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Let Ae M, Be M, and 1€ Cbe given. Wesay that X € M, ,, is A-neutral for 4 and Bif the Jordan structure of

L]
)

We characterize A-neutrality in terms of the bilinear form of X evaluated at elements of left Jordan chains

of 4 and elements of right Jordan chains of B. This may be applied to convergence of powers of C. Other
related matters are also discussed.

associated with A is the same as that of

1. INTRODUCTION

(a) Problem Statemen: We are primarily concerned with the following general
problem. Suppose that Ae M,, Be M,,, and Ae C are given. If the basic Jordan blocks
associated with A in the Jordan canonical form of A4 are of sizes ny, n,,...,n and
the basic Jordan blocks associated with A in the Jordan canonical form of B are of
sizes my, .. ., m,, what are necessary and sufficient conditions on a matrix X e M, ,

such that the block matrix

C=C(A,B;X)=[g ﬂ (1)
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has basic Jordan blocks associated with 4 in its Jordan canonical form of sizes
ny,...,m, my,...,m,? In this event, we say that X is i-neutral for A and B. Of
course 0e M, ,, is A-neutral for any A and B, but for given 4 and B, not scalar
matrices, there will always be many nonzero A-neutral matrices X. Note that we
allow the possibility that A occurs as an eigenvalue of neither or just one of A and
B, in which event the solution to our problem is trivial, as any X € M, ,, is A-neutral.
We also note the emphasis here on a single eigenvalue 4 {in the most interesting case
occurring in both A and B). There are, of course, connections with Roth’s theorem
[7] (see discussion below), which, in essence, addresses the situation in which X is
A-neutral with respect to every eigenvalue 4. In addition to this formal variation from
Roth’s theorem, it is our purpose (motivated by an application mentioned in part
(b)) to present a solution in terms rather different from Roth’s theorem. The key will
be the bilinear form of X evaluated at elements of left Jordan chains of A and right
Jordan chains of B.

(b) Motivation We were led to study the problem described in part (a) by two
rather different considerations.

The first deals with a recent observation arising in the context of computational
analysis of homogeneous Markov systems [8]. We call a matrix Q€ M, convergent
if lim Q' exists. (It should be noted that this definition, which is convenient, is at

t— oo
variance with a common definition of “convergent” that requires further that the
limit actually be 0.) It is a known fact, and a simple exercise, that a matrix in M, is
convergent if and only if each of its eigenvalues is either less than 1 in absolute value
or is equal to 1 and all the Jordan blocks associated with the eigenvalue 1 are 1-by-1.
In [8] the authors were concerned with a block matrix of the form C = C(A, B; X)
in which each of the matrices 4 and B is irreducible row stochastic. In this event, of
course, A and B are convergent. Their principal result is that if X is a real matrix
with row sums all 0, then the block matrix C is convergent also. Since the eigenvalues
of C are just those of A together with those of B, counting multiplicities, it is clear
that C is convergent, given that 4 and B are, if and only if X is 1-neutral. The proof
given in [8] is a rather lengthy and painstaking analytic argument (which does not
benefit from the observations of the previous sentence). It seemed to us that an
algebraic proof would be more natural and efficient. In providing same, we were
naturally led to the notion of A-neutrality and to substantial simplification of the
proof and generalization of the result of [8].

The second motivation for our problem is that it is a first step in a slightly different
view of a long standing fundamental problem. Often referred to as the “Carlson
problem™ [1], this is the question of which Jordan structures are possible for the
block matrix C in (1), given the Jordan structures of 4 and B, as X runs through
all complex matrices. Of course, this question may be viewed “eigenvalue by
eigenvalue”, and much is known. In fact, there is a recent “solution” via equivalence
to the problem of eigenvalues of an Hermitian sum, a solution of which has been
announced by Lidskii [5]. It is not our intent to discuss the Carlson problem itself
in any detail, but the connection with our problem is as follows. An “inverse” approach
to the Carlson problem might be to consider each proposed Jordan form for € and
to characterize those matrices X that achieve this Jordan form. Those Jordan forms
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that yield a nonvoid set of X's then constitute a solution to the Carlson problem.
Of course, a i-neutral Jordan form for each 4 is obviously feasible and provides a
first, and perhaps instructive, step in this program. In addition, the problem of
partitioning the set of all X’s by determining the solution set for each feasible Jordan
form is a natural and intriguing problem in the context of Carlson’s problem.

2. A-NEUTRALITY IN THE INDEX 1 CASE

The index of an eigenvalue 4 is the size of the largest Jordan block corresponding
to A. Thus 4 is an eigenvalue of index 1 when the geometric multiplicity of 4 equals
the algebraic multiplicity. In this section we consider the special case in which the
eigenvalue / is of index 1 for 4 and for B.

For Ae M,, call a nonzero vector f a left eigenvector of A corresponding to the
eigenvalue A if fTA=ifT.

THEOREM | Let Ae M,, Be M,, and Xe M, .. Assume that 1 is an eigenvalue of index
1 for A and for B. Then X is i-neutral for A and B if and only if for any left eigenvector
f of A associated with A and for any right eigenvector e of B associated with A we have

fTXe=0. (2)
Proof Let
A X
C=C(A,B;X)= :
0 B
For the eigenvalue 4, let f,f,, ...,/ be a basis of the left eigenspace for 4,
91,92 - .., g, a basis for the right eigenspace of 4, and ey, e,, . .., e, a basis of the

right eigenspace of B. If [h is an eigenvector of C associated with A, then
w

Ah+ Xw=4h and Bw=/iw. The vectors [%][902],[%"] are k linearly
independent eigenvectors of C associated with A. Moreover, in any linearly

independent collection [hl], ey l:h':l of eigenvectors of C associated with 4, at
w, w,

h . :
] an eigenvector of C, with w#0,
w

implies that w is an eigenvector of B associated with 4, it is sufficient to consider the

A vector [h"’] is an eigenvector for C associated with A if and only if

€;

(4 — AYh;= — Xe,. We claim that this is equivalent to fTXe;=0,i=1,2,...,k To
show this, complete a basis of C" by adjoining the vectors vy, vz, . . ., Uy 10 fiseoos Joe

v : :
Let V=[v,...,0-41% F=0[fi,... . fi]" and M = [F] Then M is nonsingular,

most k of the w; can be the zero vector. Since [

F(A — A1) =0, and the rank of V(4 — i) equals n — k. The claim is established from
the equivalence of the following statements.
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. A X . iy -
(i) [h’] is an eigenvector of [0 B] associated with 4.
e,

J

(ii) (A — Al)h = — Xe; has a solution h=h,.
(iii) M(4 — Al)h= —M Xe; has a solution h = h;.

i — [V Xe, )

(iv) vid }:”]h = — e,] has a solution h =h,.
| F(A— Al) | FXe;
V(A - [VXe,

(V) vid u)}h = — e’] has a solution h=h,.
B 0 | FXe;

(vi) fTXe;=0,i=1,2,...,k

h h .
Thus, there is a set [901:1, cees [g"], [ 1], . ,[ ’] of k + p linearly independent
e

0 e, »
eigenvectors of C if and only if f] Xe;=0,fori=1,2,...,kandj=1,2,...,p. As
the f7’s and e;’s form bases of the respective eigenspaces, this is equivalent to (2).

If A and B are convergent matrices, the convergence of C = C(4, B; X) depends
entirely on the eigenvalue 4 =1 being of index 1 in C.

COROLLARY 2 Let AeM, and BeM,, be convergent matrices, XeM,,. Then
C = C(A, B; X) is convergent if and only if X is 1-neutral for A and B.

CoroLLARY 3 [8,Theorem2.1]1 Let Ae M, and Be M,, be irreducible row stochastic
matrices, X€ M, .. If all of the row sums of X are zero then C(A, B; X) is convergent.

Proof The eigenvalue A=1 of B is of index 1 and multiplicity 1. The vector

e=[1,1,...,1]"isa basis of the eigenspace of B associated with 4 = 1. The condition
that all row sums of X are zero is equivalent to Xe =0. Thus X is 1-neutral for 4
and B by condition (2). [

For fi,fs ..., /i and ey, e,,...,e, defined as in the proof of Theorem 1,
F=[f1,.--.»fJTand E=[e,,..., e,], we have established that for 4 of index 1 for
A and B, the matrix X is A-neutral for 4 and B if and only if

FXE=0.

It is of interest to know the status of A for C = C(4, B; X) when 4 is of index ! in
each of 4 and B, but FXE # 0. In order to do this we first consider a decomposition
under similarity of C. This decomposition, which does not require that 1 be of index
1, will also be used in the solution of the general case.

Let S and T be nonsingular matrices producing the Jordan forms of 4 and B.

is, §~ Joo 0 - Jp(4) 0
Thatis, S 'AS =| "4 and T 'BT =| "8 . )
[0 J,.(/l):l 8 o J.|'™ which J,(4) denotes the

. - B
Al-portion and J, represents the remaining blocks of the Jordan form for A, with



EIGENVALUE NEUTRALITY 293

corresponding notation for B. Then

[S“ 0][/4 x][s 0]_[8"/&8 s*‘xr]_ 0 J) Y 1
0 T'lo BlloT 0 T7BT| |0 0 Jyd) 0

0 0 0 Jg_

Since / is not on the diagonal of J, or Jg, this last matrix is similar to
(7, 0 o v
0 Jgi) Y 0
0 0 Jg2) O
0 0 0 J,

By means of a permutation similarity on this matrix we obtain the fact that
F —

JG) Y 0 0

[A X] L 0 Jg(d) 0 O
1s similar to ~ .
0 B 0 0 J, vV

L0 0 0 J|

and note that 1 is not an eigenvalue of either J, or J;. Thus, in examining the status
of 2 in C(A, B; X) it is sufficient to consider the upper block C(J (1), Jz(1); Y).
Now let A be of index 1 for 4 and for B, and let F and E be defined as above.

. ) w
It 1s possible to find matrices W and U such that S™! :[F:l and T=[EU]. In

thiscase Y = FXE. Let N = C(J((4), Jg(4); Y)— I = C(0,0; FXE). Then N> =0 and
if FXE #0, A will be of index 2 in C= C(A4, B; X) and there will be r = rank(FXE)
blocks of the form J,(A) in the Jordan form of C. We use J,(4) to represent a basic
Jordan block, a k-by-k upper triangular matrix with 1’s on the main diagonal, 1’s
on the superdiagonal and all other entries zero (see [4, definition 3.1.1]). In general,
the matrices J,(4) and Jp(4) will be direct sums of basic Jordan blocks of various sizes.

THEOREM 4 Let A be an eigenvalue of index 1 for Ae M, and for Be M,,, and let
XeM,,. Let fi,..., [ be a basis of the left eigenspace for A associated with . and
e,...,e, a basis of the right eigenspace for B associated with i, and let
F=[fi,..../J" and E=[ey,...,e,]. Then for the matrix C = C(A, B; X), A will
have index less than or equal to 2 and there will be r = rank(FXE) 2-by-2 basic Jordan
blocks associated with 2 in the Jordan canonical form of C.

(see [4, Theorem 2.4.8]).

3. A-NEUTRALITY IN THE GENERAL CASE

We now consider the general situation in which A has basic Jordan blocks of order
ny, Ny, . .., n, corresponding to the eigenvalue A and B has basic Jordan blocks of
order my, m,, ..., m, for A. The discussion regarding decomposition presented after
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A X .
Corollary 3 shows that to examine the Jordan structure of [O B] corresponding

JJ() Y

. } The key tool in our
0 Jp(4)

to 4 it is sufficient to consider the matrix [
. .. ) . A Y. .
investigation will be the theorem of Roth [7] which states that o B is similar

A 0 . , ) .
to [0 B} if and only if the matrix equation AW — WB =Y has a solution W. We

use an immediate block version of this result.

LemMma 5 Let Ay, A,, ..., Ay, By, ..., B, be square matrices. The matrix
A, 0 Y, - Y!p
A, : :
0 Ak Ykl Ykp :
B, 0
0 .
0 B,

is similar to Diag(A4,, 4,,..., A4, B;,...,B,)ifand only ifforeachi=1,2,...,k
and j=1,2,..., p the matrix equation A;W;;— W;B;=Y;; has a solution W;.

J(4) Y }

0 J(2)

in which Ye M, ,. We shall be interested in the sums along certain diagonals in the
lower left corner of Y. We use the term lower complete diagonal to indicate that the
first entry is in the first column and the last entry is in the last row, i.e.,
Yits Vi+1,20 -+ - » Yre—i+1 are the entries of a typical lower complete diagonal of Y. The
matrix Y has s = min{r, t} lower complete diagonals. The sum of the entries in such
a diagonal will be called a complete lower diagonal sum. For example, Y € M, ; has
exactly three complete lower diagonal sums, ye,, Vs; + Vezs Va1 + Vsz2 + Vea-

In view of this fact, it is sufficient to investigate a matrix of the form [

LeMMA 6 Let YeM,,. The following are equivalent.

AV O [J,(A) 0 ]
is similar to ;
0 J(A) 0 J(4)

[J,0) Y . [J,0) 0 ]
is similar to ;
L 0 J(0)_ L 0 J(0)

(i) The complete lower diagonal sums of Y all equal zero. That is,

(1)

(if)

h
2 Ve-n+ii=0,  h=1,2,...,s; s=minr,1}. (3)
j=1

Proof The equivalence of (i) and (ii) is immediate. To show the equivalence of
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(ii) and (iii) let N =J,(0) and M = J,(0). Then (ii) is equivalent to the existence of a
matrix W which is a solution of NW — WM =Y. For We M

r.tb
r“'zl W22 — Wy, Wiy =Wy -
Wiy Wiz — Wy Wiz — Wy,

NW - WM =

Wiy W — W, W3 —W._ 1.2

0 - W, —W,, J

-

The element in position (i, j), i#r, j#1, is Wis1,j— Wij-1. The complete lower
diagonal sums of NW - WM, beginning in the lower left corner, are 0,
W b (=w, ) =0,mw_ ; + W, —W,_ 1)+ (—w,;)=0,.... The complete lower
diagonal sum beginning in position (i, 1) is

r—i

Wiviat Z Wisjj = Wivjr -1} +(=w,,_)=0.

j=2

Due to telescoping, in calculating these s = min{r, t} complete lower diagonal sums

-1
of NW — WM, while there are _s_(;zi {) entries of NW — WM involved, only 6= 1)

elements w;; of W are included. Moreover, the arrangement of the w, ; in the remaining
diagonals allows for the systematic evaluation of the remaining w;;. Thus, there will
be a solution W to NW — WM =Y if and only if the complete lower diagonal sums
of Y all equal zero. By Roth’s Theorem, (ii) and (iii) are equivalent. ]

An ordered set f,,f,,...,f, of nonzero vectors satisfying f7A=Aif7 and
STA=2fT+ fL,,i=1,2,...,r— liscalled a left Jordan chain of A corresponding
to 4. Note that [, is a left eigenvector of A associated with A. In like manner, an
ordered set ey, e,, . . ., e, of nonzero vectors satisfying Be, = Ae, and Be;= le; +¢;_,
i=2,3,...,tis called a (right) Jordan chain of B corresponding to 4. In this chain,
is the ei [ ing fi 4 X to §7'48 S_1XT:] to the principal
e, is the eigenvector. In going from o B 0 - princip

submatrix [J'M) 1;)] to be considered, the matrix Y is of the form Y = FXE, with
WA

F=[f,,....£]" ar;d E=[e,,...,e] where f,...,f, is a left Jordan chain of A

corresponding to 4 and e, .. .,e, is a right Jordan chain of B corresponding to A.

In particular, y,; = f[Xe,. Therefore, using Lemmas 5 and 6, our result is obtained.

THEOREM 7 Let Ac M, and Be M,,. Then Xe M, ,, is A-neutral for A and B if and
only if for any left Jordan chain f,f,,...,J, of A corresponding to A and for any

right Jordan chain e,, e,, ..., e, of B corresponding to i, we have
h
Y flh-;Xej=0, h=1,2,...,s; s=min{r t}. (4)
i=1
There is a local version of this result {Theorem 7). It can be shown thatif f;, ..., f,

is a left Jordan chain of 4 corresponding to A such that the equations (4) hold for
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all right Jordan chains of B corresponding to 4, then the basic Jordan block J,(4) of
A associated with that left Jordan chain will be a basic Jordan block of C(A4, B; X).
The corresponding result for a fixed right Jordan chain of B for which the equations
(4) hold for all appropriate left Jordan chains of A also holds.

Describing the Jordan structure of C(A, B; X) for 4 when X fails to be i-neutral
is far more complicated in the general situation than it was in the index | case. We
consider only the case in which each matrix has exactly one Jordan block for 4. Let
C = C(J,(0), J,(0); Y) and let e=[0,0,...,0,11". If g =max{r,t}, then w= Cle =
[ceos¥eo11+ Ve Y15 0, ..., 01" where the first s = min{r, t} coordinate entries of w
are precisely the s complete lower diagonal sums of Y. In the product Cw, the only
nontrivial action on w is caused by the leading principal block J,(0) of C, which has
the effect of moving each entry up one position. When C*w is a nonzero multiple of
the eigenvector [1,0,0,...,0]7, the sequence C*w, ..., Cw, w=CY%, ..., Ce, e will
be a right Jordan chain of C. If h (h<s) is the least positive integer such that

h

v="3 Y,_44+;;#0, then C*w=[v,0,0,...,0]. In this case, C has Jordan blocks
ji=t

ofsizer+t—(h—1)and h—1.

THEOREM 8 Let Ae M, and Be M,, each have precisely one basic Jordan block
associated with A. Let {1, f,, . . ., f, be a left Jordan chain of A corresponding to / and
ey, €,,...,e aright Jordan chain of B corresponding to A.

(i) If fTXe, #0, then the Jordan canonical form of C = C(A, B; X) has exactly
one basic Jordan block of order r + t associated with 1.

h
(i) If h is the least positive integer, 1 <h < min{r,t}, such thar Y fI_,, ;Xe;#0,
j=1
then the Jordan canonical form of C = C(A, B; X) has two basic Jordan blocks
associated with A of order h— 1 andr +1t— (h—1).

We close with two brief comments. First, it follows from Theorem 7 that for fixed
A, B and / the set of A-neutral matrices is a vector space. Second, for corresponding

. . ) A 0
analysis of block triangular matrices of the form [ } one may use complete

upper diagonals and exchange the adjectives right and left in our results.
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