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Applying the Monte Carlo renormalization group method we investigate the flow of coupling 
constants for the 84 and 164 SU(2) lattice Higgs model with triplet Higgs fields. The couplings of 
the renormalized actions are determined using Schwinger-Dyson equations. From the flow we find 
new evidence for the existence of a tricritical point at finite values of the inverse gauge coupling fl 
but no indication for a discontinuity fixed point. 

1. Introduction 

The lattice version of the Georgi-Glashow model  [1], which may be considered as 

a p ro to type  model  for the Higgs mechanism for grand unification, is of particular 

interest within the group of lattice Higgs models [2]. It  shows a two-phase structure 
with separated phases: the confinement phase and the Higgs phase. It  may  further 
serve as a model  that interpolates between the 0(3)  scalar field theory, the pure 
SU(2) and U(1) gauge theories, respectively. 

Al though  the structure of the phase diagram for this lattice model is reasonably 
well known  [3-7], it is an open question where possible cont inuum limits may be 
taken. One obvious candidate is the critical point  at vanishing gauge coupling, 

p resumably  in the universality class of the gaussian model. However,  f rom the 
recent studies of the fundamental  Higgs model [8-10] one expects that one can 
define there an effective, interacting field theory only at finite cut-off, i.e. at 
non-vanishing lattice spacing. If, however, there is another  non-trivial fixed point  
(FP) in the model,  it may exhibit different properties possibly related to a non-triv- 
ial con t inuum theory. 

The situation is fascinating for the adjoint Higgs model:  for the limiting case of 
the U(1) gauge model  with the Wilson action data on bulk quantities support  the 
first order  nature of the phase transition (PT) [11]. The PT for the other limit, i.e. 
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for the 0(3) model, is second order and in the universality class of the gaussian 
model. It appears extremely hard numerically to decide on the basis of such bulk 
measurements, whether the order of the PT changes along the interpolating phase 
boundary [4]. Renormalization group methods may help in deciding whether there is 
a tricritical point (TCP) or not. 

There are two established Monte Carlo (MC) methods to study lattice systems 
and their critical behaviour. One is by direct determination of the long distance 
properties through measurements of extended observables like correlation functions 
with the continuing struggle with boundary and other finite size effects. The other 
approach is by studying the renormalization properties of the system with regard to 
local observables defined on small length scales. This is the essence of the Monte 
Carlo renormalization group (MCRG) method introduced originally for spin sys- 
tems [12]. 

Real space renormalization group (RG) transformations do not change the long 
distance behaviour of the system. They do change the scale of the lattice spacing, 
however, and the lattice action corresponding to the new set of block configurations 
in general will have differing coupling constants. Under repeated transformations 
one expects a FP behaviour of the block action. If the FP action contains essentially 
local interaction terms this approach allows a study of the FP properties based on 
local observables only. 

Finite lattices pose a conceptual problem to the RG formalism, as well as a 
technical one. Firstly, the actions on lattices of different size live in different spaces 
and, strictly speaking, cannot be compared [13]. However, in practical calculations 
the comparison appears to be justifiable and has produced a lot of trustworthy and 
precise results [12], also for models with tricritical behaviour [14]. Secondly, espe- 
cially in higher dimensional applications the actual lattice size is not big and may 
not allow for more than one or two blocking steps. Without sufficient luck (in this 
case a conspiracy between the simple form of the action and a favourable form of 
the block spin transformation (BST)) one will hardly observe a saturation of the RG 
flow in the space of couplings. Only seldom is the FP close enough to the specific 
form of the simulated action to allow convincing evidence. In most cases one has to 
rely on the overall trend of the flowlines exhibited in a calculation. 

Three different kinds of FPs may be distinguished: trivial ones with vanishing 
correlation length, critical FPs with infinite correlation length, and the discontinuity 
fixed point (DFP) characteristic for transitions of first order [15]. Recently there 
arose a debate on the concept of DFPs and in some field theoretic models doubts on 
the analyticity of BSTs were expressed [16]. To the authors knowledge up to now no 
D FP  has been observed within the context of gauge theories. On the other hand, in 
U(1) gauge theories [17-22] there is evidence for a hybrid type of FP, positioned on 
the first order part of the PT surface, with a flow away from the singular surface on 
the hot side and a flow towards a FP within the surface on the cold side. Similar 
discontinuous flows are observed in the four-dimensional Z(2) gauge theory [23]. 
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Concerning Higgs models we are confronted with the following situation: firstly, 
it is generally believed that the • 4 model in four dimensions has only the gaussian 
FP and thus lies in the universality class of the non-interacting model. Secondly, 
based on renormalization group investigations it is argued that adding gauge 
interactions does not change this situation in the case of the fundamental Higgs 
model [9], although the existence of another additional FP is not definitely ruled 

out. 
With regard to the model considered here there is the interesting possibility that 

the first order PT may change continuously into a second order one at finite value 
of/3 and finite gauge-Higgs coupling x. In this case there should appear a tricritical 
manifold as boundary between the first order and the second order critical mani- 
folds, i.e. a point in the (/3, ~) plane. We may have two situations. 

(i) The PT is first order all the way up the gaussian endpoint; then there may be a 
DFP somewhere on the phase boundary or a hybrid type of FP as discussed in the 
context of the pure U(1) gauge theory. 

(ii) There is a tricritical point at finite values of/3; then on the first order part of 
the phase boundary there may be a FP as before. There would be a FP somewhere 
in the tricritical manifold and if one succeeds to start exactly at the TCP in the 
(t3, K) plane the flow should lead to this FP. In addition there is a critical FP which 
defines the universality class of the model situated along the critical part of the 
phase boundary; this FP may be gaussian. 

In our analysis of the adjoint Higgs model we study the flow of observables and 
renormalized couplings under real space renormalization group transformations. 
Preliminary results have been presented elsewhere [24]. Here we discuss the final 
results for the phase structure: we find evidence for the existence of a TCP around 
/3 = 2.7, x = 0.65. On the discontinuous part of the PT we find no evidence for a 
DFP with critical exponent v = ¼. In sect. 2 we present the notation and details of 
the methods, in sect. 3 the results on the flow in coupling- and operator space. In 
sect. 4 we discuss the eigenvalues of the linearized BST and in the final sect. 5 we 
summarize adding a few remarks on future explorations. 

2. Notation and formalism 

The gauge field is represented by the link variables Ux, ~. Using Pauli matrices the 
adjoint Higgs field is represented by q~ = iff~- a where ff~ is a three-component unit 
vector [ff~l = 1. The lattice action is 

S = / 3  ~ 1Tr  U~,,, +/3A Z 1 2 ~Tr U~,~. 
x,~t>v>0 x , ~ > v > 0  

x,/~> 0 



R. Baier et al. / Lattice Higgs model 399 

and U~,,~ denotes the usual plaquette variable [25]. This form may be considered as 
the fixed length (quartic Higgs coupling )~ ~ ~ )  limit of the corresponding model 
with dynamical length. The phase structure and the topological properties of the 
fixed length model carry over to the situation with finite )~. 

Most of our simulations are done on lattices of size 84; at a few points in the 
phase diagram we also work on 164 lattices. A three-hit Metropolis algorithm is 
used for the updating and we typically discard the first 20 000 iterations. On the 
original lattice we choose a specific gauge where ~x = (0, 0,1). In the analysis BSTs 
and measurements are done every fifth update sweep. For given couplings up to 
30 000 configurations (out of 150 000 updated ones) are analysed for lattices of size 
84 . On the larger 164 lattice the achieved statistics is much smaller: only 1000-2000 
iterations are discarded and from 6000 MC iterations data are taken on every 
configuration. Error estimates are obtained by combining the measurements into 
several blocks [26]. 

2.1. BLOCK SPIN TRANSFORMATION 

RG transformations introduce a change of the lattice spacing, the intrinsic 
cut-off. They should be local transformations of the field variables and are supposed 
to leave the long distance correlations of the ensemble of configurations invariant. 
In our MC calculation the configurations are determined in real space and therefore 
the BSTs should act on the field variables in real space, too. Gauge invariance has to 
be respected. We want to avoid gauge fixing--this is not necessary but convenient. 
Global Z(2) symmetry is unbroken; therefore the BST's do not have to respect it as 
long as an implicit global transformation is independent of the specific configura- 
tion (i.e. all block configuration variables may be multiplied simultaneously with 
elements of the center group Z(2)). Finally we want to stay within the given 
representation of the gauge group SU(2); this requires certain non-linearities of the 
BSTs. 

We work with BSTs with a scale factor of 2 and the block lattice is imbedded in 
the original one. For gauge field link variables the block link between the block 
lattice sites x '  and x '  +/~ may be constructed from sums over paths connecting the 
sites on the original lattice. Generalizing the transformation in [27] we obtain the 
block link Ux' ' u from the normalized sum over gauge link products along three types 
of paths, 

wx, A u )  = pl E 
r i t z  

v ±lx 

w "Au) (2.2) 
Ux;,~,(U) = ~det (W~, , . (U))  " 
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Fig. 1. The paths considered for the gauge field BST, the numbers correspond to the notation o! 
eq. (2.2). 

The shapes of the paths are shown in fig. 1. The parameters Pi determine the relative 
weights of the path shapes; P0 may be set to 1 without loss of generality. 

In general any BST obeying the above conditions should work; however, the 
positions of FPs in parameter space and hence the renormalization flow may differ 
depending on the choice of transformation. Within SU(2) gauge theories there have 
recently been studies in this respect [28, 29]. In ref. [29] the factors in eq. (2.2) are 
optimized for the pure SU(2) gauge theory in order to minimize the R G  flow away 
from the single parameter Wilson action. It turns out that it is possible to improve 
the flow behaviour, i.e. to move the renormalized trajectory (RT) substantially 
closer to the Wilson axis. However, there is still a clear RG flow towards other 
gauge couplings, even for the "opt imal"  choice. This is our main reason to keep at 
least one more gauge coupling, the adjoint one, in the action eq. (2.1). For the 

parameters  we use the values 01 = -6 .0 ,  P2 = - 0 . 2  due to an earlier result of the 
authors of ref. [29] which is different from the final "optimized" values 01 = -0 .70 ,  
P2 =- -0o18  [29]. However, for our purpose the difference in the flow is not 
significant. 

In our calculations we also determine the coupling flow in the (B,/~A) plane for 
the pure SU(2) gauge theory. Starting with configurations obtained for the pure 
Wilson action (flA = 0) one observes a misleading effect. At small values of/~ the 
flow leads towards smaller values of this coupling as expected. Above a certain/~ of 
the order of = 2.7 the flow apparently leads towards larger values of/~. Although 
superficially this seems to indicate a FP at/~ -- 2.7 a closer inspection of the flow in 
the (fl, fiA) plane shows that in both cases the flow runs toward negative flA and 
eventually, after sufficiently many R G  steps, turns and continues to follow a 
common RT towards the trivial FP at vanishing/~ and/~A. This confirms the results 
of a previous study [30], in which a different method for the determination of the 
renormalized couplings is applied. There it is also noted that this specific flow 
pattern may be caused by the nearby phase transition line present in the (/~, fiA) 
plane [31]. Obviously this effect is overlooked in the analysis of ref. [10], although 
the same BST, eq. (2.2), with Oi = (1,1,1) is used: for the blocking 6 4 --~ 34 a flow 
towards the trivial FP is indicated even for /~ as large as fi = 5. This detailed 
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discussion should point to possible difficulties in the interpretation of coupling 
flows, since a similar observation may also be relevant for the full Higgs system. 

The Higgs field variables are blocked in analogy to the transformation popular in 
scalar field theory. The block variables ~' ,  are obtained from the sum over all Higgs 
field variables ~y within a 24 hypercube Hx. The lower left site x of the hypercube 
is identified with the site x '  on the block lattice. The Higgs variables are gauge 
transformed along the shortest paths P~, y connected to this site. In case of multiple 
paths the arithmetic mean over these contributions is considered. We define the 
normalized block variables by 

Xx ' =  E 1 EH:,,y~yFi~,v 
y ~ H  x ny p~,y 

Xx" e;,- , ( 2 . 3 )  

where ny  denotes the multiplicity of shortest paths, and Hx, y the ordered product 
of link variables along this path. No attempts to improve the RG flow are tried here. 

2.2. DETERMINATION OF BLOCK COUPLINGS 

Given an ensemble of configurations, what are the coupling constants of the 
corresponding action? A variety of methods has been proposed to determine the 
renormalized couplings [32-34]. Most of the successful methods are based on 
measurements on the blocked configurations only and do not involve comparisons 
with statistically independently generated test ensembles. Swendsen's method [33] is 
well suited for the determination of a larger number of couplings but is numerically 
quite demanding, especially for the situation of non-abelian gauge theories. The 
method based on Schwinger-Dyson equations [34] is easier to handle and compara- 
tively faster if one wants to determine only a few couplings. 

We determine only three couplings: r ,  /3 A and ~. The corresponding Schwinger- 
Dyson equations are summarized in the appendix. As may be seen this set of 
equations is overcomplete. One either uses some of the equations only as a 
consistency check or one chooses to minimize a mean square deviation from zero of 
the four equations, weighted by the statistical error involved in the relevant terms in 
each equation. We decide for the second alternative which provides a measure of the 
reliability of the determined coupling values in terms of the achieved X 2. 

We perform various tests on the reliability of this method, one of them reproduc- 
ing the three couplings for ensembles of configurations generated for various 
non-vanishing values of these three couplings. The correct values are reproduced at 
least within three digits accuracy. 

In order to get an estimate of finite size effects we compare the results obtained 
for two blocking steps from runs blocking 8 4 ~  4 4 ~  24 with runs blocking from 
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TABLE 1 
Comparison of the flow in the couplings fl, x, flA after the first and second blocking step 

for two lattice sizes 84 and 164 , respectively 

Block 8* *4 16" *4 
step fl K flA fl ~ flA 

input 1.8400 1.5236 0.0000 1.8400 1.5236 0.0000 

0 1.8398 1.5236 0.0000 1.8396 1.5233 - .0001 
(0.0007) (0.0006) (0.0005) ( 0 . 0 0 0 3 )  (0.0003) (0.0003) 

1.6344 1.4199 -.0254 1.6316 1.4193 -.0260 
(0.0032) ( 0 . 0 0 2 3 )  ( 0 . 0 0 2 4 )  ( 0 . 0 0 0 8 )  (0.0009) (0.0006) 

1.6971 1.4254 0.0247 1.7448 1.4305 .0372 
(0.0146) (0.0106) (0.0099) ( 0 . 0 0 3 7 )  (0.0026) (0.0024) 

input 

0 

2.4000 0.9500 0.0000 2.4000 0.9500 0.0000 

2.3992 0.9501 0.0006 2.3994 0.9494 0.0001 
(0.0006) (0.0002) (0.0004) ( 0 . 0 0 0 3 )  (0.0002) (0.0002) 

2.4847 1.1957 -.0857 2.4838 1.1929 .0859 
(0.0012) (0.0026) (0.0016) ( 0 . 0 0 1 5 )  (0.0008) (0.0009) 

2.8995 1.5718 - .0329 2.9572 1.5734 - .1172 
(0.0163) (0.0027) (0.0101) ( 0 . 0 1 0 0 )  (0.0027) (0.0056) 

The input couplings are well reproduced by the Schwinger-Dyson method (cf. block step 0). Estimates 
of the statistical errors are given in parentheses. 

16 4 ~ 84 ~ 4 4. The couplings determined after the first blocking step are in excel- 

lent  agreement.  After the second blocking step the flow with respect to fl and K 

remains  consistent.  Two typical examples are shown in table 1 for starting configu- 

ra t ions  in the cold phase. 

2.3. OPERATORS AND LINEARIZED BST 

Because we determine only the three renormalized couplings: fl, BA, x, the 

observed flow consti tutes a projection from the, essentially infini te  dimensional ,  

space of all possible couplings into this three-parameter subspace. As concerns the 

flow in  the space of further gauge-couplings we try to minimize it by a suitable 

choice of the BST (cf. the discussion following eq. (2.2)). However, we cannot  

exclude that  the actual flow appears obscured due to this projection and we try to 

be very careful in  the final interpretat ion.  

The measured observables on the blocked lattices provide another  source of 

i n fo rma t ion  on  the flow, now due to direct measurements  without t runcat ing the 
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Fig. 2. The observables measured on the original and the blocked configurations in a symbolic notation. 
Each term is built from products of SU(2) traces over the various objects. A closed loop of links denotes 
a product of the corresponding gauge fields; Higgs fields are represented by circles at sites and, due to 
their representation, must have one incoming and one outgoing link. Operators 1, 11 and 12 correspond 
to the three terms in the lattice action. Fig. 2a lists operators involving Higgs variables, fig. 2b pure gauge 

field operators. 

number of couplings. Here we consider a substantially larger set of operators, i.e. 
directions in the corresponding space of observables: we take the 26 operators 
which enter the Schwinger-Dyson equations. This set includes the plaquette and 
other Wilson loops in fundamental and higher representations, non-nearest neigh- 
bour Higgs-Higgs coupling terms, and products of Higgs fields connected by gauge 
transformations along various paths. Fig. 2 depicts the various terms symbolically. 

We identify the set of values obtained for these observables for an ensemble of 
configurations with a point in the multidimensional operator space. PTs and other 
structures in the coupling space have their equivalent structure in this operator 
space. The RG flow structure can be studied independently based on these results 
and this provides a consistency check on the structure obtained from the coupling 
flow. 

At a FP the BST in coupling space may be linearized defining the matrix 

OK(.+l) 
T~(~ +1'') - OK~,), (2.4) 
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where K~ (") denotes the coupling K ,  for the ensembles of configurations after n 
blocking steps. The number of eigenvalues X > 1 of the T matrix determines the 
number  of relevant couplings. 

At a D F P  [15] there is only one such eigenvalue X = s d, where s denotes the scale 
factor (2 in our case) and d = 4, the number of dimensions. 

At a critical FP the relevant eigenvalues are related to the critical indices v i 

X i = s 1/'~ , (2.5) 

where the largest eigenvalue gives the critical exponent for the correlation length. At 
a standard critical FP there is one relevant eigenvalue (e.g. X = 4 or v = 1 at a 
gaussian FP). At a tricritical FP one expects in general two relevant eigenvalues, but 
it may happen, as e.g. in the d = 4 ~  6 theory, that there is one relevant and one 
marginal (X = 1) eigenvalue [22]. 

The T matrix may be determined in an approximate way from correlations 
between operators measured after n and n + 1 blocking steps [12]. This determina- 
tion should become more stable when one includes more operators in the analysis. 
The operators which affect the leading eigenvalues substantially will be important 
contributors to the renormalized action. The determination is reliable only close to 
FPs of the renormalization flow. The leading eigenvalues, however, behave in a 
smooth way even away from the FP. 

3. Results for the MCRG flow 

In the subsequent discussion we collect evidence from two groups of results. First, 
f rom the renormalized couplings, second from the measured operator expectation 
values and their cross-correlations. Fig. 3 shows the measured f l o w -  the lines 
interpolate between the points on the 8 4 ~  4 4---> 2 4 lattices - in a two-parameter 
subspace of couplings (fig. 3a) and operators (fig. 3b), respectively. We observe the 
same structure of the flow pattern in both spaces. The results may be organized 
naturally by discussing two regions in the phase diagram of the starting lattice: (i) 
/3 < 2.4 and (ii) fl > 2.4. 

3.1. /?_<2.4 

Here clear two state signals and metastable states are observed in the simulation 
(cf. ref. 4). As a further example we plot in fig. 4 the dependence of the mean 
plaquette versus /3 when crossing the PT near fl -- 1.755: a clear gap is visible. A 
similar behaviour is observed for the other, e.g. link, operators. 

Starting on the confinement branch at and below the PT we find a flow directly 
towards the trivial ("hot")  FP at /3 = 0, ~ - -0 .  The values of B,~ on the blocked 
lattices remain negligible. No flow to an attractive RT is identified in the confined 
phase. 
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Fig. 3a. Flow of couplings (fl, x) for two blocking steps in the neighbourhood of the PT (solid curve). 
The starting values are indicated by circles. 

On the Higgs side the flow in general seems to be attracted by a trajectory moving 
toward large values of /3  and •. Close to the PT and to its intersection with the 
at tractor we observe a behaviour peculiar at first sight: the flow crosses the PT and 
seems to move towards the "ho t "  FP. For these r u n s -  even starting in the 
metastable p h a s e -  we make sure that no phase flips occur during the measure- 
ments. Eventually the speed of flow in this direction slows down and for some of the 
trajectories, which start not too close to the PT, we can still observe a turn after 
the second BST back towards the Higgs side of the phase diagram, following the 
direction of the attractive RT. Independent information from the measured block 
operators confirms this structure. A typical flow "crossing" the PT line in the (fi, ~) 
plane is illustrated in table 2a: it starts in the Higgs phase, flows to smaller 
couplings and then turns back during the 8 4 ~ 4 4 --~ 2 4 blocking. Next we take the 
values for fl, ~, flA after the first blocking step again as input values on the 8 4 lattice 
and perform two blocking steps. The resulting flow now quickly tends to the trivial 
FP (table 2b), in contrast to the previous flow pattern (table 2a). 

We come to the conclusion that the flow stays in or close to the PT manifold bul 
also runs into directions in coupling space that have not been determined (i.e. 
neither one of /3, flA, K). The crossing of the PT line is just a projection effect. 



406 

1.00 

R. Baier et al. / Lattice Higgs model 

I I I I I I I 

EL_ 
CD 

0 . 0 0  
0 . 0 0  

I I I I I I 

OP [1 i] 
(b) 

, 00  

Fig. 3b. Flow of operators: plaquette (--- operator 11 of fig. 2) versus link (=- operator 1 of fig. 2) in the 
neighbourhood of the PT. 

Following the actual flow over more than two blocking steps is almost impossible in 
the limited coupling space (on lattices as large as 164), since many more couplings 
are to be determined for a successful restart in the same phase. 

In case there is a FP in the PT manifold, then it is reached only from the Higgs 
side of the PT and it may be quite far away from the three-coupling manifold. From 
the analysis of the linearized BST (see sect. 4) we find that e.g. operator 7 provides 
important contributions and is therefore a candidate for non-negligible further 
interaction couplings. 

This behaviour appears very similar to the one in the U(1) lattice gauge theory 
[18-22], (cf. the discussion in sect. 1). As suggested by Hasenfratz et al. [16,21] it 
might be associated with a singular behaviour of the BST (first observed for the 
three-state Potts model [35]). In U(1) the Coulomb phase - like the Higgs phase in 
the adjoint Higgs model - has a massless photon. Therefore in both theories the 
FPs, which do not appear to be of the DFP type expected at first order PTs [15], 
may have the same hybrid nature. An interpretation advocated in refs. [19, 20, 36] 
holds responsible the occurrence of monopole loops, winding around the lattice, as 
due to periodic boundary conditions. MC simulations may not give justice to these 
non-local objects and thus may considerably delay equilibration from the cold side. 
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Fig. 4. Mean plaquette versus/3 from starting configurations along a line x = 0.36075 + 0.632/3 crossing 
the discontinuous PT. 

TABLE 2a 
Example for a coupling flow "crossing" the PT line in the (/3, x) plane and turning back 

Size /3 x /3A 

84 1.9000 1.4000 0.0000 
44 1.6732(17) 1.3571(9) -- 0.0274(11) 
24 1.7444( 55 ) 1.3858(41 ) -- 0.0007(43 ) 

TABLE 2b 
Starting with the 44 couplings of table 2a, however, the flow tends quickly towards the trivial FP 

Size B ~ /3A 

8 4 1.6732 1.3571 - 0.0274 
44 0.3318(7) 0.3220(8) 0.0011(8) 
24 0.0017(22) 0.0101(21) 0.0027(42) 
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Therefore it cannot be definitely excluded that the indicated FP on the Higgs side of 
the PT is a real critical FP. 

On the other hand the flow in the region/3 < 2.4 starting in the Higgs phase may 
also be interpreted without assuming at all the existence of a FP on the PT 
manifold. Obscured by projection effects in fig. 3 it may be that - similar to the 
flow pattern in the confinement phase - the flow lines leave the PT surface and 
become attracted by a trivial FP (at infinite couplings) even without approaching a 
common RT. 

3.2. f l>2 .4  

In this region no uncontroversial two-state signal is observed in the bulk measure- 
ments [4], possibly, because of very long relaxation times. Although a very small gap 
is not excluded by the MC data, we are not able to demonstrate it either. Altogether 
these results are consistent with the possible existence of a second order PT. 

To start with the conclusion of the M C R G  study: there is evidence for the 
existence of a TCP in the (/3, K) plane around (2.7(1),0.65(5)) which acts repulsive 
to the observed flow (fig. 3). As mentioned already, an ordinary critial FP with one 
relevant parameter  attracts the flow from points within the critical surface and 
repels only in the direction leading away from the surface. In contradistinction, a 
TCP  has two relevant directions, one of them leading away from the PT surface, and 
another one staying in the surface, but leading away from the tricritical boundary 
manifold between the first and the second order part  of the PT manifold. It is the 
latter situation which we deduce from the flow picture for the couplings and 
operators; the relevant directions appear to have non-vanishing components in the 

(/3, x) plane. 
Of  course, f rom these data alone it cannot be excluded that there is a flow into 

other, unobserved directions in parameter and operator space. In the worst case the 
flow (fig. 3) - in analogy to the pure SU(2) gauge theory near/3 = 2.7 as discussed 
in sect. 2.1 - may only mimic tricritical behaviour, but it is actually caused by a 
different nearby singularity. In sect. 4 we give, however, additional evidence for the 
TCP interpretation. 

The positions of the TCP and of the corresponding FP are difficult to determine 
precisely. In order to obtain reasonable estimates we use the linear approximation 
eq. (2.4) and extrapolate 

3 
K * = K ~ ° ) +  Y'. [(1-T(I"°))-I]~(KO)-K(°))Z, (3.1) 

fl=l 

starting with configurations near the presumed TCP in the (/3, x) plane. In a first set 
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TABLE 3 
The values for the fixed point (~*, B*,/3* ) estimated from eq. (3.1) for runs with/3 = 2.55 

crossing the PT at ~P'r = 0.700(5) by varying x 
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Xl X2 ~* B* BA* 

0.685 2.34 1.69 2.55 2.95 - 2.80 
(0.24) (0.23) (1.97) (0.26) (3.37) 

0.695 2.23 1.44 0.94 2.82 - .15 
(0.25) (0.16) (0.03) (0.17) (0.13) 

0.705 3.01 1.82 0.84 2.67 - .04 
(0.14) (0.05) (0.02) (0.06) (0.06) 

0.715 3.75 1.54 0.79 2.77 - . 1 5  
(0.33) (0.07) (0.01) (0.04) (0.03) 

0.725 3.18 1.74 0.78 2.67 .07 
(0.16) (0.11) (0.01) (0.06) (0.06) 

0.745 3.30 1.65 0.75 2.69 - .10 
(0.02) (0.01) (0.01) (0.03) (0.02) 

The two relevant eigenvalues are also given. Estimates of the statistical errors are given in parentheses. 

of runs we start at fl = 2.55 and vary x across the PT, where KpT = 0.700(5). It turns 
out that these couplings cross the discontinuous part of the PT line, i.e. left to the 
presumed TCP. The values for r*, fl*, flA* obtained from the blocking step 84 --, 4 4, 

are summarized in table 3. Above the Higgs phase we find rather stable values for 
K *  with the average fl* =2.70(5), x* =0.79(3), flA* = --0.09(5). Simulating the 
system with these values on the 84 lattice the iterated result becomes fl* = 2.69(2), 
K* =0.715(60), flA* = -0.11(2), again very close to the previous values. We also 
check that after further restarts the evaluated K * ' s  remain consistent with this 
preferred point, although we do not succeed in localizing the FP with higher 
precision. We conclude that the given couplings provide a good estimate for the 
position of the tricritical FP. 

When starting at larger values of fl, i.e. at fl = 3.0, near the continuous PT we 
find fl* < 2.9, however, with errors too large for further sensible iterations with the 
help of eq. (3.1); these starting configurations are obviously not close enough to the 
FP estimated before. From this procedure we also derive the estimate for the TCP in 
the (fl, K) plane, given above, by taking into account the dependence of KpT(fl ) on 
the PT for flA = 0. 

At larger /3, /3 > 3.0, the flow runs towards still larger values of the gauge 
coupling, turning away from the PT line. This indicates that the gaussian FP at 
/3 = oc is the attractor for the critical part of the PT. 
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Fig. 5. The largest eigenvalue of the linearized BST T O'°) (involving 5 operators) from starting 
configurations along the same line ~(fl) crossing the discontinuous PT as in fig. 4. 

4. Critical exponents 

In the region where one has a clear discontinuity signal (the region fl _< 2.4 as 
discussed in subsect. 3.1) the eigenvalues of the linearized BST should assume rather 
large values = 16, if there is a DFP. We determine the eigenvalues of T O'°) taking 
into account correlations between operators I (link), 11 (plaquette), 12 (adjoint 
plaquette), 2 and 7 (according to the notation in fig. 2). Fig. 5 exhibits the results for 
starting configurations along a line ~ = 0.36075 + 0.632fl, flA = 0. This line is chosen 
to represent - near the PT - the possible attractive RT indicated by the flow (fig. 3) 
in the cold phase. Only one eigenvalue is larger than 1. 

Compar ing this eigenvalue, obtained for operators 1, 2, 11, 12 only, with that for 
the complete set one finds an important contribution due to the operator 7. This 
may  indicate that there is a non-negligible renormalization flow into the direction of 
such a term in the action. It is somewhat surprising that operator 7 appears to be 
more important  than, e.g. the linear next-to-nearest neighbour Higgs coupling 
operator  2. 

The PT on the given line is at fl -- 1.755. On the hot side the eigenvalue increases 
continuously towards the PT up to a maximum of Xm~x--5.5(1.0) but it stays 
definitely below the DFP value 16. On the Higgs side the value is of the order 
~-2.5, slowly decreasing towards larger ft. The overall behaviour resembles that 
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TABLE 4 
The  two re levant  e igenvalues  of T (n + 1, ,) for n = 0,1 ( involving 5 operators)  evaluated  from 

the s tar t ing conf igura t ion  fl = 2.69, ~ = 0.715, flA = - 0 . 1 1  
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Block step k l  ~'2 

8'* ~ 44 3.26(15) 1.46(9) 
4 4 ~ 2 4 3.25(62) 1.61(12) 

observed for the U(1) gauge theory [19]. It does not give the impression of a DFP  
but  it may be indicative of a non-analytic behaviour at the PT. When comparing 
figs. 4 and 5 we observe that the gap in the mean plaquette and the discontinuous 
j ump  in the eigenvalue occur at the same value of ft. 

In the runs, already discussed in subsect. 3.2, close to the presumed TCP we 
always find two relevant eigenvalues (determined from the same five operators as 
above). Typical values are already included in table 3 for the fl = 2.55 runs: one may 
observe even a small jump in the Ms, i.e. Ak I -- 0.8, when crossing the discontinu- 
ous PT (cf. fig. 5). In contrast, for the corresponding runs at fl = 3.0 the eigenvalues 
are much smoother, slowly rising from smaller values on the confinement side to 
larger values ( <  4) on the Higgs side. This gives further indication that indeed the 
order of the PT is changing between fl = 2.55 and fl = 3.0. The actual estimates for 
these two relevant eigenvalues are: the larger one assumes values between 3.0-3.8, 
the second largest between 1.5-1.8. Starting the BSTs at /3"=  2.69, x* = 0.715, 
fl~*-- -0 .11 ,  the preferred estimate for the FP, the corresponding eigenvalues are 
given in table 4: these eigenvalues show a very small variation with respect to the 
R G  iterations. 

Although we do not exactly know the systematic errors, e.g. due to truncations 
and finite size effects, our data indicate that the critical exponent ~ is larger than 1 

and that the crossover exponent In k i l n  kl is different from zero. 

5. Conclusion and outlook 

Fig. 6 summarizes schematically the observed renormalization flow in the cou- 
plings. The flow in the flA direction is of little significance for the analysis, since in 
general flA remains very small after two BSTs. In the region fl < 2.4 there is a clear 
signal for a discontinuous transition, but no indication of a DFP. On the confine- 
ment  side the flow quickly leaves the PT and tends towards the "hot" ,  trivial FP. 
On the Higgs side there is a signal of an attractive RT and of a flow within the PT 
surface, eventually moving away following this RT. In the region above fl > 2.5 we 
find strong indications for a TCP at the PT around f l - -2 .7  with two relevant 
directions. 

There may be a relation between the position of the TCP with the structure of the 
PTs in the phase diagrams in the (fl, flA) planes of the pure SU(2) and U(1) gauge 
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Fig. 6. Schematic diagram of the observed RG flow in the (fl, ~) plane; the PT is indicated by the 
thick line. 

theories, respectively. One may expect a connect ion between the spike ending at 

(fl  = 1.48, flA = 0.9) for SU(2) [31] and the confinement-Higgs tricritical line of  the 
adjoint  Higgs model. Schematically the phase diagram compatible with the mea- 
sured flow structure of our M C R G  analysis is illustrated in fig. 7. The PTs separate 

the Higgs f rom the confinement phase. The boundary  surfaces contain the SU(2) 
gauge theory (bot tom plane), the U(1) gauge theory (top plane) and the 0(3)  scalar 

)£ 
/ 

ii 
/ 

¢ , /  

0 p 
o o  

o o  

Fig. 7. Expected phase structure in the (0_<fl_<oe,0_<~<oe, oe_</~A<oe ) space with the PT 
surfaces. The thick curve indicates the tricritical line, the dash-dotted one represents the PT in the flA = 0 

plane (cf. fig. 6). 
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theory (right plane). For comparison with fig. 6 the PT line in the flA = 0 plane is 
also plotted (dash-dotted curve). In fig. 7 it is assumed that there exists a TCP for 
U(1) at finite flA [11], although it is not yet excluded that the first order line ends at 
fl,4 = - ~ [22]. However, this possibility is not changing the tricritical structure of 
the adjoint Higgs model. 

Finally let us consider the possible extension of the phase diagram when taking 
into account finite values of the bare ~4 coupling X. The TCP candidate observed 
by us in the ?, = oo case lies on a tricritical line in the PT surface x = xvr(fl,  A) at 
the boundary between a first order (smaller fl) and a second order (larger fl) part. 
We expect that for decreasing X the TCP moves towards larger fl; it is possible that 
this line of TCPs even ends at the gaussian FP at fl = o0, X = 0, x = ¼. For the 
abelian Higgs model the existence of such a tricritical line was conjectured recently 
by Nill [37], but this suggestion seems to be valid also for the non-abelian case. 
Then the TCP may be accessible to perturbation theory at small X. The tricritical 
FP may be anywhere on this line and the continuum theory obtained within the 
tricritical manifold has one additional relevant parameter and may be therefore 
more restricted than the trivial continuum theory obtained at the gaussian fixed 
point. 

How should one proceed to support or reject the conjectured FP structure? 
Additional and more precise bulk measurements at sufficiently large f l -  3.0 on 
sufficiently large lattices (>  164) may be useful to find out about a two-state 
signal - if existent. MCRG studies on larger lattices including more couplings may 
be helpful. Especially, the inclusion of the radial mode might allow to find out 
about the possible continuation of the tricritical line to the gaussian FP. 

We conclude that the MCRG study of the adjoint SU(2) lattice Higgs model 
reveals a remarkable structure of the phase diagram, which is much harder to obtain 
by bulk measurements. Nevertheless more work, including analytical one, is re- 
quired for a complete determination of all the continuum properties of the model 
under investigation. 

Discussions with T. Neuhaus and F. Nill are gratefully appreciated. We acknowl- 
edge the support of Rechenzentrum der Ruhr-Universit~it Bochum and especially of 
H L R Z  at KFA Jiilich where the necessary computations were performed. 

Appendix 

In this appendix we give the four Schwinger-Dyson equations, from which the 
couplings/3, x and ]~A are derived. Altogether 26 different expectation values (fig. 2) 
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have to be measured. The equations are 

2(Tr[L(y,p, y+ p)U]p]) 

= - x  E l (Tr[L(y ,p ,  y + p)Uytp] Tr[ L(y,  tx, y +/~) Uyt,,] ) 

- x  E ( Tr [ Uy,,@ty+,Uyt,,Uy,~ty+~Uyt,~] ) , (1) 
[~] 

(Tr[L(y ,p ,y+p)UJ,  p]) 

= r - l x ( T r 2  [L(y,p,  y+ p)Uyt, o] ) 

+ B E  ¼(Tr [L(y, p, y + p)G(y, O,/~)]) 
(~) 

- B E  I(Tr[L(y ,P,  Y+ p)Uyt, pITr[Uy,pG(y,P,#)]) 
(t,) 

+BAE X(Tr[L(y,P, Y + P)G(Y,P,I~)]Tr[Uy, oG(Y,P,#)]) 
0,) 

-BA~-'~(Tr[L(y,p,y+p)Uyt,.]Tr2[Uy,.G(y,p,lx)]), (2) 
(~) 

3(T~[U~..G(y,p,~)]) 

= 2x(Tr[L(y,p, y + p)G(y,p,~)]) 

-x(Tr[Uy,pG(y, p,l~)] Tr[ L(y, p, y + p).:.]) 

+B~_~(Tr[G(y,P,~')tG(Y,,,.)]) 
(,) 

-BY'. X(Tr[Uy, oG(Y, P,I~)I Tr[Uy, oG(y, P,v)]) 
(~) 

+ BA y'~4(Tr[G(Y, P, u)tG(Y, P, t~)] Tr[Uy, oG(Y, P, u)]) 
(~) 

--BAE~(Tr[Uy, oG(y,o,~)]Tr2[U,,oC(y,o,~)]), (3) 



R. Baier et a L /  Lattice Higgs model 

(TrZ[U,,oG(y,o, tt)l)-I 
415 

=K~(Tr[L(y ,o ,  y+ o)G(y,p,t~)lTr[Uy, oG(y,o,g)] ) 

-x¼(Tr 2 [ U y . , C ( y . o . ~ ) l T r [ L ( y . o .  y + p)U~,] ) 
+ f l~  ¼(Tr[Uy, oG(y, p, u)l Tr [G(y, p, ~,)tG(y, O, g)]) 

(~) 

-flY" ~-( Tr2 [Uy, oG(y'o'/~)1 Tr[U~,.G(y,o,,,)I) 
(v) 

+ flAE ~( Tr[GCY, P, v)tGCY, P, I~)]Tr[Uy, oGCY, o, v)] 
(~) 

×Tr[Uy, oG(y,P,g)]) 

-flAY'- ~( Trz [Uy, oG(y,P,t~)] Tr2 [Uy, oG(Y, P, v)l>- 
(r) 

The following abbreviations are used 

(4) 

E = E + E ,  
[g] p . > O  g<O 

E = E + E 
(v) r>O,v~ O u<O, wS P 

G ( x ,  ~,, , )  = Ux + , ,  , u : + , , , u 2 ,  , 

L ( y , O, x) = q~y Uy , fl~ fx . 

In order to increase the statistics the averages appearing in the above Schwinger- 
Dyson equations are taken over the whole lattice. 
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