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High-temperature fermion propagator: Resummation and gauge dependence of the damping rate
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The gauge-fixing dependence of the damping rate of the QED and QCD fermionic excitations at
high temperatures and long wavelengths is reexamined in detail using the effective leading-order per-
turbation expansion developed by Braaten and Pisarski. In contrast with what is expected from recent
formal discussions, explicit calculations in covariant gauges yield a fermionic damping rate that is
gauge parameter dependent. This result has general implications for gauge theories at nonzero tem-

perature.
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In order to understand the stability of hot matter, e.g.,
of the QED and the QCD plasma at high temperatures, it
is of central importance to correctly calculate, in the
framework of thermal perturbation theory [11, the damp-
ing rates of the plasma excitations (waves), the bosonic as
well as the fermionic ones.

Indeed, during the last, more than ten, years many cal-
culations with different disagreeing results, mainly on the
gluon damping rate in hot QCD (“‘the plasmon puzzle™),
have been published [2]. Only recently Pisarski [3],
Kraemmer et al. [4], and by an independent argument
Kobes, Kunstatter, and Rebhan [5] have shown that the
apparent gauge-fixing dependence of the damping con-
stants at one-loop level is due to the lack of consistency of
the approximation used. Although Ref. [5] gives explicit
arguments only for the gluon damping rate, the results ap-
ply to the fermion damping rate as well.

At high temperatures and at leading order in the gauge
coupling constant, Braaten and Pisarski [6] have suggest-
ed that a consistent approximation scheme can be ob-
tained by resumming the “hard thermal loops” into
effective propagators and vertices for soft gluons and
quarks. Moreover, they claim that to leading order this
scheme yields the same damping constant in strict
Coulomb and covariant gauges [7].

In this paper we reexamine the question of gauge-fixing
independence by considering the class of covariant gauges
in more detail. Following Braaten and Pisarski [6], we
use effective propagators and vertices in the long-
wavelength limit. The tree-level Ward identities satisfied
by the effective propagators and vertices [6,8] can be used
in order to evaluate the gauge-fixing dependence of the
resummed self-energies, more precisely of their discon-
tinuities. In the following we concentrate on the damping
rate of the fermion excitation (at vanishing three-
momentum), since it is technically simpler than the rate
of the gluon. Braaten and Pisarski [7] used Ward identi-
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ties to argue that the gauge-dependent parts of the fer-
mionic damping rate vanish on the physical mass shell in
strict Coulomb and covariant gauges. More recently, a
calculation of the fermionic damping rate has been per-
formed in a general class of linear gauges [9]. However,
in this calculation also the gauge-dependent parts are
dropped because they are shown to be proportional to the
mass-shell condition. In the present work, the gauge-
dependent parts are calculated explicitly in covariant
gauge, and shown not to vanish.

The fermionic damping constant is related to the imagi-
nary part of the effective fermion self-energy . There are
two contributions at leading order in the coupling constant

g:
2(p)=%Z,(p)+=,(p). (¢))

The first is the one-loop fermion self-energy contribution,
familiar from the T=0 case; however, here the fermion
and the gluon propagator Ay and A,,, respectively, and the
gluon-fermion vertex I, are the effective thermal ones, in-
cluding the hard thermal loops, as given in Ref. [6] (the
superscript asterisk used in [6] is dropped). The term Z,
contains the effective four-point vertex T, in which two
gluons are attached to the fermion line. Following closely
the notation (and conventions) of [6,8] the terms are

%0 (p) = =g dk A, T (p, — p+ ki — k)
XAf(p—k)T"(p—k,—p;k) 2)
and
£4(p) = (ig/2) [ dk A, OT™(p, = p;— k,K) . (3)

Since we do not need the specific expressions for the ver-
tex functions, the following analysis holds for QED as well
as for QCD, apart from color factors which are
suppressed.
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We note the use of the imaginary-time formalism at
temperature 7, i.e., boson [fermion] energies are discrete
ko=2nnT [po=Qn+1)xT], where n is an integer.
Later, in order to calculate the discontinuity of Z the ana-
lytic continuation [6], kolpol — —i(w+i¢), to a continu-
ous Minkowski energy o is performed. The loop integral
is denoted by TXJd’k/(2n)*=[dk, having in mind
that this integral includes only soft momenta of O(gT).
The metric is Euclidean, e.g., k 2= (ko) 2 +k>

The effective vertices I', and I, obey the Ward identi-
ties [6,8]

kT (p,g;k)=—ila7 ' (p)+a7 ()] (4)
(it has the same structure as at the tree level) and
kuyk TP (p, — p;—k,k)=—i[2A7 ' (p) —A; ' (p+k)
=AY (p—K)I, ()

where the effective inverse fermion propagator is decom-
posed as A '(p) = —ip—2(p), for a fermion with zero
bare mass.

Next we investigate the gauge fixing dependence of the
discontinuity in the resummed self-energy X(p). All the
gauge dependence comes from the boson propagator A,,,
and we consider gauge variations 6A,, about an arbitrary
(“fiducial’’) gauge [10], restricting to the class of covari-
ant gauges, such that the gauge-dependent part of the bo-
son propagator is given by
kuk,

k)’
with & an arbitrary parameter.
Using the Ward identities, Egs. (4) and (5), we find

s3(p)=—cg?a7 (p) [ ( :2")2

+eg2a7 ') [ Tkizk—);Af(p—k)Af'(p). <)

Note that Eq. (7) is consistent with the analyses of Refs.
[5] and [6], which formally prove that the gauge variation
of X is proportional to the lowest-order inverse propagator
A; '(p) and hence vanishes on shell, since, after analytic
continuation,

Af_‘(p)lonshellzo- (®)

As emphasized in Ref. [5], gauge independence only fol-
lows if the corresponding coefficients in Eq. (7) do not de-

88, (k) =¢ 6)
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velop poles on the effective mass shell. Despite the fact
that arguments have been given [5] as to why such poles
should not occur in general, we now show that the imagi-
nary part of the integral

S G =n 0)

does in fact develop an on-shell double pole, so that the
second term in (7) yields a finite, gauge-dependent contri-
bution to the resummed damping rate. Thus, although
the gauge-dependence identities themselves are not violat-
ed, the conclusion that the damping rate is gauge indepen-
dent appears to break down in covariant gauge.

We focus on the damping rate of the excitation at rest
(at vanishing three-momentum), which after analytic con-
tinuation becomes proportional to discZ(po,p=0)—the
same label pg is used for the discrete Euclidean as well as
for the continued continuous Minkowski energy of the
external fermion line.

The effective fermion propagator is described in Refs.
[11-13]. The hard thermal loop is gauge-fixing indepen-
dent and gives the leading term in 7 dominating at soft
momentum p; exhibiting the Dirac structure the effective
propagator is expressed by two functions as

A7 Y (p) =yoDo(p) +iy pD;(p) , (10)

with p=p/|p|. The scale in the functions Do, (their
specific form may be found in [13]) is of O(gT) and
determined by the fermion mass induced by temperature,
mp=g>T?/8.

For positive energy the fermionic excitations contain
two modes (denoted by the subscripts =+ ), corresponding
to positive as well as a negative helicity-chirality ratio, re-
spectively. They are solutions of the real parts of the
dispersion equations Do(p) = £ D;(p). Introducing two
projectors for the (+) modes, P+ (p)=(y°+iy-p), and
correspondingly D + =Dg % D,, we define the gauge vari-
ations for the two modes by

52+ (p)=§ TrlP+6z(p)], an

where Tr denotes the trace with respect to the Dirac ma-
trices and &% is given by Eq. (7).

At vanishing three-momentum, p =0, the two solutions
are degenerate, since after continuation D;(po,p=0) =0,
and Do(po,p=0)=(pé —m})/po. Also the damping
rates coincide for the two modes. Therefore the quantity
of interest becomes

[p§ —mf]

]
disc[6Z + (po,p=0)1=¢ 5 disc{g2 dk
Po

(k?)?

Irrelevant numerical factors are suppressed. We note that the integral [dk/(k

1 1
+ . (12)
D+(po—k0,k) D—(po“ko,k) }}

2)2in Eq. (7) does not contribute after an-

alytic continuation to the discontinuity in the self-energy. In order to evaluate the double poles in 1/k 2 which appear in

Eq. (12) we use the prescription

-8 )
(k?)? om? | k2 +m? |, .,

(13)

consequently, we first take m2— 0 before the effective on-shell limit, po— m,. We denote this procedure by

lim& lim lim .
Po—myrm?—0

(14)
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The discontinuity in Eq. (12) is computed after performing the sum over the energy ko of the intermediate boson using
the identity (cf. [14])

discI(ipo— po+ie)= dlSC{T Z Svoson(k0) fDirac(p —ko)H
n==—oo ipo— potie

+ oo
=x(efo+1 )f_m dwdw'8(po—w—w)Ingw)pg(wlng(w)pr(w') , (15)

where pp r are the spectral densities for fuoson.Dirac- The statistical distribution functions are ng r(w) =(e® F1) 7!, re-
spectively, with B=1/T.

The spectral densities are, for the boson, pg(w) =e(w)8(w?—k?—m?), and for the fermion, the density pr is given in
Refs. [13,14] in terms of p+ =disc(1/D + ). For the damping rate under consideration p + receive two contributions: the
timelike ones p'8* from the quasiparticle excitations, and the spacelike ones p%*° due to Landau damping. Therefore it is
convenient to treat these two contributions separately, when evaluating the gauge variation of the fermion damping rate,

Eq. (12).

Let us first examine in detail the discontinuity due to the quasiparticles, i.e., the expression

12
discl8Z + (po,p=0)1|es=¢&g m} ——1"(py) ,

where the integral is given by

1™(po) = nng '(po)lim [

{ [ wi (k) —k?
x ———————
4mf

(16)

9 ]f(z )zf dwewWngW)sw?2—k2—m?)

[nr(w4)8(po—w—w4(k))+( —nF(W+))5(po‘W+W+(k))]+[(+)'—’(—)]}; amn

it includes the sum over the positive and negative modes. Here and in the following k =|k|. Without restriction for the

general case we choose po—
The 6 constraints lead to the following conditions: po—
E(k)=(k2+m?)'"?,
Inserting the solutions the integral simplifies as

I"(po) =ns ' (po)lim

In order to perform the interesting limit, Eq. (14), we
realize that the solutions of the constraint equations van-
ish linearly as k + =constx (po—my), which is derived
from the behavior of the positive and negative modes in
the limit of vanishing three-momentum [13]: i.e.,
2
w (k) = m,_i+l"—+ 19)
— 3 3 my
For the dominant term we finally obtain in the appropri-
ate limit the surprising result

1 1 1
I™(po)=—3T | —+—15+0
Po ak% " 2kr ks ”
(po—my)

that is, the integral becomes “singular” when approaching
the fermionic excitation mass shell (at vanishing three-
momentum).

Next we study the gauge-fixing parameter-dependent
contributions coming from the branch cut of the effective
quark propagator associated with Landau damping. In
this case, from first inspection, it seems safe to work
directly on shell and to investigate the integral ld'sc(m/)

_9
Py ] > {E(k) ng(E(k))np(w(k))[

m > my, before performing lim in the sense of Eq. (14).
E (k) =w + (k) with respect to the two modes, where we denote

w2(k) —k?

m}

1
|0E/dk 2+ dw/dk ?| }k ke wEwa (k)

(18)

[
defined by

disc[6Z + (po=m,p=0)] |dise

2__ 212

=gg2 PO =M faet ) a1)
my

We find that 79%°(m,) has a well-behaved finite value,

leading to a &-dependent contribution in Eq. (21), which,

however, vanishes on shell when po=my.

This completes the proof that the covariant gauge vari-
ation of the damping rate does not vanish on shell.
Indeed, we find a contribution to the fermionic rate due to
the quasiparticle excitations, which reads

disc[6Z + (my,p=0)] < £g2T=0. (22)

A similar result [10] is true also for the damping rate of
the gluonic excitations.

The above calculation has potentially important impli-
cations not only for resummed thermal QCD: The
analysis uses only the Ward identities satisfied by the
resummed n-point functions, and does not depend on the
detailed structure of the fermion propagator in (9).
Moreover, the integral in Eq. (9) is representative of the
mass-shell behavior of more general cases, such as a mas-
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sive field coupled to a massless one at finite temperature.
Thus, the problem may not be specific to the resummation
techniques used, but instead gauge dependence may be
generic to any gauge theory at finite temperature, in co-
variant gauges at least.

The origin of this problem may lie in the infrared be-
havior of the theory, i.e., possible infrared singularities
near the mass shell. Thus, a suitable regularization
scheme may lead to a resolution of the problem of gauge
dependence.! In particular, the problematic integral in
(9) gives a vanishing contribution to the damping rate
provided an infrared regulator is introduced, and kept
nonzero until after the mass-shell condition is imposed.
This has been verified using both a cutoff [15] and dimen-
sional regularization [16]. It should be noted that such a
regulator is, in principle, distinct from the mass term used
in (13) to treat the double pole. The need for such a regu-
lator is familiar at zero temperature, when, for example,

This possible resolution was first pointed out to us by Rebhan
[15], and is reinforced by calculations of Braaten [16].
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logarithmic divergences occur near the mass shell in the
(real) wave-function renormalization constant. The
surprising aspect of the present analysis is that the terms
in question at finite temperature are not divergent so that
there is no obvious reason for keeping an infrared regula-
tor in the discontinuity. [In the effective resummed
framework, the real part of the self-energy in Eq. (7) has
no direct significance, since one expects that higher-loop
diagrams will also contribute to the real part to the same
order (i.e., g27).]

It is unclear whether extra higher-loop contributions to
the imaginary part, as conjectured in Ref. [17], have any
bearing on this problem. In any case, it is hoped that the
consequences of our result are worthy of further attention.
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