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Abstract. The axial anomaly in 2 dimensional QED at 
finite temperature is carefully investigated in the real time 
formalism in the limit of vanishing fermion mass. We 
follow the dispersion approach of Dolgov and Zakharov. 
The temperature independence of the anomaly is re- 
covered. 

1 Introduction 

In zero temperature field theory it is generally understood 
that the axial anomaly [1] is an ultraviolet phenomenon 
coming from the fact that the axial and electromagnetic 
currents which are conserved at the classical level, cannot 
be simultaneously conserved in the quantum theory after 
regularization of ultraviolet divergences. Thus, since 
thermal effects do not modify the UV behaviour of the 
theory [2] (due to statistical factors which decrease 
exponentially in the UV region in integrals), it seems 
natural to expect that the axial anomaly is not affected 
by temperature [3]. 

However, there is another way of understanding how 
the axial anomaly occurs. In the framework of four 
dimensional QED, Dolgov and Zakharov [4] have 
examined the absorptive part of the anomalous triangle 
graph which corresponds to the product of the ampli- 
tudes of two physical processes: (axial source ~ fermion + 
antifermion) and (fermion + antifermion--*77 annihilation). 

In this approach the axial anomaly has nothing to 
do with any UV issue [4, 5], the breaking ofTs invariance 
is the result of a subtle compensation between the emis- 
sion amplitude, which vanishes like m, and the annihila- 
tion amplitude, which blows up at threshold as a power 
of 1/m in the limit of vanishing fermion mass. This leads 
to an absorptive part which behaves like a delta function 
rather than vanishing when m ~ 0. Through a dispersion 
relation, this 6-function is responsible for the anomalous 
term in the triangle graph. 

From this point of view, the above mentioned plaus- 
ible temperature independence of the anomaly is far from 
being obvious: it requires to study the infrared sensitivity 

of the temperature dependence of the anomalous graphs. 
Moreover this approach seems well suited to the 

examination of finite temperature effects using the real 
time formalism, in which imaginary parts are calculable 
in a direct way. 

In this paper we investigate the simpler case of the 
axial anomaly of massive two dimensional QED at finite 
temperature, taking the limit of vanishing mass. The 
reason for our interest in this problem is that the anomaly 
in the Schwinger model, like the triangle anomaly in four 
dimensions, is, at T = 0, obtained exactly by a one loop 
calculation [6,7]. However, due to a much simpler 
kinematics, the two dimensional case is simpler to deal 
with at finite temperature. We show that the one loop 
thermal contributions to the anomaly indeed vanish [8], 
thereby reproducing a known result [9] by an independent 
approach. 

In Sect. 2, we summarize the features of two dimensio- 
nal QED at T = 0 and we apply the Dolgov and Zakharov 
method. In Sect. 3, we present the calculation of the 
thermal contributions to the axial anomaly following the 
finite temperature real time formalism. We show explicitly 
at the one loop order how these thermal contributions 
cancel in the massless limit. 

2 Two dimensional QED at T = 0 

We first briefly recall the main features of the axial 
anomaly in the massless Schwinger model [6, 7] at T = 0. 

The axial vector current is defined by 

ju = ~yuys~b. (1) 5 

Its anomaly is expressed by the axial divergence of the 
pseudo-tensor H~ ~, which is obtained from the vacuum 
polarization tensor //"~ by the replacement y"~yuT5. 
Since in two dimensions 

7"75 = e"~7~, (2) 

the axial vector current is related to the vector current, 
and therefore 

H~=e"~II~. (3) 
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Due to gauge invariance and Lorentz covariance the 
polarization tensor is: 

FIU~ = [qUq~ _ q2 g.~ ] H(q2), (4) 

where H(q 2) is found to be exactly [6, 7] given by the 
one fermion loop result: 

e 2 1 
/-/(q2) _ (5) 

g q2 + ie" 

Hence the anomalous divergence reads 

e 2 

qulI "5 v = -- que u~ - ,  (6) 
7~ 

showing the breaking of chiral symmetry in this model. 
The pole in H(q2), (5), gives rise to a non-vanishing 

imaginary part in the polarization function, 

Im H(q 2) = - eZ6(q2). (7) 

For  massless fermions, however, one should expect a 
vanishing contribution, since in the one loop approxima- 
tion this imaginary part is expressed by Born graphs 
which should reflect the chiral symmetry of the under- 
lying Lagrangian of the Schwinger model. 

Already in 1971 this kind of paradox was pointed out 
and discussed by Dolgov and Zakharov [4] in the case 
of the Adler-Bell-Jackiw anomaly [1, 5]. 

Indeed, one may start by calculating the absorptive 
part of the polarization tensor (4) directly by applying 
Cutkosky's cutting rules [10]. Obviously no UV diver- 
gences are present. The fermion mass m is introduced 
for infrared regularization, before the massless limit is 
performed. Instead of (7) we find for the massive case the 
expression 

2m 2 
Im/](q2) = _ e 2 O(q 2 - 4m2), (8) 

(q2)2x/l - 4m2/q 2 

which, as m ~ 0, indeed vanishes except when q2 is fixed 
near the threshold value qZ =4m2: in this case one 
observes a kind of power mass singularity [4, 5, 11]. 

Since the area 

Im H(qZ)dq 2 = ( - e 2) (9) 
4 m  2 

is independent of m, (7) follows by performing the limit 
m ~ 0 in (8). 

Equivalently, the dispersion approach [4] may be 
taken. In the unsubstracted dispersion relation for the 
polarization function: 

/ / (q2)=  1 ~ ds ImH(s)  (10) 
~Z 4 m 2  S - -  q 2  __ i 8 '  

the rhs can be integrated after inserting Im H(q 2) of (8). 
In the limit of vanishing fermion mass the result of (5) 
for H(q 2) is recovered. 

3 Sehwinger model at T # 0 

Let us now turn to the case of finite temperature. While 
in four dimensions, due to the four velocity u u of the 

medium there are two independent gauge invariant 
tensors, associated with two independent scalar functions 
(corresponding to spatially transverse and longitudinal 
modes), in two dimensions there is no spatially transverse 
direction and the tensorial structure of/-/ ,v is the same as 
for T = 0, given in (4). 

The polarization function H depends -  besides on 
temperature T - o n  two independent kinematical vari- 
ables, qZ and q.u (= qO in the rest frame of the medium). 

The study of the anomaly amounts to the study of 
H(q2, qO). In the following we concentrate on the dispers- 
ion approach by calculating the temperature dependence 
of the absorptive part Im/-/(q2, qO). 

It is convenient to evaluate this quantity in the real 
time framework [2] by using the cutting rules generalized 
to the case for T O 0  as described in detail in [12]. The 
doubling of fields leads to a matrix structure for propa- 
gators and for self-energy functions. 

Applying these rules to the polarization scalar of 
interest, we start from the following relations given in 
the rest frame of the medium [12] 

Re//(q2, qO) = Re H1 l(q 2, qO), 

Im II(q 2, q0) = tanh f12 qO . Im H11 (q2, q0) 

= sinh ~qO .im/-/aE(qE, qO), (11) 

with f l=  1/kT. The elements of the 2 •  matrix 
I l a b ( a  , b = 1,2) are obtained with the real time Feynman 
rules [2, 12]. In the one loop approximation with the 
fermion-antifermion intermediate state, we find (see 
Fig. 1): 

q2. Im//(q2,  qO) 

d 2 
= e2 sinh( ~lq~ ) '  (2~P)2 iSx2(P + q)iS21(P) 

�9 Tr [7"(i0 + ~ + m)y,(/~ + m)]. 

The free fermion propagators S,b at T :~ 0 are taken 
from the propagator matrix [12], 

iS, b(p) = (P + m)iSab(p), [i 01] p2 m 2 
iS.b(P) = -- + ie . 

0 m 2 -  ie p 2  

(13) 

p+q 

P 

Fig. 1. One fermion loop 



-- 2~t~(p 2 -- m2)nf(p ~ 

e(P~ { fl2 lP~ } ] ' 1  

(14) 

with the Fermi-Dirac distribution, 

1 
nf(P~ = e plp~ + 1" (15) 

In two dimensions 7uiO?u=0, and the trace in (12) is 

+ qO). 

proportional to m 2. Thus, more explicitly, 

qZ Im H(q 2, qO) 

=-4m2e2sinh(/321q~ 

.~ d2pe(pO)e(pO + qO)b(p2 _ m2)b(2p.q + q2) 

"exp { ~ l p~ l } n y(p~ exp { ~ l q~ + p~ [ } n y(p ~ 

Working out the 6(p 2 - m E) constraint on pO gives 

q2 Im II(q 2, qO) 

=-2m2e2sinh(~lq~ 

"[ ~ dp e(qO + cop)6(q2 + 2fopqO - 2pq) 
L-~ fop 

"exp{ ~fot,}nf(fop)exp{ ~lq~ + fopl }nf(q~ + fot,) 

+ o 0  
_ ~ dp e(qO _ fop)f (q2 _ 2fopqO _ 2pq) 

co f o p  

�9 exp{~fop}ny(fop)exp{/32'q~176 1, 

(16) 

(17) 

with o )p =x /p  2 + m  2. A non-vanishing phase space 
domain requires the condition 

1 - 4rn2/q 2 > 0 (18) 

to be fulfilled. 
At T = 0 only the region above threshold, q2 > 4m 2, 

contributes. However, at T #  0, we have to distinguish 
between two allowed regions: above threshold (q2 > 4m 2) 
and space-like (q2 < 0). 

With these constraints, we find the compact ex- 
pression: 

4m2~ 2m 2 
Iml-l(q2'q~ 1 -- q2- ](q2)2 / 4m 2 

1 q2 

341 

sinh(fl2 'q~ ) 

c o s h ( ~ l q ~  + cosh (~  I q l ~ )  ' 

(19) 
where Iql = x/(q~ 2 - q2. 

As expected w h e n / 3 ~  oo, we recover the T =  0 case 
(8), and we see that the temperature dependent function 
vanishes exponentially with /3 in the space-like sector. 
But for finite /3, i.e. T-Y: 0, from both regions thermal 
contributions arise, namely from the production of a 
fermion pair, and below the photon light cone, q2<  0, 
from the Landau damping mechanism. 

We now consider the massless case. In order to 
obtain the limit m ~ 0  in (19) we smear the distribution 
Im H(q 2, qO) by a test function tp(q2): 
+at) 

S Im II(q 2, q~ 
-oo 

2m 2 = _ e2Sdq2 r 
22 ~ (q) ,/1 

sin ( 0o) 
cosh (~  [q~ + cosh (~  ]q[ X/14~m2222 ) 

�9 0(1 4m2\ 02 - -  ~ ) O ( ( q  ) - -  q2). (20 )  
k 

Then we scale q2 by 4m z, introducing a new variable 
/ 1  4m2 

z = - ~ - .  The rhs of (20) becomes 

~ j  // 4mZ ~ - e a j u z q ~ J  

cosh(~lqOl)+cosh(~zx/(qO)2 4m2 "] 1-G2J 
.0((qO)2 4m2 ) (21) 

1 - -  z 2/" 

In the integration over z, the two different regions for 
4m 2 

0 < z < 1 - (qO~ (corresponding to q2 > 4m 2) and 1 < z < oo 

(q2 < 0) are treated separately. 
Taking the limit m--* 0, we obtain 

lim ImlI(q2,q~ -e2C(fl=lq~ (22) 
m ~ O  k2  / 

with the function C(fl~lq~ given by 

( i  i )  sinha 
C(u) = + dz cosh u + cosh (uz)" (23) 
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Indeed 

C(~) = 1, (24) 

since 

1 sinh ~ 1 
S dz = ln(cosh c0, (25) 
o cosh ct + cosh(ctz) ct 

and 

c~  

dz sinh c~ = 1 - 1 ln(cosh ~). (26) 
1 cosh ~ + cosh(ctz) 

In s u m m a r y  the the rmal  contr ibut ions  to the absorpt ive  
par t  of the one loop polar izat ion function originating 
from fermion-pair  p roduc t ion  (q2> 4m z, corresponding 
to (25)) and f rom Landau  damping  (q2 < 0, (26)) cancel 
against  each other  in the function C(~t) of (23). Therefore  
in the massless limit Im  lI(q 2, qO) becomes tempera ture  
independent.  F r o m  (22) and (24) we see that  the T = 0 
result of (7) is identically reproduced.  

As in the T = 0 case of the previous chapter,  one m a y  
also per form the m ~ 0  limit via a dispersion relation. 
This t ime we disperse with respect to the variable q0 at 
fixed [qjl Not ing  that  the F e y n m a n  (causal) self-energy 
function of (19) is symmetr ic  in this variable, 

Im  lI(q z, -- qO) = Im/-/(q2,  qO) _ I m / / ( I q  I, (q0)2), (27) 

the unsubtrac ted  dispersion relation [2, 13] can be used 

1 J ~ds ImH(Iql,s) H(Iql,(q~ 2) 
n 0 s -- (qO)2 _ ie" (28) 

With similar steps as described before (19-26) the 
tempera ture  independence in the limit m--, 0 is observed,  
and the result of  (5) as for T = 0 - f o l l o w s ,  which 
implies that  the anomaly  (6) holds also for non-vanishing 
temperature .  

The  anomaly  pole at  q2 = 0 of  H ( q  2) (5) is responsible 
for the well-known fact that  the gauge boson  in the 
Schwinger model  becomes massive with mass  e / v / ~  [6, 7]. 
As shown, this spontaneous ly  generated mass, however,  
is not  shifted by tempera ture  effects. This is actually 
plausible f rom dimensional  reasoning: in two dimensions 
the coupling e itself carries the dimension of a mass. 

Therefore  a thermal  mass  of (P(eT), familiar f rom four 
dimensional  QED,  is not  allowed. 

In  conclusion, we have demons t ra ted  (at least to order  
e 2) that  the dispersion approach  initiated by Dolgov  and 
Z a k h a r o v  [4] when applied to the massless Schwinger 

model  leads to the tempera ture  independence of the axial 
anomaly.  It  is worth  repeat ing that  this derivat ion relies 
on the specific mass  singular behaviour  of the vacuum 
polar izat ion tensor. It  is fur thermore  satisfactory that  
different methods  are able to reproduce the same remark-  
able result [9] concerning the axial anomaly .  

Concerning the all order  extensions, since the T = 0 
anomaly  is exactly given by the one loop expression in 
the massless case, we have to deal only with thermal  
contr ibut ions at higher orders. We expect intricate 
cancellations between different regions of phase space but  
the explicit investigation becomes rapidly complex. 

The extension of the four-dimensional  s tudy of 
Dolgov  and Z a k h a r o v  at finite t empera ture  will also be 
worthwhile to be investigated. 
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