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. INTRODUCTION

The notion of an antichain in a partially ordered set was generalized in [1] and
[2] to the seemingly natural and useful notion of a “cloud-antichain” (&)} |.

Whereas in antichains elements of a partially ordered set are compared in
cloud-antichains sets of elements take their role. Elements in different sets A,
called clouds, are required (o be incomparable. More formally, for every two
clouds 4, and &; we have

Aj#Afotall A€ Fandall g€ 4 (1.1

This concept is a degree more sophisticated than those usually studied. Its
logical structure suggests to call it of “type (¥, V)". Clearly, this makes us also
curious about definitions of the types (3, V), (¥, 3), and (3, 3). In order to test
whether there is any substance to these speculations about concepls, we study
them here in connection with the simple notion of adjacency of edges in a graph.

Amazingly, this leads to several net extremal problems. We hope that readers
find some of the solutions as beautiful as they appear 1o us. Extensions to
hypergraphs (in fact already to k-uniform hypergraphs) constitute a formidable
program.

A very special case of the Erdés-Ko-Rado Theorem is the statement that a
graph G, y with n vertices and N edges. which have pairwise a common vertex
(that is, are pairwise adjacent), satisfies

Nsn-1,ifn>1 (1.2)

This fact is of course obvious and so is the fact that the optimal value of N is
assumed for stars (in the terminology of [10]).
We introduce now our new problems. It is often convenient to view edges as

two elements sets, that is as elements of (qj'] where ¥,=(1,2,...,1}
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Thus edges are adjacent if the sets intersect. In the sequel (), is always a

family of disjoint subsets of [12/"] . It 1s said to be of type (.V. Y. D, if for

alii#j
AinA;zDforallAie #andallA e A, (1.3)
Similarly, (4)X, is of type 3, ¥, I), if for all i #
there exists an A; € 4 such that for all A; € 4; A; " A; %0, (1.4)
it is of type (¥, 3, 1), if for all i
forallA; e 4 there exisis an A; € A withA; N A;# @, (1.5)
and itis of type (4.3, D). if for all i #j
there exiszs an A; € A and there exists an A; € 4, with A; N Ai#D. (16)

We also speak of (V, V)-intersecting systems, etc. The maximal cardinalities N
of such systems are denoted by I,(V, ¥), I,(3, ¥),{(¥, 3) and 1,3, 3),
respectively. Here the first quantity is readily seen to equal the maximal
cardinality /, of the usual intersecting system.

The other three quantities are investigated in Section 3. The first two of them
are determined exactly (Theorems 1, 2). The third grows like n? (Theorem 3),
A seemingly small change in our definitions, namely, replacement of non-dis-
jointness conditions A; " A;#2 by disjointness conditions A; M A;= @ in the
definitions above leads to new notions of disjoint systems,- whose maximal
cardinalities are denoted by D,(3, ¥), D(V, 3), and D,(3, 3). We have determined
the growth of these extremal values in Section 4 (Theorems 4, 5, and 6),

In the course of our investigations further notions arose. We speak of the
type (3, V, I'), if (1.4) holds only one-sided, that is for at least one of the pairs
(0. /) and (j, ). By analogy the types (V, 3, I) and (3, V, DY), (V, 3, D"} are
defined. The extremal cardinalities are denoted by I (3, V), L(¥,3,D,3, V),
and D;(¥, 3). In Section 5 we comment on these functions. As a Coroltary to
Theorems 5, 6 we obtain the asymptotic growth of D;(V, J). We have no idea
about Dy (3, V) which goes beyond the inequalities D@3, Y)<D,/3 V)
<D,(¥, ). Concerning /, (3, V) and £,(¥, 3) we present two constructions, which
we believe to be optimal,

Finally, we emphasize that there are strong connections of our concepts to
those which have been developed in the context of so called “Intersection
Theorems” (cf. [11}, [12], {10]), the successor of [7]. There are even connections
to known theorems in special cases: however, generally our concepls seem to go
in new directions.
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2. AUXILIARY RESULTS

Iis this fapet we essentially start from first principles. With the notion of clouds
we cohlinue the tertitisiology of {1] and [2): This and other concepts used are such
that they directly cafi be gencralized to hypergraphs, in particular to the uniform
hypergraphs defined by the k-clement subscts of an n-set. We use the well-known
fact that for cvery prime power p" there is a projective plane of order p™, which
has n =p™ + p™+ 1 points and lincs.

Frequently we use the knowledge of the edge chromatic number of the
complete graphs which is based on the matchings P;={(x, y) : x+y=i i mod ).
Bven though this is a rather simple case of Baranyai's Theorem, we always refer
lo that Theorem, because we want to suggest, what we believe (0 be, the right
ifituition for an understanding of the prcsentty open extensions of our results to

hypetgraphs.

CENERAL FORM OF BARANYAI'S THEOREM

i=]

t
Let ny,....n, be natural numbers such that > n,-=(:} then for
Y=1{1,2,...,n} (‘V]can be partitioned into disjoint sets Py, ..., P, such that

n; . n;- k
|P,| =n; and each € A is contained in exactly f-—;] or r—-n—-] members

of P}.
Finally we use a result of Erdos and Hanani [5]. If A(n, 2% -2, k) is the
maximal cardinatity of a family of k-clement subsets of %, which pairwise

intersect in at most one point (or, equivalently, have symmetric difference of size
at least 2k — 2), then

. 1
lim A(n, 2k-2,k 2= ,
Jm Al k-1

(Improvements of this result are presented in the language of codes on page
529 of [8].)

3. INTERSECTING SYSTEMS

-1 f N-{3,5
THEOREM 1. I,t(EI,W={: fg:::ms. B3l

Proof: Let us consider a cloud system A, ..., Ay of type av.nil
|ﬁl,.|=1fori=l,....N,thenNSn-lcxocptfm‘n=3,whemthcboundi53.

Suppose now that |1,f 22 and that for A;;€ & (i=2,...,N)
AynX#BVXe A, (3.1)
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We disiinguish between two cases;

3B, Ce A with BN C#J: Now at most 1 + n— 3 edges are adjacent with
Band C.Thuswe have NS 1+1+n=-38n~1|,

3B,Ce A with BN C=(: Now only 4 edges are adjacent with B and C,
and we have N < 5.

In all cases /,(3. ¥) < n - 1 for n 2 6 and the reverse inequality is true, because
n—1S1(V,¥)</(3, V) The cases n=1,2,3 and 4 are settled by inspection.
It remains to be seen that /5(3, V) 2 5. Application of Baranyai's Theorem with
the parameters n=5,k=2,m=2 for i=1,...,5 give disjoint clouds 4;=P,
(i=12,...,5) with non-adjacent members. The system (A)., is readily
verified to be of type (3, V, /).

The next result is deeper.

- _|n forne N -{1.2,4)
THEOREM 2. [(V.3) -{" 1 forn=1.24,
Proof. We establish first the inequality
LV, 3)<n. (3.2)

Let ()X, be an (Y, 3, )-system in %={12,...,n}. To every cloud C, we
associate the vertex set C; covered by all edges, that is,

C= uC (3.3
Ce ¢,
We also define for xe ¥,

Jx)=(i:15isN,xe C}), (3.4)
Aay={C,:ie Jx) 3.5)

The key observation is '
laxl €| n ¢l=a-] o Gl (3.6)

i€ Nx) i€ Hr)

Here the bar stands for complementation of a set in its ground set.
To verify (3.6) notice first that for j € J(x) there is a yj with (x, y;} € ¢; and
that by disjoininess of the clouds these y;'s arc distinct. We have therefore
&l = Ity;:je Jol.

Next, by the (¥, 3, I)-property for every je J(x) and every i € J(x) there
isa{uvle C; with (xy}n{uv}#d and fince x € {u,v) necessarily
¥; € {u, v}. This yields {y;: j € J(x)} € C; for i & J(x) and thus (3.6).

Using the abbreviation u,,g ] N E‘,— | we can write (3.6) in the form
ie Jx)

N-J) sn-p, (3.7)
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If 11, =0, then [J(x)| =N and all clowds contain an edge with vertex x. In this
case therefore N < n - 1 and (3.2) holds. If g, # 0 for all x € 9}, thea we derive
from (3.7}

1 - 1
E~N-IhsE—n-n
£ =Sy no

B N N - .
Since I-l"lf(xﬂ =L I -l—S I X (C)" =N by definition of y,, we

I i=1 xa € Mz sl xe(
conclude that
i 1
LI—N-NsL—n-n (3.8)
x s x s

Finally, it follows from y, € n for all x€ ¥, that Z 1 2.

B

Morcover, EUL ~ 1> 0 and thus (3.8) implies (3.2) unless | £,| =0 for all xe %,
X )

In the latter case there cannot be any cloud.
We construct now (V, 3, )-systems achieving the bounds claimed.

Case ne=21+1. We construct clouds with the help of Baranyai's Theonem
(Section 2} forthcparametersn.-=lfori=1....,twitht=(ﬂ2+l}l".k=23s

follows
=P, 18ist (39)

Since there is exactly one point not covered by 4, the system {A) =y 1s of type

(¥, 3, I). We achieve the desired bound, because ,._.@_%’%m =1.

Casen=2l. Here the previous approach gives only = 21— =n—1. This is
optimal only for n=2 and, as inspection shows, for n=4. For the other cases
there is a new construction based on a concatenation argument. To every
(V. 3, D-system in {1,2,...,m} we can associale an (¥, 3, I-system in
{1,2,...,2m} which has twice as many clouds. They are obtained from the
original clouds 4;, . . ., Ay as follows:

- =13, ‘2 ,

1 (e 0 20 2y 11 61
that is an edge {ry) occurring in a cloud is replaced by two edges
{2r-1,2y=1}, {2x, 2y}. Thus a cloud &, is transformed into a new cloud
A;_,. The clouds & arc obtained by using the second replacement in (3.10).

The replacement rules ensure that (a,r)%z. is an (V, 3, [)-system.
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We know pow that [ (¥, 3) = m implies I, (V, 3) = 2w, This aad the result of
the previous case settle the problem for all mumbers divisible by an odd prime.

The remaining cases n=2, 123, were settled if we know that IV, 3) =S8,
Here we have the following coenstruction. There are § clouds all having 3 edges.
The 4 edges not used partition 4). Here we choose for that partition ({1, 2},
(3.4}, {5, 6}, {7, 8}}.

The clouds are
G ={{13).{2,5},{4.6]] Cs=({1,6},{2.8},{57}}
C={{1,5},(2,4},{3,6)} Cg=({1,7),(2,6},(5,8)})
Oy={(1,4).{2,7),(3,8)) C49={{3,5),(4.8), (6, 7}]
Comf{L8) {231 (4T} Cg={(3,7),{4,5}, (6,8}}
aad their associated vertex sets are
C|=C2='V|\{7,8], C3=C4=%\{5.6|
Cs=Ce= %\ {3,4), C;=Cy =%\ {1,2).

Remark 1. The sbove arguments also give a closely related result of jnde-
mdutintmﬂ.wﬂ,behmimﬂmmﬂfwwhichﬂueexiﬂm
with n vertices admitting 2 proper edge-coloring with N colors such that ope
cannot change the color of a single edge withow destroying the coforing, then
clearly M, <1 (¥, 3). Moreover, since our constructions in the proof of Theorem 2
uise only ciouds with disjoint edges, also the opposite inequality holds.

n~1 forn=1,2 4,

Remark 2. If we allow clouds to consist of edges and vertices and consider
mmwim&ew.ﬂ,b-wm.&mwmmymmm
condinalities 1] (¥, 3). We have

LY, Y)=nforaline N. @3.11)
Proof: Forevnynﬂnvdunisuamdbylhesyshm

0L L2} ({1, m)).

MﬁmcMw:MMTﬁmlwﬁamﬂﬁmﬂum
u.ndiflmn,nyx,isinmclmul,ﬂma!loﬂ\uclouﬁcutdnndge
{%.7} and again the mumber of clouds cannot exceed .

r&mwmﬁlmmlmmnmnwm
;| -law,

THEOREM 3. Fm 1,3, I V=21,

N =5

THEOREM 2’ H‘={n forne N -(1,2,4)
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Proof: Let ()., be an (3,3, /)-aysiem in ¥, Siace an edge is adjacont
with 2(n — 2) edges we have the incquality
Nsle|an-Dtoralli=1,2,...,N. (3.12)

mﬁmmmmamis(;),wmm
min | £;< |(;]N". 3.13)
From (3.12) and (3.13) we deduce N < '2' N~ 2(n —2) and hence
N<[a(n- Dn-21"<n*2 (3.14)
We provide now the construction, which asymplotically achieves this bound.
It uses the existence of projective planes of prime power and again Barsnyai's
Theorem.

Let k=p™(p22), n=F +k+1, and let L;,..., L, be the lines in the
projective plane with n points. We use the facts

L) =k+1fori=1,2,....% (3.15)

ILAL =tforis. (3.16)
Since k+ 1 is even, by Baranyai's Theorem we cam partition the set of all

{k;l edges inl;inmkclowsoffgiedgesmhnnwclmdshxem

each other the desired intersection property. Since all clouds live on exactly aff
k+lpoint:ufaline,by(3.lﬁ)alwtwoclmxklivhgmdﬁf¢mmmm
intersection property. Now the sumber of clouds N satisfies
N=k-n 3.1
and since k=Vn— —1, we have
N'—'uﬂn—-"---;-).

Now for arbitrary, but sufficiently large », we use & familior sogueneat based
on the following density property of primes:

For all sufficiently large m there is a prime p(us) butwees m — Lo’ snd m.
ﬂﬁsmdshupumsulmmstatedandqumdumtnolm.MM
m such that

m+ D +(m+1)+ 1202w +m+ 1

Since n2p(m)’ +p(m)+ 1, since plm) 2 m— Ln@® 2V and simee 1,3.3) s

monoionically increasing in n we conclude that
1.3, 3) 2 pm)(pim)’ + pim) + 1) 5 .
This and (3.14) imply the resuit.
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4. DISIOINT SYSTEMS

We state first the main results of this section.

THEOREM 4: lim D,(3, V)n 2=

n-w

THEOREM 5. lim D,(V, 32 =

n—»os

J
p
1
e

THEOREM 6. lim D,(3, I 2=

n—rwm

1
e

A. THE UPPER BOUNDS

n!

LEMMA 1. D3, 3)< s

Proof: Inan(3,3, D)-system £|,..., €, there are at most L%_] clouds with

one edge only. Therefore

and hence

%]

Lemma2. D3 V)< %—.

Proof. Foran (3, V, D)-system { ¢ ,-)?L, let the labelling be chosen such that
the first ¥, clouds have exactly one edge, the next N, clouds have exactly two
edges, cic. We know that

msUZl @D
Next we consider { ¢ ,?)?L' Lﬁ ;, where
&
c,‘-‘=[2).c,-= v X, (42
Xe
and notice that these clouds form again an (3, v, D)-system.
N+ N, C
Ituses X [ "J 23 N edges.
=N+ 2

Furthermore, one readily verfies that

C.
{2'}"\ CJ:G for I'E {~1+]....,N|+N2}
and je& Ni+1,. .. N +Ny) (4.3)
We conclude that

Ni+3Ny+ I jfvjs(")
j23 2
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and by (4.1}
3T Ng|o |+
- j 2 ] [2}
Thus
N i
SE

B. CONSTRUCTIONS YIELDING THE LOWER BOUNDS

From the Theorem by Erdos and Hanani we know that
(4.4)

D\i-—-

* lim A(n, 4, Dn™

H o

For any family 4 with parameters n,4 and 3 it follows from |AAA'] 24
for A, A" € A that the system of clouds { C= [g) Ce ﬂ} associated with A is of
@3, v, D)-type.

Therefore
D3, V)2A(n 4,3) (4.5)
and Theorem 4 follows from (4.4), (4.5) and Lemma 2.
The proofs of Theorem 5 and 6 will be complete when we have shown that
lim DV, 32 1 (4.6)

H -0' L
We construct now an (¥, 3, D)-system yielding this result. It suffices to consider

values for » of the form

n=k-ut k=4 4.7)
with k and u tending to infinity. Partition now % into seis W, ..., Wy such that
all have a cardinality u®. Let %} , = {W, : 1 £i S k} be the vertex set of acomplete
graph. By Baranyai's Theorem its set of edges can be partitioned into sets
Ei, ..., E;_ of disjoint edges such that

|E,l=§fors=l,2,...,k—1. (4.8)

Since k is divisible by 4, we can define a partition F, of E, into non-adjacent pairs
of edges.

Thus the members of F, are of the form {(W, W), (W, Wy} with all four
indices being different and i < j, I <m. Clearly, the elements of W, x W; etc. are
"ﬁ edges in V.

? Below we maich every edge in W; x W; with an edge in W, x W, and let two
matched edges form a cloud. This will be done for all members of F, and all s.
Certain omissions are then necessary to convert this system of clouds into an

(V, 3, D)-system. These matchings are constructed via the following basic
bijection. Let @, y: {1,2,...,u ) x {1,2, ..., 4"} be two maps defined by
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Oa by=pu+qg+1 } : {a:pu-t-x,:stu. 49)
yia,b)=(x-Nu+y b=pu+y 1sy<u’
Label now the elements in ¥/, such that
W,=((i5):185s4?);i=1,2,.. .,k (4.10)
and define for all quadruples of indices occurring £ W;x W, - W, x W, by
F(G, 5 G 1)) = (4 @(s, 1)), (m, s, 1)) (4.1)

The (V, 3, D)-property must now hold for all pairs of clouds.

Three situations arise. In the case both clouds have an edge from W, x W, and
an edge from W, x W,, the property obviously holds. The same is the case if the
clouds are based on two different members of the same F,. Finally we have to
investigate the case where one cloud is based on ({ W, W,}, (W,, W, )} € F, and
the other on [{ W/, W/}, (W}, W51} € Fy (s ).

The (V, 3, D)-property can be violated only if

W Yelijbmbor (E,m'y i), |, m)or
L) i om or {hm) c{d, .1, m),

It suffices to consider a case like

((1,a) (2, 5}, {(3. @la, b)), (4, Wa, D)), {(1, &), B, D)}, (-, )} (4.12)
with a=4d and ¥ = @(a, b).

For fixed a. how many pairs (a, &) have to be excluded in {1,..., 4% x
{L,....4%)? Clearly, the conflict in (4.11) is resolved, if for every
ae{l,...,u"} weomit the set

Gyla) = {{a. ) = (@, la, b)) : b= {1,...,u})
If we write a=pu+x, b=qu+y, ¢(a,b) =pu+g+ 1, then we see that

|Gy@ | =u. @.13)

From the discussion above we know that there are 4 cases like the one in (4.12).
In total we have to exclude at most 4 - 4 - ¥ elements from the u* elements of
ll.2,,..,u2}x{I.Z,....uz]‘

The total number of clouds left is therefore
7 .4 2
PR LTSRN M1 nf 1.4
(u 4"):{“ 1 p i wk(k 1)2;[1-‘__-7"}
which implies (4.6),
Remark. A result of [12], Corollary 8.7 in (13], implies (4.6). This can readily

be verified by choosing the A in [13] to consist of two non-adjacent edges. For
k-uniform hypergraphs (k > 2) there does not seem to be such a simple connection,
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Also, our proof is constructive and the proof m [12], being based on random
selection, obviously is not.
The inequalities
DV, H<DV. I sD3,3) (5.1)
and Theorem 5 and 6 imply
COROLLARY 7. lim D/(V,3)n"2=1/4.

L L

We tum to the 1-sided intersection property

n~1 forn=1,2
n forn=3,4
n+2 forn=35
n+l forn2b6

CONIECTURES. [,(3, V)=

CONSTRUCTIONS ACHIEVING LOWER BOUNDS

The cases n=1,2,3, 4 being obvious we describe the constructions for
n=5 and for n >S5,

n=S. C;=(5i) fori=1,2,3,4 and 5 Cg Cy are the sets of edges
defined by Baranyai-type partitions of {1,2, 3, 4} into disjoint edges. For larger
values of n these clouds based on partitions no longer have mutually the (3, V,
I') property. That is the reason why the number five plays a special role.

n>6: Choose
C;={ni)fori=1,2,...,n-1 and
Co={{Li}:: L2,....jJu{ls-1i}:izj+l,....n-2}forl<j<n-2.

Finally set

(%) ]
ell'l-l_(z ,:)[ al‘
Actually we can prove optimality of these configurations, t00.

However, a formal proof takes an amount of writing which seems unpropor-
tionia to the significance of this result. Having not written a formal proof we

cahhot state more than a conjecture.
Finally for n 2 3 we have the

2n=-3, ifnisodd

CONJECTURE 9. lp:(vn 3) = {2" ~4, ifmiseven

Constructions achieving these values are as follows.

n=2m+1; Let Py, ..., Py be partitions of (1,2,...,2m] into disjoint
edges according to Bamanyai. Define C =P, for i=l,,..,2m-1 and
G,_,,_,ﬂ:{(n,j]}fu'j=l,....n~—l.
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Then ( €)Y is an (V, 3, I')-system.

n=2m: Let Pi,...,P),_1 be now the usual partitions’ of (,2,...,
2m-2} in this case. Let now C,=P, for i=1,...,2m~3 and Com-3+}

={{nj}Morj=1,...,2m~2 Finally set €y, 4={{n—1,1}:I%n—1). Now

again (¢ )7 %is an (V, 3, I')-system.
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