NATURAL

Manfred Minckemeyer and Thorsten Spitta

Schering AG

Millerstr. 170-178
D - 1000 Berlin/MWest
Germany

Tab f

0 Introduction

1 Definition of Prototyping

2 Project Model with Prototyping

3 Experiences and Concept of NATURAL Usage
4 Experiences with a Prototype System

A Literature

Abstract

This paper describes how prototyping is made possible by using powerful tools in a

software engineering environment based on a phase modet. Prototyping is considered to

be a useful technique WITHIN a detailed concept of software production rather than
such a concept itself.

0 Introduction

Prototyping is one of several new SELLING-EXPRESSIONS used i

n the same way as OBJECT
ORIENTATED SOFTWARE,

NON~PROCEDURAL LANGUAGES etc.
give well-known concepts a certain veneer of learnin
concept. NATURAL is a rather new tool,

in a data base environment (ADABAS).

Those terms are sometimes used to
d. Prototyping seems to be such 2
but contains some very old concepts, now used

NATURAL is said to be an INSTRUMENT oF PROTOTYPING AS A NON-PROCEDURAL HIGH LEVEL
LANGUAGE OF THE 4TH GENERATION OF PROGRAMMING LANGUAGES, whatever all this will be.

123

We, that is Schering AG, Berlin/Bergkamen, West Germany, speak less sophisticatedly
about NATURAL and prototyping. On the other hand we think, both

- prototyping as a technique
- NATURAL as a tool

are very usefut in a large EDP-department using software engineering methods.

1 Definit P .

1.1 The Term 'Prototyping'

In the engineering sciences ‘prototype’' is a wel l-defined term meaning the first
really working version of a new type of product. A prototype has all essential
attributes of the final product, and it is produced in order to perform final tests

and improvements before starting mass production.

Since software is no mass product, in the context of software development the term of

prototyping must be used in a different manner.

The claims of prototyping are

- quick and simple basis of understanding between the user of software and the

developer,
- stepwise introduction of Llarge system, to get the user familiar with his new

working environment,
- installation of improvement procedures after analysis of prototypes.

We define: Prototyping is the development of software by means of

- experimental user interfaces (= prototype programs)
- fixed requirements between end of specification and introduction in user depart-

ments
- as much tool-supported design and implementation as technically possible to

shorten time between specification and implementation
in order to reach well accepted software.

In defining this, we know that

~ the degree of acceptance can never be perfect because it depends not only on

tools and organization but also on human behaviour.

- software has a very wide variety of complexity. Therefore prototyping is dif-

124

! ferent for certain classes of problems.

TooLs for prototyping must fullfil certain claims:

1. quick simulation of the end user interface, that is

4. screen/list layouts on the really used medium

2. transaction sequences oh a real screen

3. readable specifications of user-defined internal algorithms (calculations,
plausibitity checks of input data etc.)

f: I1. quick and safe development (or handling) of the data base; this implies the use
I of a flexible data base management system with an integrated data dictionary.

I11I. quick realization of important parts of the system (strategy: most critical com-
ponent first).

See: [FREEMAN].

The aids of prototyping are:

~ support of tearning processes of

o end users ==> about solutions with EDP

° system analysts ==> about precise requirement specifications

correct software, which is congruent with its specification.

1.2 Prototypes and Prototyping Activities

In the meaning of the claims above we define
= @ PROTOTYPE is a system developed for experimental use only; it is a prototype
program or sub-system as part of the final system

prototyping ACTIVITIES (syn.: explorative prototyping; see (FLOYD]) to apply

powerful tools during project development in order to reach

quick and clean constructed software.

125

Production of a prototype of the EDP-system to be developed may be effective, if the
problems to be solved are very complex or if there is no experience in solving those
problems. Also a prototype sub-system containing the essential features of the user
interface may be used for teaching purposes before the final product is installed.

However, for most EDP-projects we do not consider the development of a prototype
(sub-)system to be useful. In those projects we apply prototyping activities, which

will be extensively described below.

By now the reader might have the impression that every usage of powerful design and
implementation tools in software development is a prototyping activity. This is in-
deed intended.

We extend the range of prototyping activities from the requirement to the realization
phase, because it is an old experience of soCIAL sciences that user's requirements
cannot be fixed for a longer time (see [CYERTD . So prototyping activities are part
of an exploratory strategy intended to shorten time between specification and

realization phase.

Oour argument from the viewpoint of a large mainframe user is that the tool-landscape
in this area for quick and cleanly constructed online software on an integrated data

base, had been so poor until a few years ago, that now with

- new tools

- modified phase models
there is the possibility of reaching

- better acceptance
- quickly reconstructed improved releases

of software.

This we have defined as prototyping in 1.1.

2 Proi el yitl .

The model of prototyping contains

~ the organization of software development,
- tools of development,
- quality inspection and improvement.

126

This model aims at

as many prototyping activities'in
software development as possible.

2.1 Project Organization

We defined 6 phases of software deve lopment:

1 rough concept

2 fine concept

detailed analysis of the organizational concept
and first structuring of the functional and
data base aspects of the application system

requirement specification for each EDP-package;
in this phase prototyping activities are performed

depending on the complexity of the software to be
deve loped

phase 2 results in a contract with the end user

3 EDP-technique

4 realization

5 introduction

& optimization

be strictly obeyed:

modularization under EDP-aspects, data base design

module specification and construction, programming,
testing, integration

in the end user's environment

correction of faults detected in phase 5 and
improvement of system performance,

en specification and realization, one rule must

Never change requirements after the énd of phase 2!

is supported by a project Library,
management it jg technicallty impossibte to

Without authorization by the firm's project
update documents of finished phases.

127

2.2 software Development Tools for Prototvping

Schering uses general tools for software development. Prototyping is performed in

connection with those tools.

The project organization is supported by a project library system distributed on a
master-computer with a data dictionary and the slaves. The developer's interface is
solely the slave. This distributed project library is only one of several possible
solutions (for details see: [SPITTAD.

Since, especially during the first phases of development, the production of text
documents is dominant, the slaves must provide a powerful text editor. Access to the
host should be possible, too, in order to use master-tools (NATURAL is one of them).

To discuss the use of tools in the various phases, we distinguish between

- data producing software (DPS)
- query software (QS).

2.2.1 Reauirepent Specification and Design of Data Producing Software

DPS affects the firm's integrated data base by creating respective updating central
data. During project development the data base grows if new object types are defined
or new data elements are added to existing ones. Therefore in phases 1 (new types of
objects) and 2 (new data elements to existing types of objects) a data model of the
project is produced to see influences on the firm's data model. User views must be

gathered with the data dictionary.

Because the process of finding new or updated data elements is not evident, the
requirement specification contains a structured design of functions and data. The
tool used for this is the data dictionary. Development and maintenance of the data
model are supported by additional programs on the host, which check integrity of

input-output data of functions and other relations between functions and data.

Prototyping activities are not primarily used to support quickness of phase 2 but to
support the understanding between analyst and end user on how the system will work.

Our experience has shown that this cannot be achieved when the end user interface is

designed on paper.

Screens and listprints must be designed using prototypes of single programs and
sequences of maps on the screen. This increases the probability that the requirement

specification really expresses what the user needs.

128

The analyst must be able to implement and change the prototypes in a quick and easy
manner. NATURAL fulfilis this requirement.

Screen layout is supported by the NATURAL Online Mapping Utility. This utility allows
the map to be edited by means of symbols placed where the fields are to appear on the
screen (field attributes are defined by placing user—defined control characters). The

map may then be tested and saved. Finally an object module may be generated automati-
cally.

For the purpose of documentation the maps are copied into the requirement specifi-
cation, and the logical flow is described using state diagrams (see: [DENERTJ), which
can be easily understood by both the end user and the analyst. Data and functions

(processes) are specified in prose or pseudo-code, but strongly subdivided into func-
tional trees (tools: see above).

As a result of the use of this powerful tool there are at the end of phase 2 executa-
ble object modules of the maps, which will be used during further development without
any change. In this case prototyping directly produces parts of the final product.

Simple list programs can be written very easily, too. Since NATURAL was originally
developed to be a Query tanguage, real data base accesses are quickly implemented.
Thus there is the possibility of displaying maps and list-prints filled with data.
This witl additionally improve understanding by the end user.

All prototypes of DPS programs
are to be thrown away later.

Thus there is no use in implementing complex algorithms. And of

course, no data base
updates may be done by the prototype! .

The NATURAL Security System is used to define

= which commands and

- which data base accesses

each user is allowed to perform,

In phase 3 the data base will be designed on the basis of the data model. The common

ADABAS utilities combined with DATA MANAGER PRODUCE-commands are used as tools.

129

2.2.2 Design of Query Seoffware

0S does not have an impact on other applications by updating the firm's data base and

is mostly simply structured.

Selected NATURAL query commands are accessible to the end user, who is thus enabled
to do some simple queries by himself without involving the EDP-department. Therefore
this type of Q@S is not subject of this paper.

For a DPS, phase 2 may last relatively long because of the necessary synchronization
process with the data base administrator. This is not necessary for a @S. Only the
user interface and the query requirements are specified in phase 2 using the same

tools for prototyping as described in 2.2.1.

Prototypes of QS programs will not
in any case be thrown away.

This depends on the complexity of the @S and will be decided in phase 3 after the
module structure and the interfaces to the data base are specified.

2.2.3 Programming and Testing

In phase 4 modules are specified and constructed, coded and tested. Successfully
tested modules are integrated into sub-systems and the sub-systems are tested. This

process continues until the whole system is integrated and tested.

Productivity in this phase depends heavily on the correct use of software-engineering

techniques and on the power of the tools used as well.

130

activity tools in general tools (Schering)

specification text editor with PET/MAESTRO
function keyboard,

construction product standards, NATURAL
data dictionary,

module coding | code generation COBOL ANALYZER
functions & OPTIMIZER

DATA MANAGER

module testing | standard stubs,
testdata generator,
compiler aided test
documentation

Prototyping activities in phase 4 aim at quickness and transparency without giving up
the certainty of developing correct programs.

When the sub-product PROBRAM coDE is to be generated, the project library system
provides the programmer with a file on the slave already containing a program frame
in the requested language. Coding the control structure of the program is aided by

programmed function keys. E.g. if the repeat-function key is pressed a repeat-
control-structure is generated:

COBOL: NATURAL:
REPEAT. REPEAT
IF 727 GOTO ENDREPEAT. IF 22?? THEN ESCAPE

GG TO REPEAT.
ENDREPEAT. CLOSE LoOP

'_' indicates the position of the cursor. The generated lines are protected against

updating; the '777'-string may be replaced by a procedure.

As described above (see: 2.2.1), the object modules of all screen maps are already

generated in phase 2. Also list generating statements exist in the prototype programs
and may be copied into the module's source and used with only few modifications.

For the testing of modules, stubs are used to simulate interfaces to other modules.

131

Unfortunately our software engineering environment lacks any support for controlled
and reproducible testing. Such a test support system does not exist in any industrial
EDP environment we know.

2.3 Quality Inspection

Quality inspection is very closely combined with development tools, because it is im-
possible to examine programming and specification standards manually in a large EDP-
department.

We improve quality by

-~ learning from the prototype
- learning from the user
~ using tools as described in 2.2

- final phase inspections by a project management institution.

2.4 Summary of the Model

Prototyping activities are recapitulated in the following table:

phase prototyping activity tool

1 rough concept - -

2 fine concept simulation of transaction NATURAL
sequences, screens, list- (ADABAS),
prints, state diagrams DATA

MANAGER,
PET/MAESTRO
procedures

3 EDP-technique - DATA

MANAGER

4 realization quick and clean development, PET/MAESTRO
module and integration procedures,
testing NATURAL,

DATA
MANAGER

5 introduction very complex systems only: -
stepwise introduction using
prototype sub-systems

6 optimization - -

132

3 Experiences and Concept of NATURAL Usage
Our concept of NATURAL usage for

- prototype programs
- prototyping activities

was strongly influenced by first experiences with NATURAL.
Therefore both aspects of NATURAL

- first experiences
= usage concept in future

are reported in a mixed manner.

3.1 Eirst Experiences with NATURAL

When Schering began to use NATURAL and started a pilot project in Iv/1982, we tried
to participate in the experiences of other NATURAL users by being consulted. We soon

got the impression that most firms use NATURAL as an instrument of quick and dirty
realization.

It is a severe error to believe that quality inspection is not necessary in a

prototyping environment. (The expression RrRaPID PROTOTYPING has promoted this
opinion.)

In addition to that, it became evident that the design of the language contains

several inconsistencies and dangerous respective unpleasant features.

So we decided to Tame NATURAL by programming guidelines and quality inspection

procedures. Also we had to develop a user profile Concept for an extensive use of the
NATURAL security system.

The pilot project now reached the end of phase 4,
bination of

and it may be stated that the com-

Schering programming rules (tool Supported by PET/MAESTRO procedures) and
= NATURAL Security System

is a very efficient aid for

e

prototyping by quick development as well as

disciplined production of programs to be easily maintained.

133

In the meantime the concept of integration of NATURAL into our software-engineering
environment was developed as decribed above.

Though some parts of the tool support have not yet been completely realized,

- the dialogue with the end user and his understanding
- the quickness and transparency of program construction and coding

have improved a lot compared with projects developed formerly using COBOL, PL1, FMS,
DMS and other non~integrated tools on an IMS data base.

3.2 scherina‘'s Concept of NATURAL Usage

We would like to emphasize that there are many similar tools, which can also be used
with the same development concept as required in 2, e.g. we are going to install a
CICS online mapping utility on PET/MAESTRO.

Nevertheless, the topic of prototyping with NATURAL was not simply selected because
Schering uses it, but because NATURAL is more than just a programming language. It
provides program development tools as well as an environment, which — with the excep-
tion of the editor - allows quick and easy programming and testing, thus making
NATURAL well-suited for prototyping in the sense of 1.

In phase 4 (realization) the NATURAL Programming Language is used in combination with

COBOL subroutines, because of

- faster execution times
~ some more usable features of COBOL, esp. table handling, which will be improved

in Llater releases of NATURAL.

As far as training is considered, the combination of both programming languages has

advantages because of their syntactical similarity.

3.3 conclusion and Future Plans

We summarize the concept of NATURAL usage as a tool of prototyping:

[——.

134

phase usage date

simulation of end user interface 1/83
DPS prototypes (throw-away-programs) | I¥/83
QS prototypes which are to be finished v/83
after a very short phase 3

N
|

4 = programming language for
. screen/listprint interfaces /83
. queries IV/83
- simple batch programs /83

NATURAL is going to be used under the control of Schering's project library.

In 1985 an end user concept will be realized to enable users to retrieve information
from the ADABAS data base independently from the EDP-department,

) . .

During the development of the project Llibrary (see 2.2), which was one of the most

complex projects ever realized at Schering, 8 prototype sub-system on the
PET/MAESTRO-slaves was implemented.

The user interfaces and several essential functions were prototyped, and several
other projects used that prototype. In this way we were able to gather experience as
well as to teach this new technique onLINE before the system was realized.

More than 60 system analysts, programmers and other future users were trained on the
prototype. Several pilot projects applied the functions of the prototype. Practical
experiences with the prototype were of great value for the final specification of
requirements and the technical knowledge of how to im
well.

plement the slave functions as

After half a year this prototype was completely replaced by the final system, which
has been in use since 1/83.

135

A Literature

CYerT, R. M,, anD J, G, MARCH:
A Behavioral Theory of the Firm.
N. J.: Englewood Cliffs 1963.

DeNERT, E,:

ifi . . ' Dial i Di .
Proc. Int, Comp. Symp. Liege 1977.
Amsterdam: North-Holland 1977. 417-427 (1977).

FLovo, CH,:

(In this volume.)

FREEMAN, P,:
Qesign Fundamentals.
State of the Art Report, Structured Analysis and Design, INFOTEC. Vol.2, 117-131
(1977 .

SPITTA, T.:

Software-Technik-Trends (GI-Fachgruppe Software Engineering). Heft 3-2, 60-82
(July 1983).

RTINS 72

o BT MR e

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14

