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Abstract. The finite corrections of order % in pertur- 
bative QCD to the cross-sections for semi-inclusive 
hadron production from deep inelastic lepton- 
hadron scattering and electron-positron annihilation 
are calculated. We define the effective quark frag- 
mentation functions via e § e- --* hadron + X includ- 
ing the finite terms in order to estimate these correc- 
tions for the reactions lepton + hadron --* lepton + 
hadron + anything. Contrary to the leading term 
the next-to-leading order term does not factorize 
into parts depending on the target and the fragment, 
respectively. For the processes e § p --* e 4- ~+ § X 
and v + p ~ /~-  + rc • + X the finite corrections of 
order % turn out to be at most 20~ in the range of 
momenta covered by present experiments. 

I. Introduction 

We investigate the finite corrections of order c~ in 
perturbative quantumchromodynamics (QCD) to 
the cross-sections for semi-inclusive hadron produc- 
tion from deep inelastic lepton-hadron scattering and 
electron-positron annihilation. In the parton model 
[1] one assumes that the cross-section for the process 
lepton + hadron ~ lepton + hadron + anything fac- 
torizes for each quark coupled to the electromagnetic 
or weak current into a distribution function qn(x) 
for finding a quark in the target H and a fragmentation 
function Dn'(z) for the scattered quark, which 
fragments into the final hadron H'. For electro- 
production e.g. one writes 

1 da u'u' 
2 X n X O u '  e 2 x  H 

dan/dx dxdz = ~eq qq ( ) q (z)/~ ~ qq (x). (1.1) 
q q 

(The sum is taken over all quark and antiquark 
flavours). 

The variable x (z) is to be interpreted as the fraction 
of the incoming hadron (outgoing quark) momentum 
carried by the incoming quark (outgoing hadron) 

with charge eq. The predictive power of the parton 
model is based on the assumption that the functions 
qn (x) and D H (z) show scaling behaviour and that they 
are independent of their environment. This allows to 
calculate the inclusive hadron production for 
electron + positron ~ hadron + anything by 

1 da n - 2eZqDnq(z) / ~ e~. (1.2) 
O'to t d z q /quarks, 

In the context of perturbative QCD [2] it was 
shown that the probabilistic ansatz of the parton 
model remains preserved [3] in the leading logarithm 
approximation. The proof is based on the universal 
factorization of all infrared and mass singularities 
to all orders in perturbation theory (this factorization 
is also valid for the non-leading logarithms [3] ). The 
functions qn and D n, however, acquire a dependence 
on the momentum transfer Q2. Their Q2-evolution 
is governed by integro-differential equations of the 
Altarelli and Parisi type [4-6]. 

The aim of this paper is to calculate the finite (non- 
leading) terms of order ~s for lepton + hadron 
lepton + hadron + anything and e + e- ---, hadron + 
anything in order to check their possible importance 
at moderate values of Q2. This kind of corrections 
has been recently studied for the cross-section of the 
production of lepton pairs in hadronic collisions [7, 8], 
which is a process like the ones under discussion, for 
which no light cone techniques are developed. The 
calculation presented in this paper uses the same 
assumptions as made in deriving the finite terms for 
the Drell-Yan process (see [7]), e.g. we neglect inter- 
actions with spectator partons and contributions 
from the two-loop corrections. 

We define the effective quark fragmentation func- 
tions DU(z, Q2) by the cross-section 1/~rtotdffn/dz for 
e + e- --, hadron + anything including the finite terms 
such that it keeps the parton model form (1.2). For 
the effective quark densities qn(x, Q2) we follow the 
proposal of Altarelli et al. [7] by demanding that the 
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structure function F 2 (x, Q2) of deep inelastic lepton 
hadron scattering is expressed by the qn(x, QZ)--  
again including the finite terms--as  in the parton 
model. The next-to-leading terms of order G for the 
cross-section of lepton + hadron --* lepton + hadron + 
anything are then expressed by the quantities qn (x, Q2) 
and DO(z, Q2), but they also depend on the gluon struc- 
t u r e - a n d  fragmentation function. The considered 
correction terms break the factorization property 
with respect to the x- and z-dependence as given 
by (1.1)1. 

The paper is organized as follows: In Sect. II the 
inclusive hadron production in electron-positron 
annihilation to order G and our definition of the 
effective quark fragmentation function are discussed. 
The hadron production for lepton-hadron scattering 
is treated in Sect. III. The details of the calculation 
for the next-to-leading order terms are given for the 
case of electroproduction. Numerical estimates of the 
considered corrections are given in Sect. IV with 
special emphasis on the reactions e p ~ e n + X ,  
ep- . ,  e K -  X and v p ~  p-n+- X.  

II. Semi-Inclusive e' i 'e-Annihilation and the 
Effective Quark Fragmentation Function 

The process we are considering is shown in Fig. 1, 
where a timelike photon with momentum q produces 
a hadron with momentum PH via an intermediate 
constituent of momentum p; the fragmentation of the 
constituent is described by a function D~(z) (bare 
fragmentation function), where z is the momentum 
fraction z = Pn/P. After integrating with respect to the 
transverse momentum of the hadron the cross-section 

z - 2 p n ' q  is a function of the scaling variable n - Q2 and 

of the invariant Q2=  q2. It is given by the parton 
model expression [1] 

d6  u 
dz. (z., &) 

where 

= ~ . ~ d z d z p b ( z  n - z z p ) ~ - ( z p , Q Z ) D y ( z ) ,  (2.1) 
a z  

c p 

d o ~ is the differential cross-section for a photon 
dzp. 

H = z p  

Fig. l.  Parton model description of the process electron + 
positron ~ hadron (Pn) + anything 

1 While writing this paper we received a paper by Sakai [9], who 
discusses the problem of factorization breaking in moments of deep 
inelastic neutrino hadron production 
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Fig. 2a-c. The diagrams contributing up to order G to the process 
shown in Fig. 1. a virtual 7 ~ q + q, b virtual 7 ~ q + q + g and 
e virtual gluon correction to the Born diagram (a). The photon is 
denoted by a wavy line, quarks by a continuous line and the gluon 
by a spiral line 

decaying into a constituent c (quark q, antiquark ~, 
2p.q  

gluon ,q). The variable z# is defined by Zp - Q2 �9 In 

lowest order perturbation theory of QCD (Fig. 2a) 
da  c 

the cross-section dz~_ is given by the parton model 
P 

formula for the production of a quark-ant iquark pair 
(per coloured quark), 

da  q 4n ~2 
dzq 3 Qz e~6(1 - Zq), (2.2) 

where eq is the charge of the quark (or antiquark) and 
c~ = 1/137. In order to obtain the first order corrections 
in the strong coupling constant % = g 2 / 4 n  the 
contributions from the diagrams displayed in Fig. 2 
are to be computed, which are due to the emission of 
a real gluon (Fig. 2b) and due to the interference of 
the Born term (Fig. 2a) with the virtual gluon diagram 
(Fig. 2c). Because of the presence of infrared and mass 
divergencies in the diagrams (Fig. 2b, c) the gluon 
momentum is taken off-mass shell by the amount 
k 2 = #2, #2 > 0, whereas the quarks are kept on-shell 
with zero mass [10]. The explicit calculations are 
performed in the centre of mass system of the e + e-  
pair. The Feynman gauge is used. The real diagrams 
of Fig. 2b yield the following differential cross-section 
[11] (per coloured quark) 

4 / 1 : 2  0r 4 % ~ 2~ q- (Zqq-a ,q- -  2) 2 

d r  -eq Q Z 3 2 n [ ( 1 - z q ) ( z q + z  o - 1 )  

~2z~ ~2 } 
- (1 - zq) 2 - (zq + z o - 1) z dzqdz~ (2.3) 

2p 'q  2k ' q  . 
where Zq - Qz , zo = ~5-,Q with zq + z~ + zg = 2 and 

the scaled mass fi = / ~ / ~ .  The number of colours 
is set to N~ = 3. Since the cross-section for the inclusive 
hadron production has the convolution form (2.1), 
one has to take terms proportional to the gluon mass # 
in (2.3) into account, which give finite contributions 
in the limit #--* 0 after performing moments with 
respect to z (or z ) In order to obtain the expression �9 q ~ "  , 

for daq/dz one has to integrate z over the interval q g 

(1 -- zq) + fi2/1 -- zq <= z o _< 1 -/- j[~2 with zq limited by 
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1 
1 + fiz ~- 1 - ~2. In the limit of vanishing gluon Zq 

mass the result is 

daq 4ne23 Q2~: )n [ ln2k~26(  1 ~z~z (real)= ~ - zq )  

3 1 + z 2 In/]2 + ~ In fi26(1 - zq) - 
(1 Zq)+ I 

2 1 + z  z 3 1 1 +zq 
+ (i i n ( l -  2 1 -  z01+ ) l - z .  

"Inzq+~3(l-zq)+ 2 J '  (2.4) 

w i t h O < z  < I 
In the intermediate steps of the calculation the follow- 
ing substitutions are used, 

I 1 
- - - * - -  ln fiZ 6(1- z), 
1 - z  1 - z [ +  

1 ln(1 - z)--,  1 ln(1 1 1 2 l ~ - z  l - - z [ +  - z ) - ~  n /]2 b (1-- z), 

and 

(~z). lb(1  - z). (2.5) 
( l - - z )  n+l *n  

The above relations are derived by considering the 
moments  ~dzz"f(z) in the limit /~--,0. All terms 
vanishing in this limit are neglected. The distribution 
1/(1 - z)+ is defined by [4] 

t 1 f (Z)lz ~dz 1 f (z ) - f (1)  ---- -~az  - - - -  , and 
o + o 1 - z  

~dz f(z) I n ( I - z ) - -  dz f (  (1 ) In( l -z ) . (2 .6 )  
0 ~ 0 --  

To the cross-section (2.4) one has to add the inter- 
ference contribution [10] (Figs. 2a, c), 

dj~q(virtual ) _ 4ne~ e2 4e s 6(1 - zq) 
dzq 3 Q2 3-2n 

"[ - l n 2 f i 2 - 3 1 n f i 2  7 ~ ]  - ~ + . (2.7) 

The total contribution for observing a quark (or 
antiquark) with momentum fraction zq(O < z~ < I) 
is given by 

daq _ 4he 2 ~2 
dzq 3 Q2 

o~ s f Q2+ 

where 

4 [  1 + z 2  3 ] 
Pqq(z)=~ l---z]+ ~-~6(1-z)  , (2.9) 

9 ,  1+z,  
d q q ( z ) = ~ [ ~ 7 - ~ ) 6 ( 1 - z ) §  1 - z  

3 1 l + z  2 l + z ]  
- - +  l n ( 1 - z ) + - - ~  J .  (2.10) �9 l n z  2 1 _ z 1 +  

The leading In 2/]z infrared singularities are cancelled 
between the real and the virtual gluon emission [3, 5]. 

For the differential cross-section of a photon decay- 
ing into a gluon with energy fraction 0 < zg < 1 one 
has to integrate the cross-section (2.3) with respect to 
z, in the interval 1 - z~ + fi2/zo < 1 - fiZ/z o. The 
r~sult is (per coloured ~quark) ~ = Zq < 

21d z o 4 n3 2 Q2 ~ ~ ~ V ~YQ2 J] - eq [ Poq (zo) ln + d, ,  (zo) , (2.11) 

where 

4 1 + (1 - z) z 
Poq (z) = 3 z ' (2.12) 

and 

4 1 1 + ( 1 - z ) 2 1 n z 2  2zl" (2,13) d0q (z) : 5 z 

We introduce the factor 1/2 into (2.11) because later 
on we are interested in the correction for each quark 
or antiquark. In the leading logarithm terms the well- 
known transition probability densities Pq~ and Poq 
first derived by Altarelli and Parisi [4] appear. 

We now define the effective Q2-dependent frag- 
mentation function of quark (or antiquark) into 
hadrons Dn_(z, Q2) to be determined even beyond the 
leading 1Jgarithm approximation by the process 
e + e-  --, H + X via the standard parton model expres- 
sion (1.2) (except for the Q2-dependence), 

lda~+~--~nx e 2 n 2 / u ~ k  
O'to t dztt = Eq q Dq (ZH, Q ) t q  s e~" (2,14) 

Applying now this definition we obtain from (2.1) 
together with the QCD result for the total e + e-  ~ X 
cross-section [12] 

4n ~2 ( %(Q2),~ 
Otot = 3 quarksE 3 Q2e~, 1 + ~ ) ,  (2.15) 

H 2 the effective quark-fragmentat ion function Dq (z,,  Q ) 
in terms of the bare fragmentation functions D~9(z ), 

0~ s Dnlz 02~ On(zn)+ 2n q ~ H~',:~ : -~  

dz zn Q2 + 
" i T [ ( P q q ( T ) l n  ~-~ dqq(~))D:(z) 

g H  

+ ( , o q ( ? ) l n ~ 2  +doq(?))Dno (z)], (2.16) 

where d~q (z) is defined by 

dq,(Z) = dq,(z)- 28(1 - z). (2.17) 
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In the leading logarithm expansion the Q2_ 
dependent fragmentation f u n c t i o n  /)qn(zn,Q2 ) is 
defined without the finite d~q and dgq-terms, respective- 
ly. It was conjectured by Georgi and Politzer [5] 
that Dn(z.  ,Q2) satisfies a renormalization group q tl  . . 
improved evolutmn equation [5, 6] 

d -H %(t) 
dt  Dq ( zn ' t )=  2~ 

dz  zn ~n Zn ~n 
�9 i - z [ P q q ( - ~ ) D q ( z , O + P o q ( ~ ) D a ( z , t ) l ,  (2,18, 

which is the analog of the Altarelli and Parisi evolution 
equation [4] for the quark distribution function. The 
variable t is defined by t = In Q2/M2 where M is 
the mass corresponding to the renormalization point, 
a~(0) = ~ .  In Eq. 2.18 corrections of the order ~2(t) 
in the running coupling constant ~(t) are neglected. 
The leading logarithm approximation for ~(t) is 

~ with b - 3 3 - 2 f  where f is the 
as(t) ~ 1 + b ~ t  12~z 
number of flavour degrees of freedom [2]. It is easy 
to check that a redefinition of the quark fragmentation 
function DI~(zn,Q 2) including the finite terms (2.16) 
again satisfies the evolution equation (2.18) when 
terms of the order ~2 (t) are consistently neglected, since 

da~(t)oz It remains to check that the effective <Xs2 (t).  

quark decay functions (2.16) obey the momentum 
sum rule [1] 

1 

Z ~dznzt-ID~(zn, Q2) = 1, (2.20) 
H 0  

and the isospin sum rule [1] 
1 

H H ~, ~dznI  3 D, (Zn, Q2)_13  , (2.21) 
H 0 

in order to satisfy the requirement of being consistent 
definitions. These sum rules (2.20) and (2.21) are 
assumed to be satisfied by the input-functions 
D~(ZH) an d n D o (zn), respectively. In order to prove 
(2.20) and (2.21) it is convenient to calculate the 
following moments, the anomalous dimensions [2] 

t 4 (  1 1 ~ j )  
Y"qq = Id z z " -~Pqq( z )=5  n(n + l) - ~ - ~  2 , 

0 j = 2  
1 4 2 + n + n  2 

" - ~ d z z ' -  t =-  (2.22) 7~  P~ 3 n(n 2 -  1) ' 
0 

and the moments of the coefficient functions dqq 
and d oq, 

1 

6"qq = I d z z " - t  dq,(z) 
0 

=_4[13 1 5 n + 4  3 n Z - n - 2  
3 L 4  n 2 2 n ( n +  l) ~- 2 n ( n +  l) 
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and 

1 8 n S + n 3 + 8 n 2  2 
6"~ = I d z z " -  l doq(Z) • - 3 nZ(n 2 _ 1) 2 (2.23) 

0 

For the validity of (2.21) it is necessary that 
1 1 7qq = 6qq = 0, whereas for the energy sum rule (2.20) 

2 2 = 0 and 2 to hold the conditions a r e  7qq Dr. Ygq (~qq-~- 

62 =0 .  All these constraints are satisfied by the oq 
moments given in (2.22) and (2.23). 

III. Semi-Inclusive Leptoproduction 
In this section we consider the semi-inclusive lepton- 
hadron scattering shown in Fig. 3 in the deep inelastic 
limit. The details of the calculation are given for the 
case of electron (or muon) scattering e- (k 1) + H(pn) 
e-(k 2) + H'(p~) + X. When the transverse momentum 
of the outgoing hadron H' with momentum p~ is 
not measured the differential cross-section depends on 
the following variables [1], 

Q2 Pn'q P'n'Pu (3,1) x n - , y = and z n - , 
2pn 'q  Pn'kl  Pn'q 

where q - k I - k 2 is the momentum of the photon 
and Q2 = _ q2 > 0. We neglect masses of the leptons 
and hadrons. The cross-section is usually written in 
terms of two structure functions [1], 

d 6H,H' 

d x H d y d z  H 
2~Z~2S "1 

= Q4 [( + ( 1 - y ) 2 ) F f ' W ( x n , z n , Q  2) 

_ y2 xnF~m,  (xn, zn ' Q2)], (3,2) 
HH" with Ff'~t '= F 2' / x n -  2 F f  'W, and s =  2pn 'k  1 

QZ/xuY. The parton model expression [1] for the 
process in Fig. 3 is 

d a m W / d x ~ d y d z n  
= ~ ~ d x v d x d z v d z 6  (x n - xxp)6(z n - zzp) 

a,b 
d a a'b 

�9 qf f (z) .  , , D~'(z), (3.3) 
a x p a y a z p  

where da"'b/dxvdydz p is the parton cross-section 
for the initial parton a (quark, antiquark or gluon), 

q p' p~= zp' 

Fig. 3. The parton model description of the process lepton 
(kl) + hadron (p~) ~ lepton (k2) + hadron (p~) + anything 
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which is scattered to the parton b after interacting with 
the current, qno(x ) is the bare distribution of parton 
a in hadron H, and D~' (z) is the bare fragmentation 
function for the transition of parton b into hadron H'. 
The parton variables are defined according to (3.1) 

Q2 p.q p.p, 
x p -  y = and z p -  , (3.4) 

2p'q'  ~ p'q 

where p(p') is the momentum of the incoming (out- 
going) parton. The momentum fractions x and z are 

t ! given by p = xp n and Pn = zp,  respectively. The 
parton cross-section d a "'b can be decomposed analo- 
gously to (3.2) as 

da"'b/dxpdydzp 
2g~2s-  1 

-- ~ - [ (  + ( 1 -  y)2)F~z'b(xv,zp,Q 2) 

"2X g a b t x  Z ,"~2xq - Y  p Z' t p, p ,~  )_1, (3.5) 

with ~ = x" s. In lowest order perturbation theory of 
QCD (Fig. 4a) only the quarks contribute. The 
result is 

Fq2 'q (Xp, Zp, Q 2) = e 2 6 (1 - zp) J (1 - Xp), 
FqL'q(Xp, Zp, Q2) = 0 .  (3.6) 

Using (3.6) the structure functions defining the total 
inclusive cross-section for e-  + hadron ~ e -  + X 
have the form 

H 2 2 X H F2 (xn, Q ) = ~ e q  nqq (xn), F~(xn)=O. (3.7) 
q 

(In (3.7) and in the following Y' means the sum over 
q 

quark and antiquark flavours). These are the usual 
parton model results [1]. 

In first order in the strong coupling constant a 
the contributions shown in Figs. 4 b - d  are to be 
calculated; virtual ? + q --* q + g, where either the 
quark or the gluon can fragment into the hadron H', 
and virtual ), + g ~ q + ~ with the quark (or the 
antiquark) fragmenting into H'. For the elastic case 
virtual y + q--, q the interference of the Born term 
(Fig. 4a) with the graph in Fig. 4c has to be taken into 
account. The same technical assumptions are made in 
the evaluation of the diagrams (Fig. 4) in order to 
be consistent with the calculation of Sect. II. The 

q p' 

5 <  ~  ,0 

d 
Fig. 4a-d.  The diagrams contributing up to order % to electro- 
production; a virtual ?+q(P)-*q(P ' ) ,  b virtual y+q(p)---* 
q(p') + g(k), e virtual gluon correction to the Born diagram (a), 
d virtual y + g(k) ~ q(p') + ~(p). The photon is denoted by a wavy 
line, quarks by a continuous line and the gluon by a spiral line 

explicit calculations are performed in the Breit 
frame [ 1 ]. 

When triggering ; . ; , t h e  outgoing quark with 

momentum p / ) z q  = we obtain from the dia- 
p ' q /  

grams with real gluon emission 

Fq2'q(xq,Zq, Q2)/xq = eq 2n 3 [(1 - xq)(1 - Zq - xqfi 2) 

1 1 -xq(1 + f i z ) -  zq 
+ 6XqZq- fi2xq (1--xq) 2 ( 1 - z q - x q f i 2 )  2 

(1 + zq) + (1 - xa) "~l (3.8) 
+ (1 - x ) ( 1  - zq - x  2)/J ' 

Fq,q(x zq ,Q2)  2 as 4 L t ~, = eq ~-~n~4ZqXq, (3.9) 

where fi2 = 112/Q2 > 0. The boundaries of the variables 
xq and Zq are given by .0 < Xq < 1/1 + ]~2 and 0 __< zq __< 
1 - x q f i 2 / 1 - x q .  In the limit # 2 ~ 0  the above 
expressions agree with [l 3]. In order to calculate the 
expressions for F~'~ in the limit /~2~ 0 one has to 
handle the infrared' and mass divergencies, which are 
generated in the limit zq ~ 1 and xq --* 1 (soft gluon 
emission) and Zq ~ 1 (hard gluon emission parallel 
to the incoming quark) or xq ~ 1 (hard gluon emission 
parallel to the outgoing quark). Because of the 
convolutions (3.3) the explicit procedure is to define 
regularized quantities mog. by calculating the double- --2,L 
moments with respect to xq and zq and by demanding 

1/l+fi 2 1--xqfi2/1--xq 

lim ~ dxq ~ dzqx~z'qFq2,qL 
f*2~O 0 0 

1 1 

= Sdxq I dzqx'~zqF2~ (3.10) 
0 0 

+ singular terms proportional to In fi2 and lnEfi 2. 

Again terms, which vanish in the limit fi2_~ 0 are 
neglected. In addition to the substitutions (2.5) one 
obtains the following prescriptions valid for the 
double integrals in (3.10), 

1 1 X 2 
, - -  In 6(1 -- z) 

1 - - Z - - X f l  2 1 - z [ +  1 - x  
- In fi2 5 (1 - z), 

1 1 
( 1 - x ) ( 1 - z - x f i  2) * ( 1 -  x)+ ( 1 -  z)+ 

l l - z )  ( lnx2 ~1(_1_-) x ) )  
( 1 + _  1 - - x  x + 6 ( l - x )  6 ( 1 -  z) 

_ 1 n ~ 2 ( 5 ( 1  - x) 5(1 - z)~ 

1 
+ ~ In 2 fi26(1 - x)6(1 - z), (3.11) 

~2 fi2X2 

( l - x )  ~ -* 6 ( 1 -  x) ( 1 -  z) and ( 1 - z - x f i 2 )  2 

5(1 - z)(1 - x). 
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Adding the contribution from the interference of the 
graph in Fig. 4c with the Born term, 

F~2"a(xq'zq'Q2) vi~t~l 2 4cz . . . .  - eq ~ 7 ~ o t t  - xq)8(1 - Zq) 

7 27r 2-] 
. In 2/~2 + 3 In fi: + ~ + ~ - J ,  (3.12) 

one obtains finally the structure functions for the 
transition of quark into quark with 0 < xq < 1 and 
O < z q < l ,  

~ % I  Q2 
Fq2"q(Xq, Zq, Q2)/xq = e q ~ l n T ( P q q ( X q ) 8 ( 1  - Zq) 

+ Pq,(zq)8(1 - xq))+fqq(Xq, zq)[,  
-1  

where 
4 

+ -~ - )8 (1  - Xq)8(1 - zq) 

+ 8 ( 1 - x q )  z q - l + l _ z q l  + l n ( 1 - z q )  

l +  
+ 5 ( 1 - z q )  1 - X q [ + l n ( 1 - x q ) -  1 - x q  

1 +zq 
2 ~ - X q  ] + 6 X q Z q + l - t  1- -Xq]+  �9 In xq 

za + xq 2zZq J 
i = + (1- x.)-2ii- z)+ 

(3.13) 

The longitudinal part F[  'q (3.9) is independent of 
mass divergencies. The density P is the same as 
defined in (2.9). One observes ,,,~t the soft gluon 
singularity is cancelled. The finite term f~q(xo,z~) 
does not factorize with respect to its xq an~l Zq 
dependence in the way the divergent terms do. 

The case where the hard gluon (z o > 0) is supposed 
to fragment into the hadron H' can be obtained 
immediately from (3.12) and (3.13) by substituting 
z a ~ 1 - z  a and by dropping the terms proportional 
to 6 (zq) 

q ' g  O~ s F2 2 2 
xq (Xq'Z~ Q ) =  eq 2r~ 

Q~ 
�9 [ l n ~ P q o ( z o ) 8 ( 1 - x ~ ) + f ~ o ( x q , z o )  ] ,  (3A4) 

where Pcq(Z) = Pqq(1 - z) andf~0(z ) =fqq(1 - z). 
We now consider the contributions to the semi- 

inclusive cross-section in the case of an incoming 
gluon (Fig. 4d). Here the mass divergencies for the 
hard gluon to be parallel to either of one of the 
outgoing quarks are regularized by putting k z = - / ~ 2  
/~2 > 0. We find 
F O , ~ t x  % ~ I _ l - - Z q - - 2 X . q  ft2 

2 , o , z q , Q ~ ) / x o = e 2 ~  z--+xqfi 'z 

(1 
z~ - 2 ( 1 - x  - x 0 f i  2) z q + x o p  2 + 1 - z~ - xofi 2 
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1 1 - x~ -- x~ fi2 
-]- (Zq AV Xgfi2)(1 -- Zq - -  Xg]~2)/ 1 - -  Zq - -  Xg f l  2 

+ 12x(1 - x g ) + f i 2 x g ( 1  - x g - x g f i  z) 
( 1  1 ) 

�9 (Zq + xofi2) 2 f- (1 - Zq - xgfi2) 2 

1 - -  2q - -  2Xg~ 2 __/~2 X~) 1 __ Zq 1 
- f i ~ x  % + xo~)~ , z ~ - x . ~ )  ~ '  

(3,15) 

,~2,2k" k 'p"~ , where x o = ~g / q, zq = k - ~ ) '  ana 

gs 1 
F[  q (xg, Zq, Q2) = e~ 2 7  28 x o (1 - xo). (3,16) 

For ~2 _+ 0 the boundaries are given by 0 < x o _<_ 1 - fi2 
and - fi2xo(1 - x0 ) __< zq < 1 -/~2x0(1 + x0). 

Again for fi2 _+ 0 there is agreement with [13]. The 
regularization procedure is performed analogously 
to (3.10t, but here one calculates the double moments 
with respect to x 9 and zq. After using the following 
substitutions 

1 1 
b(1 - zq)ln x 2 

1 -  z - x o~2 " l _ z . l+  
- In fi28(1 - zq),  

1 1 

% + x ~:)(1 - zq - x y )  ~ z.l+ (1 - z.)+ 
- (8(zq) + 5(1 - Zq))(ln x z + In fi2), 

~2 l 
(1 - z~ - x o ~ ) ~  -' ~ 8 ( 1  - z O, (3.17) 

we obtain 

F~ "q (x o, Z q, Q2) 

X 9 

and 0 < x o, Zq __< 1, where 

p q g ( x )  = ~ ( x  2 + (1 - ~ )21 ,  

f, oq (x, z) = ~ - (xZ + (1 - x)2) In x 2 (6 (z) + 8 (1 - z)) 

x z + ( 1 - x )  2 2 + 1 2 x ( 1 - x ) ] .  
- a ( z )  - a ( 1  - z )  ~ (1 - z )+  ( z )+  

(3.18) 
Before finally discussing the hadron cross-section 

(3.2) the total inclusive leptoproduction including 
the as-contributions is presented. The parton model 
expression for F~ (3.7) becomes modified by 

F~](xtt ,Q 2) = 2 e q X  H qq (xn) 
q 

d x  x H 
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XH Q2 
+( ,qo ( - s  (3.19) 

where qqU (x) and 9U(x) are the bare quark (or anti- 
quark) and gluon distribution functions for the hadron 
H. The finite terms fq.o are derived as follows 

1 4 [  ( 2 +  2 : )  
fq(x)=Idzjq+(x, zq)= 5 6(1 - x) 3 

o 
3 1 1 + x  2 

+ l + 4 x  2 1 _ x l + q  l _ x l + l n ( 1 - x )  
1 "J-X 2 - ] ,  
i Z X  lnx2 

and 

1 1 

! fo, (x, zq)dz~ f. Ix) = ] 

= 1 [ _  (x 2 + (1 - x) 2)ln x 2 - 2 + 6 x(1 - x)]. (3.20) 

The factor 1/2 is taken because we are summing over 
quarks and antiquarks in (3.19) and the diagrams 
(Fig. 4d) are only to be counted once. Our results for 
fq,0(x) can be compared with the ones of [7]. There is 
agreement forf~, but not forfq, but in the calculation 
offq in [7] the quarks are set off-shell. 

For the following we adopt the same convention 
as in Ref. 7 in order to define the Q2-dependent 
effective quark distributions q(xu,Q 2) by assuming 
that the expression for F f  (x H, Q2) has the same form 
as in the parton model (3.7) even when the finite terms 
of % are included 

Fn2 (xn, Q2) = X~' e 2 X _H z x ,n2,  q Hqq t H ' ~  )" 
q 

This gives the relation 

qy (xu, Q2) _= qU (xu) 

())} XH H XH H 
�9 l n T +  fq 7 .  qq(x)+f o ~- g (x) . (3.21) 

One has to note, as discussed by Altarelli et al. [7], 
that although the finite terms proportional to fq,o 
are incorporated in the definition of qHq(xn,Q2), 
the Q2-dependence of qnq(xu,Q2 ) is at order %(Q2) 
determined by the Altarelli-Parisi equation [4] 

d . =~ ) [ dxV u /Xu~  
~ q  (xu't) 2n :++xt  q (x ' t )P+qtx)  

(+0] + gn(x, t)Pq+ 7 " (3.22) 

The definition of qU(x, Q2) given by (3.21) is 
consistent with the parton model interpretation of 
F~(x, Q2) because it satisfies the charge sum rule [1] 

1 
dx n [qU (xn, Q 2) _ gl n (xu, Q2) ] 

0 
1 

= Sdxo [qU(xu)- giU(xu) ] 
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(3.23) 
0 

= number of valence quarks in hadron H, 
1 

1 = 0 and Sdzfq(z) = O. since 7+q 
o 

After having discussed the prescriptions of measur- 
ing effective quark fragmentation functions 
DH(ZH, Q2) and quark structure functions qU(xn, Q2) 
we can finally calculate the semi-inclusive cross- 

M ffH,H" 
section in terms of these functions. With 

dxudydz n 
the help of (2.16) and (3.21) we eliminate the bare 
functions Dn(zn) and qU(xn) and we perform the sum 
over the cdntributions given by (3.9), (3.13), (3.14), 
(3,16) and (3.18) keeping all terms of order % 
consistently�9 Because of the universality of the 
In Qz/lz2 terms the final result for the semi-inclusive 
cross-section dan'W/dxudydzn is now free of mass 
singularities [3], since they are all absorbed into the 
effective parton distribution and fragmentation func- 
tions, respectively. As a final result of our analysis 
the corrections of order % (beyond the leading logari- 
thm) can be summarized as, 

F•,U, (xn,zu, Q2) = Z eZq xuqon (xu, Q2)D~" (zu, Q2) 
q 

H,H' + F . . . . .  (XH, ZH ' Q2), 
n.u'_ %(Q2)4_V 2 

F ..... 2n 3 ~eqxn 
q 

�9 - - j - - l q q ( x , Q  ~ ~ 7 - z  
xu X z ~  g t_ 

+ +.(x, Q2)o ,(z, Q2)c (x . , z .3  
+\7. z /  

0.\7. V j j  

where 

rd 5"~ 
c qq(x, z) = - ~ + ~ )6 (1 - x)3 (1 - z) 

/ 

1 - z 2 (1 - z)+ 2- 

[ 3 1 ] 1  - x , +  + 6 ( 1 - z )  - z - 3 x +  2 

2z z 1 +z  z + x  
+ 1 + -t - -  + 6xz, 

(1 - z ) +  (1 - x ) +  (1 - x ) +  (1 - z )+  

% ( x , z ) = 6 ( 1 - x ) [  l + ( l z - Z ) Z l n z + z  I 

1 + x 2(1 - -  Z )  2 2 -  z 
+ 2 +  6x(1 - z) k § 

z z (1-  x)+ (1 - x)+' 
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and 

3 
Coq(x, z) = ~6(1 - z)(6x 2 - 6x + 1) 

3x  2 + ( 1 - x )  z 3 9 
+ 8  (I - z)+z ~ + ~ x ( l - x ) .  ( 3 . 2 4 )  

In the derivation of (3.24) the bare gluon distribution 
9n(xn) and fragmentation function Dno(z,) can be 

replaced by their Q2-dependent effective functions 
9n(xH,Q 2) and Dno(zH,Q2), respectively, since they 
enter in the terms, which are already of the order ~ .  
The coupling constant % is to be evaluated at %(Q2) 
in order to make the perturbation series for the finite 
terms converge rapidly [3]. In order to evaluate the 
above integrals, one uses 
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o~(Q z) ~ dxr8  . e 
- ) 

which agrees with the result of [7]. 

xb r X 

- -  Ff ( l ) l n  (3.25) 

The longitudinal part of the cross-section is found 
to be 

fH'~'tx z n% %(Q2) 1 6 ~ e  ~ 
L t t~, n , ~  J 2re 3 

q 

1[ dx 1 d z f  H, x ,.,Z,Dn,,z ..,2, xnzn 
T p  z ~  qq~ 'u  ~ , t ,U ) 

I 

J 

XH ~r X Z 

3 ~ 2 H 2 XH _ 

From (3.24), (3.26) one can rederive (as a consistency 
check) the totally inclusive cross-section by evaluat- 
ing the sum rule 

1 d a/f'H' d a H 
dznZn d - - -  ' ~ x-~-~-dz n dxndy H ' O  

with 
1 

d z  H' 2 ~ nzuDq,o(zu, Q ) =  1. (3.27) 
H ' O  

Indeed the contribution to Fn2 'u' of order %(Qe) 
1 

H,H" vanishes, ~ ~dzuznFcorr" = 0. For the longitudinal 
H' 0 

part we obtain 
1 

H 2 H,H" 2 FL(Xn,Q )=Z~dznzttFL (xn,zn,Q ) 
H ' O  

IV. Numerical Estimates 

A numerical evaluation of the finite corrections of 
order ~ to the semi-inclusive hadron production 
derived in the previous chapter (3.24) and (3.26) 
requires a specification of the quark and gluon 
structure and fragmentation functions. For the esti- 
mates given below the parametrizations of the func- 
tions q(x, Q2),g(x,Q 2) and ,~,K Dq, o, including their 
Q/-dependence, are used as they are discussed in 
Ref. 14. In Fig. (5a, b) we plot the QZ-dependence of 
the relative correction to the structure function 
Ff 'n" for a proton target H = p, 

p,H" 2 } / ~  "~ 2 X P 2 H' 
I 

Fr .... (xn,zn,Q eq nqq(xn,Q )Dq (zn,Q2), (4.1) 
J'7 
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Fig. 5a and b. Relative correction (4.1) to the structure function 
F~ ,H' of order %(Q2) for the two reactions e p  ~ e n  + + X and 
e p  ~ e K  X as a function of z n for different values of the Bjorken 
scaling variable x at a Q2 = 5 GeV 2 and b Qz = 100 GeV 2 
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for the two reactions ep  --* e n  + X and ep  ~ e K -  X .  
The values for Q2 chosen are Q2 = 5 and 100 GeV 2. 
For  the running coupling constant [2] we take 

12n 
~s(Q2)-25 ln QZ/A 2 and fix the scale parameter 

by A = 0.5 GeV. The plots are shown as functions of 
z H for different values of the Bjorken scaling variable 
x n ( x  n = 0.10,0.25,0.50 and 0.90). The relative cor- 
rection for the different secondaries n + and K -  is 
quite similar in shape and magnitude, although the K -  
has no common valence quarks with the proton. In 
both cases there is the expected decrease with increas- 
ing Q2, but for the large x n  region, x ,  >0.5, the 
decrease is slow. At low Q2-(Q2 = 5 Ge~ r2) Fig. 5a 
indicates non-negligible corrections of the order of 
20 -60~  for x n ~- 0A0 - 0.25 and zn > 0.5, which 
may be measured in high statistics electroproduction 
experiments. For  fixed x n the change in sign of the 
correction term when z n is varied is related to the 
constraint due to the energy sum rule (3.27). The 
contributions from the terms in (3.24), which are 
proportional to the gluon structure function are only 
significant for x H < 0.2; the main contribution due to 
the gluon fragmentation is found in the region 
z n s 

In order to estimate the violation of factorization of 
the semi-inclusive cross-section with respect to its x n- 
and zn-dependence due to the %-corrections (3.24), 
(3.26) we consider the process ep ~ e n + X and compare 
our estimates with the data of [15]. This experiment 
covers the kinematic range of 2 <  Q2 < 6 G e V  2 
((  Q2 ) = 2.8 GeV 2) and0.1 < x n < 0.45. In the quark-  
parton model the normalized cross-section for charg- 
ed pion production becomes independent of x n ,  
when the region x n > 0A is considered, where valence 
quarks dominate, 

_, [,:" ,:- ..... _ 

d a / d x n k d x n d z n  + d x n d z n A  " t z n ) •  (zn), 

(4.2) 

where u denotes the up quark in the proton. 
In [15] this prediction of the quark-par ton  model 

is tested by plotting the data for the left hand side of 
(4.2) for three different regions of x n ,  divided by the 
average over the full x n range at each fixed z~ value. 
This plot is shown in Fig. 6. It is pointed out in [15] 
that this test is limited by the systematic error associat- 
ed with the kaon and proton subtractions made in 
the analysis of this experiment. The curves shown in 
Fig. 6 represent the violation of the factorization 
property (4.2) when the corrections of order % are 
taken into account. Integrating the cross-section 
d a / d x n d z n d y  with respect to y (3.2) we obtain 
instead of (4.2), 

1 [ da'~+ da= ~ ,~ + 2 

d a / d x H k d x u d z u q  d x n d z n A  D,  ( z n , Q  ) 

~: t, 0 .3<x < 0.45 
0 0.2< x < 0.3 
v 0.1< x < 0.2 

x 

} 0.5 

i I 

0.0 012 0:4 016 018 1.0 
ZH 

d :  q 
Fig. 6. The cross-sect ion ra t io  da/dx L , ~ j l d x d z H  +d~77"z-] for 

e l ec t rop roduc t ion  no rma l i zed  to its average  over  x a t  fixed z u . The 
da ta  are f rom [15]. The  curves i l lus t ra te  the v io la t ion  of fact0riza-  
t ion as ca lcu la ted  f rom (4.3) at  Q2 = 2.8 GeV 2 for x = 0.15 (dashed- 
dotted),  x = 0.25 (solid) and  x = 0.37 (dashed curve) 

D, ~ _ ( 1 V ,~+ 
+ ~ (zn,Q2)+. ~SF~(xn,Q2)l F$;'''+'~-(x"'zn'Q2) 

1 '~+ +~- F~(x H, Q2))]},  (4.3) - ~ x  n (F['  ( x n ,  zn  ' Q2) _ 

where the terms in the curly brackets are of order 
%(Q2), and they are evaluated from (3.24) and (3.26). 
The results are presented in Fig. 6 for x u =  0,15 
(dashed-dotted curve), xn = 0.25 (solid curve) and 
x n = 0.37 (dashed curve) taken at Q2= (Q2)= 
2.8 GeV 2. The contributions from the longitudinal 
terms in (4.3) are negligible. The deviations from 
factorization become significant at large values of 
zH, and at z n ~_ 0.8 they are predicted to be 20~. 

In Fig; 7 the charged pion data from the processes 
ep  ~ e n - X  (at ( Q Z ) =  2.8 GeV z) [15] and e + e-  --* 
n i X  [16] (multiplied by 0.5) at QZ= 13GeV 2 are 
shown as functions of z~ for z~ > 0.5. According to 
the qua rk -pa t ton  model these two distributions are 
expected to be equal, when the contributions to e + e-  
from strange quarks are neglected. However, in Fig. 7 
one observes in this range of z~ that the n + yield from 
e + e-  annihilation is smaller than the one from ep  
scattering. In the framework of QCD this decrease 
of the spectra for z~ >0.5 with increasing Q2 is 
described by the QZ-evolution of the fragmentation 
functions Dq+-(zn,Q2). This is shown in Fig. 7: the 
solid curve is the result from (4.3) for the ep  reaction 
evaluated at x n =0.25 and Q2= 2.8 (the dashed- 
dotted curve is calculated without the %-corrections) 
and the dashed curve is the prediction for e+e - 
annihilation at Q2 = 13 GeV 2 (2,14). For  the case of 
neutrino scattering we estimate the finite corrections 
of order % for the cross-section of the process 

+ 
vp  ~ # -  n -  X .  For  the sake of simplicity we neglect 
contributions due to the sea- and charmed quarks. 
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Fig. 7. Distributions for charged pion-production from electro- 
production and electron-positron annihilation. The e - p  data are 
from [15] for 2 < Q2 < 6 GeV 2, ( Q2 ) = 2.8 GeV 2, the e § e-  data 
are from [16] for Q2 = 13 GeV 2. The solid curve is the prediction 
for ep---, e " •  (The dashed-dotted curve is calculated without 
the cq-terms in (4.3)) and the dashed one for e + e ~ n • X 

In the parton model [1] the normalized cross-section 
is simply given by 

1 da'~ - V~"<-(xn'z~t) = D~,+(Zn), (4.4) 
da/dxtt dxndz  H FP(xn) 

which is independent of x n . The deviations from this 
factorization property due to the finite terms of order 
~, can be expressed by taking the ratio of moments [17] 

F,~ + -,~- (Q2) 
2,nm 

F2,, (Q 2 ) 
1 1 

~dxnx"n - 2 ~dznz ~ ' V~ ,'~+ -,~-(xH,zn,Q2) 
_ o o ( 4 . 5 )  
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The coefficients Ca, z (n, m) are 

5 ~ 1  ~ 1 1  3 m 1 1 1 
c l ( n ' m ) = 2 -  k=l k ~ - k : ,  k2 2k~l ~ - ~ =  2 m + l  

3 ,@1 1 2 3 1 1 " 
2k=lk/-" n n + l  + - + -  ~ -1 mn nk=~k 

1 , . 1  1 6 

+ - n + l  2_,k:lk + ( n + l ) ( m + l )  
n~.~: 1 ( m ~ t  1 m ~ l ~ )  

-]- /=1  ?~x k = l  ~ - [ -  k = l  ' (4 .7 )  

c 2 ( n , m ) = ~ [ (  6 6 ! ) ( 2 )  
n + 2  n + l  t- 1-- m 

( 2  2 ! ) ~ 2 1 ~  

n + 2  n + l  + k=lk  ]" 

Because of the difference rc § - • the terms propor- 
tional to the gluon fragmentation function D~ • drop 
out. In contrast to the parton model result given 
above, F ~* -~- does no longer factorize in x n and 2 ,nrgl 
z u moments separately. The ratio (4.5) remains 
n-dependent, and at fixed m and Q2 the n-dependence 
becomes stronger when n is increased. The numerical 
evaluation of (4.6) predicts that at Q2= 10 GeV 2 
the breaking of the factorization is less than 20% when 
the moments with n < 5 and m < 5 are considered. 

The above estimates show that the finite terms of 
order % can indeed be treated as corrections to the 
leading logarithm approximation and a detailed 
test (e.g. via factorization) needs very precise 
experiments. 

1 

S dxn x~- 2 F~ (x n, Q2) 
o 

where we consider the difference of n + and n-  
production. From (3.24) modified for the case of 
neutrino scattering we obtain 

F2,. z - (02) _ (D ,~+ (02) _ D ~- (02)) 
F2,,(Q 2) . . . . . . .  

�9 [ 1 '  ~ ' (Q2)4f  9"(Q2) 
•  2 d - ~ ) c 2 ( n , m ) )  ],  (4.6) 

1 
_ D  ~- 2 i d z z m - l ( D ~  + where D~, + (Q2) m (Q)  = (z, Q2) _ 

0 
D~- (z, Q2)) and g,(Q2) and d.(Q z) are the moments of 
the structure functions for the gluon and the d-quark 
in the proton, 

1 1 
g,(O 2) = I d x x  "-1 g(x, 02), d,(O 2) = I d x x  "-1 d(x, Q2). 

o o 
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