — 6;( E)]l < — (4.6)

and

max|tn[ () = (O] <l1+ )=k (4D

Proof. We only need to prove the sine inequality (4.4); then the tangent
inequality (4.5) becomes trivial, as Theorem 3.4 follows from Theorem 2.2.
We assume for convenience that all A; and Xj are distinct and all [A, — '\j|
are distinct too. ;

By Lemma 4.2, A, is paired with XHj_l,j =1,...,n,and d = |A; — Al
Consider (A,, A;), and assume that i, eigenvalues, A,,..., A, ,,, are in this
interval. If i, is zero, we take the cutting point £ as the point just after A, on
the unit circle; with this cutting point £, A, = A,_(£) is paired with
At+j—l(‘§) = /\j_l(f), and A; = A (£) with A, = Xn(f). So we reach the
conclusion. For i, > 1, we consider the interval (A, A, +i,)- If there are no
eigenvalues of U in this interval, we choose the cutting point ¢ just after
A+, and in the same way we pair the eigenvalues and reach our conclusion.
Assume that there are iy — i, > 1 eigenvalues of U in this interval; then we
consider the interval (A, , A, ), and so on. We will obtain two conclusions
by this procedure. Either we prove our theorem, or (X, i XH,- ) includes
A, for some iy. In the latter case, we can reduce the maximal difference d

(4.5) by pairing A, with A, ;> which is a contradiction to our assumption.
Figure 4 illustrates the proof. =

5. CAUCHY INTERLACING THEOREM

It is Yve}l known that for Hermitian matrices the eigenvalues of a principal
submatrix interlace those of the complete matrix. In more detail, if Ay isa
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Fic. 4.

kX k principal submatrix of an n X n Hermitian matrix A, and
Ky S Ly < 000 Sy, Al <A < <A

are the eigenvalues of A, and A respectively, then by Cauchy’s interlacing
theorem {23, 29]

Ajg“‘](‘Arﬂ']—k’ j#l,-..,k.

For unitary matrices we cannot expect such a result, as a principal subma-trix
is not unitary any more. It is however possible to modify a k X k princlpa.a.I
submatrix of an n X n unitary matrix U so that the modified submatrix is
unitary and its eigenvalues interlace those of U. To keep notation simple,.we
consider only leading principal submatrices. The case of general principal

submatrices is similar.

DEFINITION. Let

U= Ull Ul2
U21 U22

be an n X n unitary matrix, and U, the k X k leading principal submatrix.
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Then
Up = Uy — U1 + U22)+ U (5.1)

is called the modified kth leading principal submatrix of U. Here (I + Up)”

is the Moore-Penrose inverse of I + U,,.
Observe that when —1 is not an eigenvalue of Uy, U; is given by

U =U, - Ulz(l + U22)_1U21-

We have the following lemma.

LEMMA 5.1.  In the situation of the above definition, we have
U12(U22 + I)+ (U22 + I) = U12, (5.2)
(U22 + I)(U22 + I)+ U21 = U21. (53)

Proof. Obviously we need only to consider the case that —1 € Eig Uy,.
Let x # 0 be an (n — k) vector such that Uy, x = —x. Then, as (g:) has
orthogonal columns,

Upgx
Ugp x

and U, x = 0. This shows that for the null spaces the inclusion Ker(Uy, +

I) € Ker U, holds. As I — (Uy, + I)*(Uy, + I) is the orthogonal projection
onto Ker(Uy, + I), (5.2) follows. Applying (5.2) to U gives (5.3). =

THEOREM 5.2. Let
U —_ Ull U12
U2l U22

be n;n n X n unitary matrix, U,, the k X k leading principal submatrix of U,
a

2

2
Nxl* = = lIxll* + U, x|I®

U =0y, — Up(1 + U22)+ Uy (54)
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Then:

(i) Uy is unitary.
(ii) The matrix

satisfies rank(I — G) < n - k.

(iii) Let —1 be a eigenvalue of U,, with multiplicity r. Then U is the
unique unitary matrix such that U = diag(U,, — 1, _,) G with rank(I — G) =
n—k—r.

Proof. From U"U = I, we have
Ui Uy + UplUy, = I,
Ultlf Up+ U;{Uzz =0,
UlgU12+ Uz';Uzz =1, . (5-5)
Writing
+
UkHUk = UgUu - sz{(l + Uzg) Ufou
+ +
- UgUm(I + U22)+ U, + US(I + Uz’;) UgUlz(I + Up) Uy

and replacing U,, and U,, by Uy, and U,, according to (5.5) and also Lemma
5.1, we obtain

UlU = I - U1, + U (I + U£)+ Upa Uy + Uy Upe(1 + Usg) " Uny
+ UE(T + UE)" (I - URUR)(I + Uy) " Uy,
=1- UMy, + UA(1 + UE)"
X [US(T + Uyg) + (1 + Ugy YUy, + (I — UgiUp )]
X{I+ Uy)" Uy,

+
=I— UHUy, + UB(1 + UB) (1 + URYI + Up)(1 + Uy) " Uy
=1.
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This shows (i). As by (5.2), (5.3)

u 0
U —_
0 _In-—k

= (Ulz(U221+ I)+ )(1 + Uzg)((U22 + I)+ Uy, I),

we have that

U 0
rank(G—1)=rank[U-(0k _1 )]r—n—kwrgn-—k,
n-k

so we obtain (ii). The uniqueness of U, is easily seen from the proof. -

In the case that — 1 is not an eigenvalue of U (and hence not a eigenvalue
of Uy), we can explain the unitarity of U; in a more illuminating way.
Observe that in this case U, + I is a Schur complement of U + I with
pivoting Uy, + I, and hence (U, + I)7! is the kth leading principal subma-
trix of (U + I)7! (e.g. Ouellette [28, (2.4D). If A =i(I + U)"'(I — U)is
the Cayley transformation of U, then equivalently

A+il =2i(1+U)".
Taking the kth leading principal submatrices on both sides, we get
A +il =2i(1+ U) ™',

where A, is the kth leading principal submatrix of A. This shows that U, is
the inverse Cayley transformation of A; and hence unitary. Also, as the

eigenvalues of A, interlace those of A, we have at once the interlacing result
for the eigenvalues of U, and U.

THEOREM 3.3. Suppose that —1 is not an eigenvalue of U and that the
angles corresponding to (A} and (), the eigenvalues of U and Uy
respectively, are {8} and {1} satisfying

o0 9 w
—_—— < g...g _—
2 1 9<2

n
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and

respectively. Then
%S’T}.gaﬂ’hj_k, j=11"'7k'

Proof. The eigenvalues of C(U) = A and C(U,) = A, are given by

1-Aj P ]

X, =i = tan @,, = » R

71+ A I I
1~p

.j_z j:tanq}, J"'l, ,k
I+p,j

As tan is monotone,
xl\<\x2< S,I", £1< gfk

and by Cauchy’s interlacing theorem

5 <E <Xk, J=1o0k

By the monotonicity of arctan, we get
0]- < Tj < Gn +j-k- .

Observe that this Cauchy interlacing theorem is also true when —1 €
EigU.

6. A PROPERTY OF BLOCK REFLECTORS

We conclude this paper by proving an interesting result on block reflec-
tors. A unitary matrix G such that rank(I — G) =k <n is called a block
reflector. Such matrices have been studied in [8, 34]. Suppose that rank
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(I — G) = k; then G has the form
G =1- XDx¥, (6.1)

where X is an n X k matrix with X¥X =1, and D is a diagonal matrix
satisfying D¥ + D = D¥D. This equation is equivalent to D — I being
unitary [8]. In [34], only the special case G = I — 2XX" is studied. There it
is shown that the conditions

EYE = F*F (isometry property), (6.2)
EHYF = FHE ( symmetry property) (6.3)

are necessary and sufficient for the existence of a block reflector G=1-
2 XX " such that GE = F. Here we show that the first property alone ensures
that there is a block reflector G with rank(I — G) < k such that GE = F.

THEOREM 6.1. Suppose that E and F are two n X k (k < n) matrices
satisfying

EHE = FHFE, (6.4)

Th:n there exists a block reflector G with rank(I — G) < k such that E =
G"F.

Proof. First let us prove that Theorem 6.1 is true in the case that F has
the form

where F is a k X k square matrix. As E¥E = FHF, there exists an uni-

tary matrix U such that E = U”(—F). Applying Theorem 52 to the
unitary matrix PTUP for n — k, where

we construct the modified (n — k)th leading principal submatrix U,_, as in
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(5.1) and have the decomposition
PTUP = diag(U,_,, - 1) G
with rank(I ~ G) <k, or equivalently
U=diag(-I,U,_,)G.

Here G = PGP" and rank(I — G) < k. So G can be expressed as G = I —
XDX". It follows immediately that E = U¥(~F) = GHF. In the general
case that EYE = F¥F, let F = QF, be the QR decomposition of F, where

F
F,=1[%]
‘ (0)
and also E, = QVE. Then from E[E, = F/'F, it follows that E, = G¥F,.
So E = G*F, where G = QGQ" with rank(I — G) < k. n

Observe that the block reflector G can also be obtained directly by
solving the equation G¥F = E.

7. CONCLUSIONS

In this paper, we have proved the following Eerturbation theorem: There
exists a cutting point £ by which { Aj( £)} and { Af(§)} are naturally ordered

on the unit circle so that

mgx'Aj(g) - Xj(§)|<||U“ Ulls.
]

Basing on the Cayley transformation, we define a sequence of unitar-y
submatrices of U, which are called the modified leading principal submatri-
ces. Then we prove the Cauchy interlacing theorem: The eigenvalues of the
modified submatrices interlace those of the complete matrix on the unit
circle.
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