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We investigate the finite temperature one loop renormalization of the pure QCD coupling constant in the real time formalism. 
The temperature dependence of the fl function is derived in a generalized momentum space subtraction scheme. Due to the 
occurrence of multiple Bose-Einstein distribution functions, we find g2 (T) ~ T-  3 for asymptotic temperatures at fixed momen- 
tum subtraction scale. 

I. Introduction 

The question of the high temperature behaviour of the QCD coupling constant is a crucial issue for improving 
perturbative calculations at finite T. It has often been taken for granted [ 1 ] that this Tbehaviour  is to be inferred 
from identifying the renormalizat ion scale with T, thus leading to 

1 
g 2 ( T ) ~  

In (T/AQcD) " 

This straightforward extension of the T =  0 renormalizat ion group ( R G )  results is not completely satisfactory. 

In ref. [ 2 ], Matsumoto et al. generalize the RG approach at finite T i n  the framework of the real t ime formalism 
[3]. In this framework, the ultraviolet divergences are the same as at T =  0 but in addit ion to the freedom of 
choosing the usual m o m e n t u m  renormalizat ion point,  one has to deal with the arbitrariness of the temperature 
at which the renormalizat ion parameters are determined. Within this finite temperature RG approach, the be- 
haviour of the QCD coupling constant  with respect to the temperature has been investigated by working out the 
solution of the one loop RG equations [4 -7] .  

In this paper, we reanalyze this problem in a specific renormalizat ion scheme and show that contr ibut ions 
have been overlooked which in fact dominate  the high T expansion of the QCD coupling constant. This scheme 
generalizes at finite T the MOM renormalizat ion procedure [ 8 ]. Propagators and vertices are renormalized at 
spacelike momenta  and at a given temperature. We work in pure QCD and derive the one loop running coupling 
constant in the Feynman  gauge in two MOM renormalizat ion schemes attached to the three gluon vertex and 
the gluon-ghost  vertex in the symmetric spacelike configuration for external lines p2 = q2 = r 2 = _ M 2 (fig. 1 ). 

We find that terms depending on the second and third power of the gluon (or ghost) Bose-Einstein statistical 
distr ibution are present ~ and dominate  the asymptotic temperature behaviour  o f g2 ( T)  at fixed M: 

g2(T)  ~ ( M / T )  3 

Unit6 Propre du CNRS. 
2 Unit6 Asscoci6e au CNRS. 
~ In the collinear momentum configuration worked out in ref. [4], these terms do not contribute. 
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Fig. 1. The thermal ( 111 ) three gluon vertex up to one loop. The wavy (dotted) lines represent the gluon (ghost). 

The above convent ional  inverse logar i thmic behav iour  is of  course recovered in the special l imit  T~oo ,  M~ T 
fixed. 

Another  interest ing result is the cancel lat ion of  logar i thmic terms (ln M )  in the renormal iza t ion  constants  
when T ~  oo at fixed M. Such terms have to be absent i f  the expected d imensional  reduct ion of  QCD at infinite 
t empera ture  is real ized [ 9 ]. In this respect, the n 2 and n ~ terms play an essential role. 

The presence of  contr ibut ions  involving high powers o f  statistical d is t r ibut ions  in Green ' s  functions at the 
one loop level seems to be character is t ic  of  the real t ime formal ism ~2. It may reopen the quest ion of  the com- 

par ison between this formal ism and the imaginary  t ime formal ism [ 12]. 
Let us now outl ine the content  of  this paper .  In section 2, the three gluon vertex is calculated and the corre- 

sponding renormal iza t ion  constant  Z1 is de te rmined  at a given tempera ture  T. The corresponding running cou- 
pling constant  is der ived as a function of  T a t  f ixed M. In section 3, the same procedure  is appl ied  to the g luon-  
ghost vertex. In section 4, the high T expansion o f  the running coupling constant  is der ived at fixed M. The 
expansion in 1 / T is given up to logar i thmic terms and the In M terms are shown to cancel. 

2. Three gluon vertex 

We start  with the computa t ion  o f  the three gluon vertex renormal iza t ion  constant  at f inite temperature .  The 
one loop d iagrams considered are shown in fig. 1 (neglecting contr ibut ions  from the quark loop) .  They have the 
same structure as for T =  0. In the real t ime formalism, however,  there is a doubling of  the fields (type-1 and 
-2 ) [ 3 ]. We perform the m o m e n t u m  subtracted renormal iza t ion  at finite T for the real part  of  the ( 1 1 1 ) vertex, 
as indica ted  in fig. 1, following the prescr ipt ions given in ref. [ 2 ]. Therefore only the free ( 11 ) propagators  are 

needed, which are for the gluon field (in the Feynman  gauge) 

,~b ( 1 _2rri6(k2)ne(lko,)) ' (1)  Au~(k)=6abgu~ k2+i~  

and for the ghost field 

,~b (k2~le_2r66(k2)nB(lko[)) (2)  A g h o s t  -~" - -  (~ab 

where the indices a, b denote  the colour degrees of  f reedom ~3. The Bose-Eins te in  dis t r ibut ion is 

nB(lkol )=[exp(fl[ko[ ) - l  ]-', f l=l/T.  (3)  

The following comment  is in order.  Insert ing e.g. the gluon propagator  ( 1 ) into the three point  d iagram with 
the gluon loop (fig. 1 ), 2 3 = 8 terms result, which all contr ibute  to the real part  of  the ( 111 ) vertex ~4. One term 
contains  the T =  0 part,  which was calculated by Celmaster  and Gonsalves  [ 8 ] in the renormal iza t ion  scheme 

~2 In the imaginary time formalism at most a single power is present as stressed in refs. [ 10,11 ]. 
,3 For the T= 0 QCD Feynman rules we follow the conventions and notations of ref. [ 13 ]. 
,4 Only four of them are taken into account in ref. [ 5 ]. 
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under  consideration. The other terms may be characterised by the powers of  the Bose-Einstein distribution nB: 
terms with one (considered in ref. [ 5 ] ), but also with two and three powers in nB are present. Performing the 
lengthy, but straightforward calculation for the diagrams in fig. 1 at the euclidean symmetric point (Po = qo = ro = 0, 
p2=qa=r2= -M2) ,  we get 

Z1 = Z ~  =° gaN (4n)  2 [H_3j~2)_2j~2) it(3) 4j~3)] _]_O(g4), (4)  _ _  - -  _ _  4 0 1  

where Z ~  =° is given in ref. [8] and need not be repeated here. The temperature  dependence is contained in the 
functions H and j~m), which are functions of  a-tiM. The function H contains the terms proport ional  to nB. 
Using the notat ion of  ref. [ 5 ], it is given by ~5 

H =  2 7 -~Fo  +~Go - 16G2, ( 5 ) 

where e.g. 

(" d4k 1 
G o = - 4 n 2 M  2 J ~ n B ( I k o l ) ~ ( k  2) [ ( p + k ) 2 + i E  ] [ ( k _ q ) 2 + i e  ] 

1 

f f x d x  1 
= 2 P  dY 3 exp( f lMx)_ lx2(y2+3)_  1 • (6)  

0 0 

The other functions Fo, G2 are found in ref. [ 5 ]. The n 2 and n 3 terms are contained in the function J(n m) , i.e. 

f d4k 87~ f dx 1 J[m)-(4n)2M2 2-nnn '~( Ik° l )~(k2)6( (P+k)2)6( (k-q)2)=~ o ~ [ e x p ( ~ ) - l ] m  (7) 

and 

8n i x 2 d x  1 
j ~ m ) _  3X/3Y: 0 ~ [ e x p ( ~  ) - l l m '  (8)  

where y 2 =  ~a 2. These integrals are put into a form relevant for high temperature  expansion as shown in ref. 
[ 14] in which the case m = 1 was investigated. 

In order to obtain the renormalized coupling constant gR at finite T i n  this renormalizat ion scheme by 

Z3/2 
gR= --z-g,  (9) 

we need the gluon-field renormalizat ion constant, which is 

Z3 =gT=O g 2N (47t 2 ) 
-- (4n)~ \~Saa- -3Fo- -F2  +O(g4), (10) 

as calculated in refs. [ 5,8 ], renormalizing the gluon propagator  at p2 = _ M  e and temperature  T. 
Applying the renormalizat ion group equations discussed by Matsumoto  et al. [2,5] with respect to the tem- 

perature T and the arbitrary subtraction scale M, one obtains from eq. (9)  the running coupling constant as a 
function of  T ( for fixed M), 

g2( To) 
g~t( T) = 1 + [2N/ ( 4n)2]g2 ( To) [-Qg,~e(M/T) - . Q g l u e ( M / T o )  ] ' (11) 

~5 We remark that we do not agree with ref. [ 5 ] on the coefficient of Fo. 
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with 

~Qglue (a =M/T) -- 292a2 ~-Fo-3F2 -gG07 + 16G2 + 3j}2) _{_ 2j~2) + a a ,11(3) ..k 4T~3)_ 3°3 . 

For fixed M~ T (=Mo/To) the solution reads 

(12) 

g~( To) 
gZR(T)= 1 + [g~(To)/(4zc)2](22/3)Nln T/To ' (13) 

with the familiar logari thmic tempera ture  dependence [ 1 ]. 

3. The gluon-ghost vertex 

As for T =  0 one may perform the m o m e n t u m  subtraction renormalizat ion for the thermal ( 111 ) gluon-ghost  
vertex, instead of  the three gluon vertex, i.e. instead of  the definition, eq. (9) ,  the renormalized coupling con- 
stant gR is then expressed by [ 13 ] 

ZI/ZZ3 (14) 

gR=  Zl g '  

where Z3 is the ghost wave function renormalizat ion constant at finite T, given by ref. [ 5 ], 

23 = ~T=O ..l_ g 2N (__~n)2 Fo + O (g4) , (15)  

with Z3 r=° of  ref. [ 8 ]. In contrast  to the case of  the three gluon vertex, the gluon-ghost  renormalizat ion constant 
ZI contains an ambiguity in the finite terms, which is due to the arbitrariness in the definition of  the tensorial 
structure of  this vertex at the one loop level [ 15 ]. Following ref. [ 15 ] it is expressed by introducing an addi- 

tional parameter ,  denoted by b. 
The result - in the Feynman  gauge - is 

g 2N [Fo+( l+2b) (Go+~j l2 )+~j~3) ) ]+O(g4)  (16) 2, =2~=°(b) - ~ 

where Z ~ = ° ( b )  is found in ref. [ 15 ]. The terms proport ional  to J lm) are due to n ~ (m = 2, 3) contributions, 
which are not taken into account by Fuj imoto et al. [ 5 ], who fur thermore only discuss the case b =  0. 

The additional f reedom in the paramete r  b may be used to adjust it such that the Slavnov-Taylor  identities 
of  QCD [ 13 ], namely ZI/Z3 = ZI/Z3,  are satisfied in this renormalizat ion scheme at a given finite T. 

In a similar way to eqs. ( 1 1 ) and ( 12 ) the T dependence ofgR (T)  is obtained with 

27~2 7 
- - ~ o  I - -  1 2 a l  ) g2ghost ( a )  = ~Sa2-~Fo - ½F2 - ( 1 + 2 b )  ( G o "  11~2) . ± r ~ 3 )  (17) 

which is in general different from £2glue, eq. (12) ,  showing the renormalizat ion scheme dependence ofgR (T)  at 

fixed M. 

4. High temperature behaviour 

Let us now examine the high tempera ture  limit of  the/~ functions calculated in section 2 and 3 for the three 
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gluon vertex and the gluon-ghost vertex respectively. We focus on the large T, fixed momentum M, region. The 
leading behaviour is obtained from the small a behaviour of the J~ ' )  (a) functions defined above in eqs. (7), 
( 8 ). Since nB (x) ~ x - l for small x, one gets for m > n 

oo 

j(m) (y) ,~yl--n I d,x x n- 1 ( x Z . ~ _ y 2 )  - (1 + m ) / 2  ( 1 8  ) 
0 

which by rescaling leads to 

J~")(y)..~y-" (19) 

for small y. The leading behaviour of g2glue (a) is thus a -3, i.e. the running coupling constant behaves as 

gZ(V)~M3/r3 (20) 

for large T/M. Let us now discuss the high T expansion o f ~ , e  and £2ghost up to logarithmic terms. The asymp- 
totic expansions of the Fo,2 and Go.2 functions are given in ref. [ 5 ]. Using Haber and Weldon's techniques [ 14 ], 
we get the corresponding expansion for the j(m) functions. They are 

8 n ( 3  x /3~  ~ l n a + . . .  ) 
a 2 2 a  

8/~(  l n ( a / 2 ~ ) a  2 6a 292 11: ) 
j~2,= ~ + 2_7~a+ ~2 in a +  . . . .  

8Jr (~  3v/3 9 zcxf3 + ) 
j { 3 ) = ~ \  4a 3 2a 2f- 2a 31na+.. .  , 

- - ( ~ 3 3 )  27C2-- 3 7t l 1 8zr [-nV#5 3 In + (21) J~3) = ~ [~3-a3 -}- 2a 2 lZa 2 2 ~ - ~  - rg  In a+  . . . .  

From this, we obtain 

~ g l u e  = 25/1:26a 3 ~-O(~52 ) (22) 

and 

/2gho,t l +2b zc2 (~52) 
- -  2 a 3  +-O . ( 2 3 )  

They are equal for the special value of the ghost parameter b = - ~ and therefore yield the same running coupling 
constant at large T. 

We finally comment on the terms proportional to In M/T in the high T expansion of the renormalization 
constants. The T= 0 parts contain terms In M/It, where It is the scale in the applied dimensional regularization 
procedure. As is already known form ref. [ 1 6] these terms combine with In M~ T to yield a In T/it dependence 
in the wave function renormalization constants Z3 and 23, respectively. With the help of the expansions, eq. 
(2 1 ), we also find it true for the vertex renormalization constants Z~, Zl. However, we stress that for this can- 
cellation of the In M dependence, the terms proportional to n 2 and n 3 are crucial. 

To summarize, the thermal fl function, fir= T(d/dT)g 2 (T, M)/4~r 2, behaves for large T and in the investi- 
gated renormalization scheme (for the three gluon vertex) as 

25~2N ( T~ '  g2 T 2 
f i r= 4 \ M J  4/r2 + 0 ( ~ )  " (24, 
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As a c o n s e q u e n c e  o f  the  In M t e r m  cance l la t ion ,  the  cons tan t  t e r m  in this expans ion  is exact ly the  same as for 
the  usual  T =  01~ funct ion:  -~N(g 2/4ze 2)2. 
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