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CHANNEL CAPACITIES FOR: LIST CODES

. - RUDOLF AHLSWEDE, Ohio State University, Columbis

Abstract

. Inthe present paper we demonstrate that the concept of a list code is from a
‘mathematical point of view & more canonical notion than the classical code
concept (list size one) in that it allows a unified treatment of various coding

* problems. In particular we determine for small list sizes the capacities of arbitra~
rily varying channels. ‘
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1. Introduction

A. Preliminary remarks

List codes were first considered by Elias in [3]. They are a natural generalization
of ordinary codes. Instead of making a single decision about which code word
was sent, the decoder decides on a list of code words. Only if the transmitted code
word is not on the list do we say that a decoding error has occurred. This decision
scheme is of practical use whenever incorrect code words on the list can be
recognized by internal evidence. This is, for example, sometimes possible in the
case of the transmission of a text in an ordinary language, because languages
have a certain degree of redundancy.

The concept of a list code has found an additional justification by providing &
helpful tool for proving results for ordinary coding, (see, for instance, [8])-

Our present investigation originated from an analysis of a method to prove the

coding theorem for certain channels with noiseless feedback ([4], [5])-
The method comnsists of three parts:

(1) a lemma on list codes (Lemma 1 in Section 2);

(2) a procedure to reduce the list codes iteratively to list codes of small list size;

(3) the reduction to list size 1, that is, to ordinary coding.

In [4] we developed the method for the discrete memoryless channel with
noiseless feedback (d.m.c.f.) and in [5] we gave an extension to channels with
arbitrarily varying channel probability functions with noiseless feedback (a.v.ch.f)
The method does not work for compound channels with noiseless feedback
(c.ch.f.). This is somehow surprising, since the method seems to be very natural.
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Of course c.ch.f. can easily be treated otherwise, but there remains this formal
inconsistency, which seems to indicate that something is not clearly understood.
We therefore asked for the “well understood” method and for the coding pmblem
for which this method is appl:cabIe without exceptions. )

In the method described above, feedback is made use of only in Parts (2) and
(3): In the present paper we provide a tool (Lemma 4 in Section 2), which makes it
possible to ‘make tlie reduction in (2) also without feedback. Thus we obtain a
method to prove coding theorems for a large class of channels in the case of list
decoding and this modified method is therefore just appropriate for list decoding.
We shall treat compound channels, a.v.ch. and the zero error capacity probiem
For ordinary coding the capacity -of an a.v.ch. is known only for the case of a
bmary output alphabet [7] and a few other specig] cases. Qur original method
works in the case of feedback only for those channefs for which the list code
capacity (see (1.7)) equals the feedback capacity, For compound channels, for
instance, this is in general not the case.

We limit ourselves throughout this paper to ﬁmte aIphabets even though some

of the results extend to infinite alphabets, -
B, Befinitions

Y. Channels, list codes and capacmes o

. Let.X = {1,+,a} be the “input alphabet’” and ¥ = {1;+, b} be the‘ ‘output
aIphabet” of the channels we shall introduce below. Let X' =X and ¥*= Y fo;
t=1,2,%, By X, = []lms X* we denote the set of input n-sequences (words 0
length 1) and by ¥, = [, ¥* we denote the set of output n-sequences. s

Let w(- ] ) be an a x b stochastic matrix and let 9 be a discrete memoryic

channel (dm.c) wzth transnnssmn probabilities 2(- |+) deﬁncd by

(1.1) P()’nl n) - f[ w(‘y %9

f=1

"e Y; n—I 2
fOI' EVEI‘_V Xy = (JC ”'JxU)EX and every J"n'_(y ? ,y)s n3
~ Let' S.be any. ;et and let W= {w(:|"|s)|seS} beaset of stochastxc ax b

matrices, Set §'=§ for t =1,2,+, 1. For every
o

l Vs;=(sr,nn,sn)6 H Sr

tmf

we define P(-|-{s,) by

(1.2) Py, :;,,[s,,) = ﬁ w(y'|%"s)

=]

for every x, € X, and every J, € Y
For every n3 it =1,2,+ ., define 91, by
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13) A, = {P(: || )| s, S0}
and %, by
(14) ?fn= {P('l'\sn)l Sp = (s}“'ﬁs)! SES}’

A channel with arbitrarily varying channel probability functions (a.v.ch.) W is

defined by the sequence (), 1 2.... and a compound channel (c.ch.) % is defined
by the sequence (¥,)y=1,2

-
Lt

(1.5) Let L be a positive integer, A list code (n,N,L} is a system

{(ui: Ai)] P= 1: "':N};

where u;6 X,, 4, ¢ Y, and ., 1 4 ) £ Lforall y, e ¥,. 1ydenotes the indicator
function of a set B.

(1.6) A code (n,N,L)is a A-code (n,N, L, 2)

(a) for the d.m.c. 2, 1fP(A;[u;)2 1—-Adfori=1,-

(b) for the av.ech., U, if P(d|u|s)z1—24 for 1-1 N and all
§,€8,;

(c) for the cch. %, if P(4i|w|s)z1—2 for i=1, N'and all
P(-)-1s)e®,

(1.7)  Wecalla number K, = 0 the list code capacity or I-capacity of a channel, if
(@) for any ¢>0, 6>0 and 1, 0<l<1, there exists a A—code
e"K=h gt 2y for all sufficiently large 1, and :
(b) forany > 0and 4,0 < A <1, there existsno g, 0 <e < 5, such that
there exists a A-code (n, "X, e 1 for all sufficiently large n.

(n,e

(1.8) We call a number Dy, 2 0 the list code zero error capacity of a d.m.c. 9,
if Dy, satisfies (1.7) for A =0,

Similar to the feedback case, [5], we determine first the l-capacity 4, for thc
a.v.ch. 9. The result for Dy, follows by specialization. D,; is by definition the
maximal rate which can be achieved on a d.m.c. with 0 error probability for list
codes of not exponéntially increasing list length .Actually we show that one can
achieve Dy, for codes of a list length smaller than n, the word length.

II. Entropy and rate functfoﬁs-

(1.9) The entropy of 2 pmbabihty vector p = (py, -, p.) is defined to be
H(P) = - E Ptk’gPi

(1.10) The “rate” for the probability vector = on X and matrix w(- |') is
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R(m, w(-|+)) = H(g(w)) — T ml(w(-|9),

where g(w) = mw( ]-), |
(1.11) For z and w( , ) definea b x a stochastic matrix w(: , - by
WG| ) = mw(i [ gy W) ) = Lo, b= 1, ooy,
It is well known and easy to verify that

(1.12) R D = HE) = 2 g (0HOMC|).

The ordinary capacity D of the d.m.c. @ is given by
(1.13) D = maxR(n,w(*]')).
(1.14) ForieX denote the closed convex hull of the set of probab111ty vectors
{w(|D|we W) by W) and set
W = {w(:| )| w(:| ) e (i) for all ieX}.

W is called the row convex closure of the set of matrices W.
We define two quanutles C and A by

(1.15) | C = max inf R(m, w)
' r welW -
and
(1.16) S A = maxmin R(m,w).
T owel

C is the ordinary capacity of the c.ch. ¥ and A is the capacity of the a.v.ch. Qf.
in the case of noiseless feedback, provided the capacity is pcs1t1ve (see [3]).

2. Auxlhary results

Fxrst we restate results, which were obtained in [4] and [5] in terms of list
codes.

Lemma 1. Let & be a dm.c,, n a probability distribution (pd)on X, la
positive integer and & a positive number. One can construct a hst code (I, N, L, A)

for 9, such that:
(a) N 2 exp {H(m)}l - f(r,a)log 1};

®) L gexp {jz G B[ D1+ 50];

| - A g exp { ~ E(e,m Wi}
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The functions f(z,q), g(¢) and E(s,7,%) can be. given explicitly. E(e,x,w) is
positive and lim, ., g(¢) = 0. (Compare Lemma 1 and (2. 11) of [4] and the error
calculation given there.)

In [5], Lemma 1, we obtained a generalization, which we state as Lemma 2.

Lemma 2. Let p)| be ana.v.ch.,map.d. on X, I apositive integer and ¢ a pos-
itive number. Oneé can construct a list code (I, N L A) for YU, such that:

@) N 2 exp {H(n)l —f(n', a)log l}, |
(b) L éexp ma;{c Z q,(w)H(w*( |J))l+ g(a)!]
(©) A Sexp{— E(s :rr)I}

g(e) can be gwen explicitly and llma_,o #(e) = 0;

E(a, #) = min L‘(s, T, w) >0,
welp
The methods in [5] yield a similar result for the c.ch. ‘Lemma 2 can be expressed
for this channel, if one changes (b) into

@ Lsexp [ sup. 00RO |10+ Bl -

waW j-l :
For an understanding of our later arguments, farmhanty with the proofs of
Lemmas 1 and 2 is not necessary.

Lemma 3. Let @ be a dum.c. with.transmission matrix w and let W, be a set
of stochastic 0—1 matrices given by -~ -

We = {w|w stochastic 0—1 matrix, w(JI:) = 0 if W(jll) 0}

For the a.v.ch. ‘J.Io--determmeci by Wo——the followmg statements hold
(2) an (n, N, L, 2) code for U, is an (1, N,L,0) code for Wy} -+ =~ +
.(b) an (n, N, L, 0) code for- U, is an (n, N, L, 0) code for &, and conversely.

Proof. (a) follows from the fact that W, contains only 0~1 matrices. (b)is a
consequence of the fact that-w can be written as a convex combination of matrices
in. W0 (cf, Lemma in [6] Thera we used ordmary codes, but the same argument
extends to list codes.)

Denote the cardinality of a set G say, by |G|

Lemma 4. Let N, M, L and t be non-negative mtegers such that M- L S 1l
Denote the set {1,«:,N} by N.and the set {1,-:-,L} by .L. For any system
{Ty, -+ Ta} of M ‘subsets of N, which satisfies 1|T_,] < L(j=1,+, M), there
exists a mapping @ from ¥ into L such that ]II)" n T}| <tforall il and
J=1,0, M.
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Proof. For A = N denote by F(4) the set of all mappings from. & into .E,
which are constant on A. Set . .

Fr= ) FA
AST 14|zt

and set _

: M
= U 7

‘ . =1 ‘ :
Denote the set of all mappings from N into L by F. It suffices to prove that
,3@"“.?‘] ‘<l Since |#F|=L"and, . .

lﬁ-:, 5 M,(f')iL‘LN-'.i; ‘
\i’c‘dbta‘in that H o
|FF [ s M (I;)L”’éML/tHI, |

by assumption, '
(This Lemma will provide a subsntute for the lack of feedback and wxll enable

us to. make an 1terahve Iist reductmn) ‘
We give now the definitions needed in order to state thc elementary Lemma 5

I.et: pbea non-negative number, let » be larger than p a,nd Iet I bea posltwe-~
integer, Set 1, = |. Deﬁne now for every posxtwe integer f an /; inductively as the

smallest integer for which
(22) R T
Obviously, I, = I, 2 1; 2 - In the following we use “[ ] as the smalfest
integer larger than the numbemn brackets.

Lemma 5. Set Q =log p{logr)‘ and 0% “'(1 0)~*. For
I=1+4+[~(ogQ)~"ogl]: -

we hava:- | .
@ | 1151+Q*"'
o - }: I,SIQ*+IQ"‘

' ]
- Pr Uﬂf By (2.2) and the definition of 0 we have I, < 1,0 + 1 and generally

LSl LRk

for 1.-.1 2 " Hence, . ,
. > 'IQI-1+ Q* < 1+ 0%,
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by definition of @* and I. Furthermore,
1 ! i-2
z L= X (lQ’“1 + X Qj-) SIQ* 4+ 10>
i=1 1e1 =0

3. Determination of the list code capacities 4;, D, and C,
Let W, be as defined in Lemma 3 and use the operation ‘‘=""in the sense of
Definition (1.14). Our goal is to prove the following theorem.

Theorem. The list code capacities are given by the formulae:
{a) A, = max min R(x,w) for the a.v.ch. U,

t waol¥
(b) Dg; = max min R(x,w) for the d.m.c, &;
®  we lF"u
(c) C, = max inf R(z,w) for the c. ch. €. The expressmn to the right is known
I wely .

to be the capacity for ordinary ceding.

The capacities can actually be achieved W1th a list length smaller than h, the
word length, "

Remarks. (1) Inthe case of noiseless feedback one can reduce codes of list size
1 to ordinary codes provided that the feedback capacities are positive, Denoting
these capacities by 4, Doy and C; we thus obtain: 4, 2 4, if A, > 0; Doy = Do;
if Do, > 0 and C; = C;if C; > 0. Comparing the Theorem with the results of [5]
we can actually conclude that 4, =4, if 4, >0 and Dg;= Dy if Doy > 0.
However, 4,(Dos) may be 0 and 4,(Dy;) still be positive, In the case of list codes
the formulae (a) and (b) for A; and Dy, are valid independently of whether 4, or
Dy are positive or not. For the d.m.c. 2 given by the matrix

P 3 0y
W= 0"}:l%‘,
LE RIS

for instance, we have Doy =log$ and Do, = 0. -

(2) For averaged channels, [10], one can show that list coding provides no
improvement over ordinary coding, whereas feedback leads in general to a larger
capacity. This is the case whenever we have channels with memory. We propose
therefore as a problem to determine feedback capacities and eventually also to
construct coding schemes for a large class of channels with memory.

(3) One can introduce zero error list code capacities DE, by requiring that the
list size be smaller than a constant L. For L=1 one obtams Shannon’s zero
error capacity, [1]. There are examples of channels for which D2, > D};.

(4) Forney has intreduced in [9] a diiferent notion of list codes, Instead of
requiring that the list size is uniformly bounded by L (see Definition (L.5)) he
assumes that the average list size converges to 1 as the block length » increases.
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The average is taken over all messages, which are selected at random according
to the uniform distribution, and over all received sequences, which ocour at random
according to the transmission probabilities, Let us denote by Dg; the maximal
rate, which can be achieved on the d.m.c, with those codes and with error

probabilities zero. Furthermore, let & =(8,) (i =1, a;j=1,,b) be defined
by
] {o if w(i|§) =0,
| Ui wg| >0
For Dy, > 0 Shannon proved in {1] that
Dy, = max{ — log maxg{0)),
- J

where ¢,(0) = X{., m0},, and we showed in [5] that Dy, = max, min,, . R(x, w).
From Equation (b} in the Theorem we obtain, therefore, that

Dy = max(~ logmax 4,(0)),
x J

if Dg; > 0. One can actually show analytically that

max { élogmax 9,(0)) = max min R{z,w)
T b n welWp

always!. Forney proved—using methods which are completely different from
ours—that

b
Dy 2 maX( —log % q;q;(O))
j=1

n

and we can therefore conclude that DY = Dy, Diy is in general larger than Dy,
This result is by no means {rivial. On the one hand, Forney makes a weaker
requirement than we do by considering an average list size rather than a uniform
list size; on the other hand, he has a stronger condition on the list size than we
have, It might be of some interest to decide whether Forney’s result can be ex-
tended to the a.v.ch. (Forney also introduces for the d.m.c.f. a zero error capacity
Dz, say, by allowing a sequential coding procedure, He proves that

Dor 2 max (~— EJ_: q,10gq,(0)).
n

Since
max (= £ qlogy(0) 2 max (~ log T 42,0)
n ) 14

2 max(— logmax g,0),
k|1

1 We are grateful to P. Blias for drawing our attention o his publication [13]. In it he derives
the formula By = maxx ( ~ log max; ,(0)) using @ very elegant argument. However_, the

same argument does not extend to aw.ch. '

R
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and since in many cases one has strlct mequahhes we can conclude that Dop > Dy,
in those cases.)

(5) So far no results are known about thie zero error capacity in the case of a
noisy feedback channel. Any progress on this problem could also be 1mportant
for Shannon’s zero érror capacity problem.

Proof of the Theorem

In order to prove that the quantities listed in (&), (b) and {(c) are the capacities in
question, we have to prove coding theorems and converses of the coding theorems.
We begin with the coding theorems.

A. The coding scheme. Tor &> 0 let my(e) be -the smallest integer for which
emyle) = f(x, a) log mo(e). We abbreviate H(r)-e by H and we let  stand for

max E q (w) H(w*(- |j))+8(5)

wE W’ j=1

or for
magx s q,(w) Hw*(- | D) + £(®
weWg i=1

or for

sup E q,(w) H{w*(" |J)) + 2

WeW j=
depending on whether we treat the a.v.ch,, the d.m.c. with zero error or the ¢.ch.
We shall also write E instead of Efs, 7). With this convention we can say—because
of Lemma 2, (2.1) and Lemma 3—that for all channels cons1dered there exists an
(11, Ny Ly Aylist code

{(um(i)’ Am(i)) | i= 1:« "'>Nm}

such that

(3.1) N,, =[e™1, L, =[™], 4y < 75" for m > my(e).

For every y, e Y, there exists a list of code words T(y,) {um(:)l i=1,,Np}
into which y, is decoded. {T(y,,,)] y,,,e Y,} is the system of possible hsts and
| T | S Lae

Starting for a fixed ! with an (l N L,2)=(l,NpL; ) list code
(@), 4|i=1,N}

for which (3.1) holds we now reduce the list size iteratively by a repeated application
of Lemma 4 and (3.1). Set I, =1 and define a decreasing sequence of integers
liy lpy e+ a8 in (2.2) with p =" and r =" ‘

We now describe the first step of our reduction. Apply Lemma 4 with
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N=[c"], L=["], M=|Y,]|=",
fo the set {u,()|i=1,-,N,} and to the system of sets {T(y})|y,€ ¥;}. For a
suitable constant *(b, ) we bave
(3.2) b 1Y, if 12 1%(b, H).

Thus for ¢ =] the conclusion of Lemma 4 hoids, that is, there exists a mapping
from {u,(z)!:-— 1,:--,N;} into any set with at least L clements such that this

mapping assumes on T(y,), yi€ ¥, the same value at most [ times. Hence,

(3.3) there exists a mapping @, say, from {u(D]i=1,-,N} into {u, ROIE
= |, N, }, which assumes on T(p)), y,;& ¥, the same value at most { nmes

Generally, for any s with

(3d) 1,.1 = max(mg(e), I*(b, ) there exists—because of (3 1) and  Lemma

4—a mapping ®,, from {uh(l)l f=1,+,Ny}into {uy, (D ll = 1,2, Ny, J, which
assumes on T(y, ), y;. € Y,,, the same value at most £, times.

Let s* be the maximal s for which (3.4) holds aad define I* by
(3.5) I* =min {I,s* + 1}, where  is as defined in Lemma 5. |
The result (3.4), the definitions of s* and I* and Lemma y}eld
(3.6) L= max {1+ 0% [0 me()], [0~ ¥, )]} = lo(e, b, ),

say, and

j“
X)) L 210% + 10

3=t

Now suppose that a finite set of messages {I,-~,N}, one of which will be
Presented to the sender for transmission, is given. We encode message i e {1, -, N}

as
(3.8) uf = (U“(l‘), {Dhu“(f‘), (th @[lu“(f), ey, (D’l' ot (Dhu“(f)).
What the receiver receives is 4 matter of chance, Suppose he has received

Y= Vip s Pyo)

He now associates with this sequence the sequence of lists (T(y,), T(y.), -+
T(y;,+)). Now define sets V(k =0, 1, +,J% = 1) recursively as follows

VO = T(y.l;“)!
I[R = @Efakﬂ_lﬁﬂym,k).

Having received y, the receiver decides on the fist T(p) = Voo ;. T(¥) is a subset
of {ui)|i=1,+,N} and ‘

(3.9)
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Ii
(3.10) KOIE ] I %

5=
Hence, by Lemma 3,
(3.11) | TO) |  exp{lnnloga + (L — (log @)1 log?l} = L,
say. Set n' = L], 1., It follows from I* = I and from Lemma 5 that
(3.12) n'210% +1—(logQ)~tlogl.

With u; as defined in (3.8) and with 4;={y|ye ¥,,u;e T(»)} we obtain an
(n', N, L) list code {(u;, 4))] ¢ = 1, -, N}

B. Refinement of the coding scheme and caleulation of the error probability.
Suppose message i is encoded as u; Using the scheme {Cuy, 4 | i=1,-,N} a
decoding error is made, if for some 5, 1 555 I*,

Dy, oo By, 1y, (D) € T(v,,).
It follows from (3.1) that the probability for a decoding error A satisfies

I* 1"
(3.13) A2 X ks Z
s=1 s=1
Since Iy > I > I3 > .- the numbers Ay, 4,,, -+~ are increasing and the bound at
the right of (3.13) may be very large. We therefore modify our scheme as in [4] or
[5]. This modification is of course unnecessary for the zero error case, because
there A;, =0 for s = 1,---, I*. We now encode i into u¥, which is obtained from
u; as follows:
(2) u;* has the same first d(J) = ¢ log I, ¢ suitable, components as u,;
(b) for s > d(I) we repeat every component of u; [I¥] times. It was shown in
[4], Equations (2.14) to (2.25), that one can choose ¢ such that

(3.14) AS PR ExG suitable,
(3.15) sl forszd

and _

(3.16) nsn + X logl,

where n denotes the total number of letters needed and f*(e) is chosen suitably.
It foltows from (3.12) and (3.16) that

(3.17) nE Q% + {f*(@'og! + 1 ~ (log )~ log 1}.

Since the list size of the modified scheme is the same as the Hst size of the
original scheme, the coding theorems now follow from (3.11), (3.14) and (3.17).
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C. Reduction to list size smaller than n, Above we obtained an (n,N, L, 1)
list code {(u, A7) |1 =1, N}, where N = [¢"] and L satisfies (3.11). Since L is
smaller than exp {K lcfg2 I} for some constant X, we obtain by applying Lemma 4
and (3.1) twice a list size smaller than X,(b)1(log})~1. logzl for I sufficiently
large. K,(b) is a suitable constant.

Now we repeat this double reduction once more and obtam a list size smaller

than

ogl

Ky(5)logl) " b

for I sufficiently large. Our estimates are obtained by a nearly optimal expioitation
of the condition M+ Lg ¢! in Lemma 4. Xt is clear that the number of additional
Ietters needed for our reduction is of small magnitude and that the increase in

étror probability can also be ignored,
Actually one could continue to reduce the list size from I to Jog [ and so om.

But thus one achieves the capacities only for larger and larger block lengths, It
would be of interest to obtain results for a constant list size, but those results

would have to be obtained by a different approach,

D. The converses. Since (b) is a special case of (a) it suffices to prove converses

only in the cases (a) aud (<),
It is well known (see, for instance, Lemma 4 of [7]) that

A = max mip R(r,w) = mig max R(z, ).
T WeW welV =
Let w’ be such that A = max, R(z, w'), let 2’ be the d.m.c. corresponding to “f”
and denote its capacity by D', The strong converse theorem for a dm.c. & in

the case of list codes (see [12]) says that;

(3.18) one can give a function ¢(1) explicitly such that there does not exlst,a list
code (n, N, L, 2) with NL* > exp {Dn + c(2)/n}. Since w' e W and since D' = 4,
We obtain that 4, < A,

The result stated in (3.18) was derived in [12] by using codes of fixed decomposi-
tion, The proof for the strong converse theorem for compound channels given :n
[11] also uses codes of fixed decomposition and can be carried over verbally to

the case of list codes, One thus obtains that C, £ C.

Remark. Our results are concerned with the existence of certain codes with
certain properties, Our approach leads to no code construction, because Lemma 4
gives no construction of the mapping @. It would be desirable to know & o
explicitly. However, since we obtained the existence of ® by a simple countiang
argument, one could actually make a random choice according to the uniform
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distribution over the set of all mappings from N into L. (For our coding scheme
we would have to make about log n such choices.) Thus, we are in a situation
which might be compared with the situation in Shannon's random coding method.
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