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ABSTRACT

It is shown that recent perturbation theorems for the joint spectrum of comr‘nut(i
ing matrices, which have been proved using Clifford-algebra tools, can be'obtame
and improved by classical means, as used in the case of the standard eigenvalue

problem.

1. INTRODUCTION

The effect of a perturbation of a matrix on its spectrum has belf;n
investigated for a long time and is now well l‘mders_to.od. ?‘;ee eg t (;
monographs [2, 8]. In contrast, study of the behavior of joint eigenvalues o
m-tuples of commuting matrices has started only recently. |

We consider an m-tuple A = (4,,..., A,) of complex n-by;n ma}fnﬁei
A;. A joint eigenvalue of A is avector A € C™, A = (Al,.. ca AL sucIftt}ft
there exists a nonzero vector x € C" with Ax=Ax, j=1..,m. e

*Parts of this paper were written during a stay at the Unfv?rsit.)z of qalglal‘y-PThLG 5:1;;:;
thanks the members of the Department of Mathematics and Statistics, in particular P.

and P. Binding, for their hospitality and support.

LINEAR ALGEBRA AND ITS APPLICATIONS 208 /209:83-95 (1994) 83

© Elsevier Science Inc., 1994
? 4-3795 /94 /$7.00
655 Avenue of the Americas, New York, NY 10010 002 794/



e

et e A3t B B AT R A - AN e e o e e
T ST b o e+

84 LUDWIG ELSNER

A, are commuting, then there is at least one joint eigenvalue. r is calle{? a
joint eigenvector, and the collection of the joint eigenvalues is called the joint
spectrum and is denoted by Sp( A); see [3, 5-7].

The question studied here is how sensitive Sp( A) is to perturbations in A.
The first results in this direction were obtained by Pryde [7], in the case that
the unperturbed m-tuple B = (B,,..., B, ) has a basis of joint eigenvectors,
ie. all B; can be simultaneously diagonalized. He uses the approach of [5]
and [6], representing B by the Clifford operator Clif B) acting on a larger
space. The results obtained are formally very similar to the Bauer-Fike
theorem, where the norm of the perturbation is replaced by the norm of the
representing Clifford operator. In the same vein, Bhatia and Bhattacharyya
[3] proved a perturbation result generalizing a bound given by Henrici [4].

After introducing the relevant definitions of the Clifford operator, the
underlying spaces, and the connection between the joint spectrum of A and
the spectrum of ClifR A) in Section 2, we outline the above-mentioned
results in Sections 3 and 4.

After establishing bounds on ICLiff A)|| in Section 5, we derive our main
results in Sections 6 and 7. We show that one can obtain stronger results with
elementary tools. Some assumptions of [3] and {7] can be weakened consider-

ably.

2. CLIFFORD ALGEBRAS AND THE CLIFFORD OPERATOR OF
AN m-TUPLE

In [5, 6] Clifford algebras were used as a tool to study joint spectra. We
denote by R, the Clifford algebra generated by R™. This is an algebra in

which R™ can be imbedded. It is generated by elements e, ..., e, with
relations e,e, = —ee, i #j, e2= —1, i,j=1,...,m. Define ¢, =1,

and for Sc{l,....m}, §= {s1,....8), s, < sy < -+ <s, define e5 =
€€, """ €. Observe that for i € {1,... m} one has ey = e;. Then R, =
{)js Ases: A € R} forms an associative algebra if we define the product of
the 2™ basis elements in the canonical way using the generating relations, i.e.

eser=( l—[ (“l))es+ra
seES. teT
st

where S + T is the symmetric sum

S+T=(SUT)/(SNT)
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The tensor product
C*®R,, = {215 ®eg, x5 € C"}
s

is a Hilbert space if one defines an inner product {x, y) = (L; x5 ®
s, Ls ys @ eg) = L(xg, ys), where xg, yg € C" and (xg, yg) is the usual
inner product in C", and the norm by [[E x4 ® egll = (I llx5lI*)'/2.

Let M, denote the space of n-by-n complex matrices. Then M, ® R,,,,
={Ls A; ® e, Ag € M,} is also an algebra, a subalgebra of the space
L(C" ® R,,)), of linear mappings of C* ® R, into itself, if one defines

(EAS @ es)(ZxT ® eT) = E Agxy ® eger.
S T

S. T

We denote by [[Eg Ag ® el the operator norm of LA ® eg considered as
an endomorphism of the Hilbert space C* ® R,,,. It is easy to see that for
A = Y A ® ¢ the adjoint operator A*, defined by the relation ( Az, y) =
(x, A*y) forall x, ye C" ® Ry, is given by

A* = ) A% ® &,
§

where &; = teg; the sign is chosen to get ¢gés = 1. In particular ¢, = —e,.
For an m-tuple A = (A,,..., A4,,) of not necessarily commuting matrices
A; € M,, define its Clifford operator Clif A) € M, ® R,,,, by

CLff( A) =i ). A, ®¢;.
j=1

The connection between the concept of joint eigenvalues of an m-tuple of
commuting matrices and the Clifford operator is given by the following result
[5, 7).

LEmMa 2.1. IfA =(A,..., A,), where the A;’s are commuting with
real spectra, then a vector A € R™ is a joint eigenvalue of A iff 0 is an
eigenvalue of

Chff(A — AI) =i}, (A — A1) ®e;.
j=1
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3. BAUER-FIKE THEOREMS

A classical result due to Bauer and Fike (1] is the following:

THEOREM 3.1. Let A, B € M,. with spectra o(A), d(B) =
{p,..., n,}. Let B be diagonalizable, i.e..

B = Sdiag( p,) S
for some nonsingular matrix S. Then for any A € o(A)

min [A — u,| < [[A = BRISIIS 'l

Here and in the following || |l is the spectral norm (or operator norm).

Using Lemma 2.1, Pryde obtained two analogous results for commuting
m-tuples (see [7]). In contrast to the classical Bauer-Fike theorem, it is
necessary to distinguish the cases of real and complex spectrum.

THEOREM 3.2. Let A=(A,,..., A,), B=(B,,..., B,) be m-tuples of
commuting matrices in M, with real spectra. Let the B's be simultaneously

diagonalized by S. Then for any joint eigenvalue A of A there exists a joint
eigenvalue p of B such that

A = pll < SIS Cliff( A — B) .

Here ||A — ull is the Euclidean norm in R™.

For describing the result in the case of complex spectra we have to
introduce the concept of a partition of A. One can decompose A, = A, +
iy so that m(A) = (A,,,..., A}, A, ..., A,, ) is a 2m-tuple of commut-
ing matrices with real spectra. w( A) is called a partition of A. If the B’s can
be simultaneously diagonalized, there is exactly one partition w(B) of B such
that the matrices B, =12 j=1,...,m, can be simultaneously diagonal-
ized. This 7(B) is called the semisimple partition of B. By applying Theorem
3.2 to w(A), 7w(B), Pryde [7] obtained the following result:

THEOREM 3.3. Let A=(A,,...,A,), B=(B,,...,B,) be two m-
tuples of commuting matrices in M,. Let the B/'s be diagonalizable. Let w(A)
be a partition of A, w(B) be the semisimple partition of B, and S a matrix
simultaneously diagonalizing the components of w(B). Then for any joint
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eigenvalue A of A there exists a joint eigenvalue p of B such that
A — ull < ISINS | Cliff(w(A) — m( B))].

Here ||1A — ull is the Euclidean norm in C™, and |IClifRw( A) — w(B))| the
operator norm in M_ @ R

(2m)*

4. HENRICI-TYPE THEOREMS

One version of the classical Henrici theorem on the perturbation of
spectra is the following (see [4]):

THEOREM 4.1. Let A, B € M, with spectra a(A), o(B) respectively.
Then for any A € o( A) we have

min |A — ul < S,(A(B).IlA — Bl) (4.1)

pE(T(B)

Here, A(B) is the || |-departure from normality, as defined below, an-d
S.(A,r) is the spectral radius p(C) of the nonnegative n-by-n matrix
C(A, r):

(0 A 0
A
8.(A,r) = p(C(A.r)), C(A,r)= 0 , (4.2)
A
\ 7 r

A, r > 0. Another way to express S, (A, r) for r > 0,4 > 0 is the following.
If g = g.(A/r) is the unique positive solution of

g+g2+...+gﬂ= (4-3)

then
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Any B € M,, can be transformed to upper triangular form by a unitary
similarity, i.e.

U*BU = diag( B,) + N, (4.4)
N strictly upper triangular and U unitary. Then
A(B) = min{|IN|},

where the min is taken over all N appearing in a decomposition like (4.4). .
Now consider m-tuples of commuting matrices A = (A,,..., A,). It is

well known that they can be simultaneously triangularized by a unitary
transformation

U*AU=A+N,, j=1,...m, (4.5)
where N, is strictly upper triangular. Define N = (N,,..., N,)), and
A( A) = min{||Cliff( N}|}, (4.6)

where again the minimum is taken over all such N’s. Bhatia and Bhat-
tacharyya obtained the following results:

THEOREM 4.2. Let A=(A,, ..., A, and B=(B,,..., B,) be two
commuting m-tuples of matrices in M, with real spectra. For any joint
eigenvalue A of A there exists a joint eigenvalue u of B such that

A — ull < S,(A(B),||Cliff(A — B))). (4.7)

THEOREM 4.3. Let A= (A,,...,A,), B=(B,...,B,) be two
commuting m-tuples of matrices in M,, with partitions w( A), w(B). For any
Joint eigenvalue A of A there exists a joint eigenvalue of B such that

1A = pll < S,(A(w(B)), |Cliff(w( A) — w(B))]).  (4.8)
5. BOUNDS FOR THE CLIFFORD OPERATOR

One d.isadvantage of the previous theorems is the occurrence of the
quantity |ICfRC,, C,,...,C )|, which has been determined as a simple
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function of the C.’s only for m = 2 [7]. Pryde showed
|CEF(C,, C,) || = max(lIC, + iC,lI, IIC, = iC,|).
We will give here some computable bounds.

Let A =(A,,..., A,) be an m-tuple of n-by-n matrices. We may also
identify A with an operator

A:C" - C"",

fAlx
A, x

X

m

\A
Then the operator norm of A is given by

L ATA,

i=1

I AII® = | A*All =

We have

LEMMA 5.1. Let A =(A,,..., A,) be an m-tuple of n X n matrices.
Then

(m—1)
2

I Al <||Cliff A)| < \/1 + 2 I All. (5.1)

Proof. The lower bound can be found in [5, Proposition 3.5], where also
an upper bound

+ 3 11A¥A, — AT Al

Y ATA,
j<k

j=1

ICliff( A) [I” <

is provided. But

implying the upper bound in (5.1).
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Another upper bound is given by
ICLff(A) | < 2 1Al (5.2)
j=1
but (5.1) and (5.2) seem not to be compatible.

6. IMPROVING THE BAUER-FIKE THEOREMS

In this section we generalize and improve Theorems 4.2 and 4.3. The
l,-norm of x € C" is denoted and defined by

n I/p
I|x||p=(Z|xi|”) ., l1<p <o,
i=1

where we suppress the dependence on the dimension n. The associated
operator norm for an r-by-s matrix A is given by

1Al = max{ll AxIl,, Ixlf, < 1).

Note that || All, = || A|| = spectral norm. We will show

THEOREM 6.1. Let A = (A4,,..., A,), B=(B,,...,B,) be two m-

tuples of complex n-by-n matrices. Assume that the B, can be simultaneously
diagonalized by a nonsingular matrix S.

Then for any joint eigenvalue A € Sp(A) there exists p € Sp(B) such
that

1A = wll, <ISI NS~ A - BIL,. (6.1)

Note that the B,’s are commuting, but the A,’s need not be. In general,
however, Sp(A) can be void, in which case the statement of Theorem 6.1 is
trivially true. Recall that A, B are defined in Section 5.

Proof. As A e C™ i a joint eigenvalue of A, and B,S =
S diag( u{", ..., u®), i = 1,..., m, we have

(A, - B)x = (AT — B;)«x
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for some x # 0, and with 2 =S 'x
S“’(A,.—B,.)S:=[Ail—djag(uﬁi’)]z=w,. (say),

or in matrix terms

= . * =w (say)_ (6.2)
dlag(Am — MS‘"‘))
Then on the one side
m n ' n m _ (‘) P
||w||;,D =y Y Izjlpl/\,. — p}‘)lp) =Y 1Zj|p(.2|/\i M | )
i=1\j=1 j=1 i=1
> [[zlI7 Min } 1A, — pf"17 = [IzI} Minl|lA — pN .
J =1 J
[Observe here that pud = ( #;,U, e ;m))T is a joint eigenvalue of B.]

On the other side

loll, < SIS~ 1,11 A = Bll,llzll,.
These two inequalities imply (6.1). »

REMARKS. In particular, for p = 2, one has

min f]A — wll < ISIIS~HIHIA - B, (6.3)
RESp(B)

which, for real spectra, by (5.1) improves Theorem 3.2. If A = (A,,..., An)
€ C™ is a joint eigenvalue of A, we can also find

77.( A) = (All""? Alm’ AZI""’ A2m)7 Aj =A1_] + lAzja

Ajx = Ax, A x=(Red)r, Ayr=(ImA)x, j=1...m
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ie., (Re A, Im A) is a joint eigenvalue of ( A). Applying Theorem 6.1, now,
to (( A), w(B)), we get

min 1A = ull < ISHIs~W[=(AY - 7(B). (6.4)
preSp(B)

which again improves Theorem 3.3.

It is however not clear whether the bound (6.3) is better than that
provided by Theorem 3.3. For m = 1 this is true, as

|ICLff( A + iB)|| = | A + iBll < max(l}A + iBll,|A — iBll)

=||Cliff( A, B)].

For the last equality see Section 5. In general we have only

|4 - Bl < V2|7 (a) - 7 (B)| (6.5)
7. IMPROVING THE HENRICI-TYPE THEOREMS

Before we formulate the result, we have to define the concept of
“departure from normality” used here. As already mentioned in Section 4, for
a given m-tuple B =(B,,..., B,) of commuting n-by-n matrices, there
exists a (not uniquely defined) unitary U such that

U*BU=M,+N,, i=1,...,m, (7.1)

with strictly upper triangular N, and M, = diag(p{",..., p). For the m-
tuple N = (N,,..., N_) we define N as in Section 5 and
A(B) = min|IN|, (7.2)

where the minimum is taken over all such N'’s.
Observe that by Lemma 5.1

A(B) < A(B). (7.3)

THEOREM 7.1. Let A =(A,,..., A,), B=(B,..., B,) be two m-
tuples of complex n-by-n matrices. Assume that the B/'s are commuting.
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Then for any joint eigenvalue of A there exists a joint eigenvalue u of B
such that

IA — ull < S,(A(B), A ~ BIl). (7.4)

Note that the A,’s need not be commuting; however, Sp( A) may be void.
S. has been defined in Section 4.

Proof. Let (A,...,A,) be a joint eigenvalue of A, A;x = Ajx, i =
L,...,m, x # 0. Then from (7.1), and z = U*x

U*(B, - A))Uz = (M, — A1+ N,)z

or

»
U U* 0 Bl —Ai Ml - AII Nl
o u=l ]
0 . U* Bm_Am Mm "/\ml Nm
= (D + N)a. (7.5)

Observe that the columns of D are orthogonal and the ith column has the
Euclidean length

o 1/2
o= £y - ) —ia-wn (76)
j=1
where the vector u® = ((u(?,..., u{™)7 is a joint eigenvalue of B. Hence

we may write D = VD, where D = diag(e;) and V is orthonormal, V*V =
L. Premultiplying (7.5) by V*, we get

V* diag(U*,..., U*) (B — A)Uz = (D + V*N)z = (D + N)z. (7.7)

Here N = V*N s strictly upper triangular. If a; =0 for some i, then by
(7.6) there is nothing to prove; otherwise, we have C = D + N invertible and
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from (7.7)

]

|v*diag(u*.....us)(B-A)|=1B-Alsl(p+N) '] (78)

We now proceed as in the ori$inal proof of Henrici. As N" = ), we have
(D+N)'=D"'Z"- (ND ") and hence with § =ID"'[| = 1 /min a,,

) 1 [ .
“(D-’r N)Wl“ < T~ Y. (IN1I8)".

y= |

This, together with (7.8), gives

N " )
= ———— K SIINID ",
e AL

from which we get 8IIN|l > g,(y), or

= S,(INILI A - BlI).

Taking into account that [|N|| = lV*N | = |[N|| can be chosen as A(B) and
using min[{A — pll = 87', this last inequality yields (7.4). o

REMARK.  As noted by H. Schneider, we need only that the matrices B,
are simultaneously upper triangularizable. Then also (7.1) holds, and defines
m-tuples p® = (u{D, ..., u™), i = 1,..., n. This coupling of the eigenval-
ues is unique, i.e. does not depend on the triangularizing similarity transfor-
mation, as can be readily seen. It coincides with the concept of “joint
eigenvalue,” where applicable.

The remarks following Theorem 6.1 apply here also. As S (4,r) is
obvioﬂusly strictly monotonic in A and r and }A — Bll < IIClLiff(A —
B)ll, A(B) < A(B) [see (7.3)], we find that for real spectra the bound (7.4) is
never worse than the bound (4.7).

In the case of complex eigenvalues we find, by applying Theorem 7.1 to
7( A) and 7(B), that both

1A = ull < 5,(A(B). 14 - B
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and

A — ull € S,,(.i(‘rr(B)), "17( A) - W(Bﬂl)
hold.
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