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In this paper we introduce the concept of price-dispersed preferences. Moreover we state 
conditions under which economies with price-dispersed preference distributions have a con- 
tinuously differentiable mean demand function. 

1. Introduction 

The purpose of this article is to present a class of consumption sectors 
which exhibit a continuously differentiable mean demand although individual 
preferences are not assumed to be convex. As we have argued in an earlier 
paper [Dierker et al. (1980b, introduction)], several economic questions 
require mean demand to be a continuously differentiable function and not 
only to be a continuous one. 

The literature on smoothing demand by aggregation shows that Co mean 
demand functions can be obtained by methods which are not appropriate to 
obtain a C’ mean demand. Studying the differentiability of mean demand 
one encounters difficult conceptual problems which do not occur in the study 
of Co mean demand. In the present paper we present a class of consumption 
sectors, i.e., of distributions of consumers’ characteristics, with C’ mean 
demand. Presenting this class we use assumptions which are not generic. We 
think, though, that some of the methods used here are promising tools for 
the development of a more satisfactory theory of smoothing demand. 

It is essential for the purpose of smoothing demand by aggregation in the 
presence of preference non-convexities that preferences are sufficiently disper- 
sed. Since in a Euclidean space Lebesgue measure is often used to formalize 
dispersion, one is tempted to use Lebesgue measure in order to formulate the 
notion of dispersion on the space of preferences. This idea has led to the so- 
called parametric approach in which consumers are supposed to have 
characteristics in a finite dimensional space [see, in particular, Araujo and 
Mas-Cole11 (1978), Hildenbrand (1980), Sondermann (1975, 1976, 1980) and 
Yamazaki (1980)]. 

*We wish to thank H. Hailer for many helpful discussions. 
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In the present paper we formulate the notion of preference dispersion 
without stipulating that consumers’ preferences form a finite dimensional 
space. 

This paper is based on our previous work on the aggregation of demand 
derived from non-convex preferences [Dierker et al. (1980a, b)], where we 
have exploited the fact that the space of consumers’ characteristics is the 
product of the wealth space, which is a subset of the real line, and of the 
preference space, which has no Euclidean structure. The product structure of 
the measure space of consumers’ characteristics lends itself to an application 
of Fubini’s theorem: we integrate demand first with respect to wealth, then 
with respect to preferences. 

In the first step of aggregation we require the wealth distribution, given 
any fixed preference, to have a continuous density with respect to Lebesgue 
measure. This condition is sufficient to obtain, in the first step, a continuous 
function which is continuously differentiable except on a closed null set of 
prices [cf. Dierker et al. (1980b)l. However, without further assumptions on 
the distribution of preferences, the second step, integration with respect to 
preferences, need not yield a differentiable mean demand. 

In the present paper we deal with the second step, integration with respect 
to preferences, maintaining our Fubini type approach to the problem. We 
proceed as follows. We want to express the idea that similar demand 
behavior occurs in similar budget situations with similar probabilities. A 
budget situation being described by a price-wealth pair, we vary budget 
situations by varying prices, since we have already considered the variation 
of wealth in our previous work [Dierker et al. (1980b)l. 

A price system can be considered as a linear operator on the commodity 
space, stretching the axes of the commodity space, resp. ‘rotating’ the 
indifference hypersurfaces in the commodity space. Stretching the axes of the 
commodity space defines an action of the group S of prices on the 
commodity space.’ The action of prices on the commodity space induces an 
action on preferences, which, roughly speaking, ‘rotates’ indifference hyper- 
surfaces. The Haar measure on the group of price systems is employed to 
describe the notion of price-dispersed preferences with the aid of the action of 
price systems on preferences. 

Price-dispersed preferences exhibit a qualitatively similar behavior of 
demand at different prices. This means that certain phenomena which 
destroy differentiability of demand, integrated with respect to wealth, namely 
vanishing Gaussian curvature of indifference hypersurfaces, critical jumps, 
and non-critical multiple jumps, are dispersed with respect to prices. 

We say that a jump occurs if at least two different commodity bundles are 
demanded at the same budget situation. A jump is critical, if the marginal 

‘In a related context similar transformations have been used by Mas-Cole11 and Neuefeind 
(1977, p. 597). 
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utilities of two points in the demand set coincide. A jump is called multiple, if 
there are more than two points in the demand set. Critical jumps lead to 
infinite slopes of the demand aggregated with respect to wealth keeping the 
preference fixed. Non-critical multiple jumps lead to kinks with finite slopes. 

In this paper we do not study the problem of vanishing Gaussian 
curvature. A special case of this problem has been studied in Dierker et al. 
(198Ob). Here we concentrate on multiple and critical jumps. Since, in our 
model, critical jumps occur as singularities of corank 1 in the price-wealth 
space, it is natural to assume that they are of a certain ‘stable’ type, namely, 
that they are Morin singularities [cf. Golubitsky and Guillemin (1973, p. 
177)]. This assumption together with the price-wealth disperson of con- 
sumers’ characteristics is essential for deriving the differentiability of mean 
demand. 

The possible types of singularities of a mapping depend on the dimensions 
of the spaces related by the mapping: larger spaces allow more complicated 
singularities. We feel that this makes a major difference between the 
parametric approach and ours. The basic objects in the parametric approach 
are consumption sectors, the basic objects in our approach are individual 
consumers’ characteristics. As a consequence, the singularities possibly en- 
countered in the parametric approach depend on the number of commodities 
as well as on the number of parameters of the model, whereas they do only 
depend on the number of commodities in our approach. We would like to 
point out, therefore, that it does make a difference for the problem of 
smoothing demand by aggregation whether one considers individual con- 
sumer characteristics as basic objects or not. 

The paper is organized as follows: section 2 contains the model and the 
result, section 3 sketches the main idea of the paper in some examples, and 
section 4 contains the proofs. 

2. Model and result 

There are 122 perfectly divisible commodities. The commodity space is R’. 
Every consumer’s consumption set is 

The price space is 

S={pERz~p>>O, pz=l}. 

The use of commodity 1 as a numeraire allows us to express the concept of 
price-dispersion in a convenient way. Occasionally we will identify S with 
R:-1. 
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We consider utility functions u:X+R of class C” satisfying 

(%!.I) Du(x)>>O for all x~X, 

(s.2) for every x EX, the closure cl(u- ‘(u(x))) of the indifference hypersur- 
face through x is contained in X, 

(e.3) g,:X-+S, defined by g,(x)=Du(x)(Du(x),)-’ has maximal rank, I- 1, 
everywhere. 

The set 8’ of all C” utility functions satisfying (%!.l), (a.2) and (4.3), is 
endowed with the topology of uniform C” convergence *on compact sets. 
Every utility function UG@ defines a unique preference relation, 5, on x by 

x5yNx) 5 U(Y). 

Each utility function u obeying this condition represents the same preference 
relation 5. Obviously, g,, as defined in (%.3), does only depend on the 
preference relation 5 rather than on u. Therefore, we will replace g, by g5, 
or simply by g, if no confusion is possible. 

Let 9 be the set of preference relations representable by utility functions in 
9. We endow the set 9 with the identification topology of the projection 
@+g. This topology on B is the topology of C” uniform convergence on 
compact sets of the maps g5. [cf. Mas-Cole11 (1978, sect. 4)]. It makes B a 
Polish space, i.e., a separable space whose topology can be generated by a 
complete metric. For an excellent comprehensive treatment of topological 
spaces of smooth preferences we refer to Mas-Cole11 (1976). 

We will consider measure spaces of consumers. Each consumer is charac- 
terized by his preference, 5 ~9, and by his wealth, welO, co[. The demand 
set at the price system PE S of a consumer with characteristics 
(5,w)~Px]0,03[ is 

The demand correspondence 

&9x s x10, co-x, 

defined in this way, is upper-hemicontinuous, abbreviated u.h.c. [Mas-Cole11 
(1977, p. 1392)]. 

The distribution of consumers’ characteristics is a probability, z, on the 
space 9 x 10, cc [. 

Let a(T) denote the o-field of Bore1 sets on a topological space ?: 
Since for every p E S we have 

graph $(., P, .I E a@ x IO, dXWW), 
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we define mean demand at prices p for the given distribution z of consump- 
tion characteristics by 

F(P)= j dCS,p,w)d~. 
9xlO,m[ 

For a detailed treatment of integration of correspondences we refer to 
Hildenbrand (1974). 

The smoothing effect of aggregation relies on a suitable dispersion of 
consumers’ characteristics. A suitable dispersion of consumers’ characteristics 
should be reflected in a suitably dispersed demand behavior. Hence we are 
looking for a probability on 9 x10, co[ with, roughly speaking, the following 
property: in similar budget situations, similar demand behavior occurs with 
similar probabilities. 

To make this requirement precise we have to specify what we mean by 
similar demand behavior at similar budget situations. For that purpose we 
model the space of budgets, i.e., price-wealth pairs, as a group operating on 
consumers’ characteristics. Due to the use of a numeraire the action of prices 
does not affect wealth and the action of wealth does not affect preferences. 
Therefore, following the presentation in our earlier work [Dierker et al. 
(1980b)], we will formalize wealth dispersion and price dispersion separately. 

Accordingly, we represent the distribution r on 9 x10, co[ as composed of 
distributions on 9 and on 10, co[. More precisely, we write 

[cf. Dierker et al. (1980b)l. The probability p is the image measure of z under 
the projection of 9 x10, a[ onto P, the probabilities 6, live on the tibres 
{ 5) x 10, ~1) [, 5 E 9. We make assumptions on r by making assumptions on 
,u and on 6,. 

First we will formalize price dispersion of preferences as a property of p. 
This requires us to define the action of S on 9. 

Consider the price space S with the following multiplication: 

With this multiplication the price space S becomes a locally compact, o- 
compact, commutative group. Hence there exists a measure on (&g(S)), 
invariant under the group operation, which is unique up to normalization. 
Such a measure is called a Haar measure. 

Next we consider the following actions of the group S of prices on the 
consumption set X and on the space B of preferences: 
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By the commutativity of the acting group S we have for every q, q’ E S and 
for every 5 EY 

Note that the numeraire commodity 1 is not affected by the action 
(x, q) I-+ x 0 q. Hence, wealth change and price change are kept apart. 

The action a is continuous, hence measurable. Moreover it maps S x S 
onto 9’. Hence, by the disintegration theorem [Parthasarathy (1967, 
Theorem 8.1, p. 147)], every probability y on 9 x S has a unique 
disintegration 

The probability $ is the image measure of y under the map a, the 
probabilities <> on 9 x S live on the fibres a-‘(d) over 5, 5 ~9. For every 
5 l 9 the measurable bijective map q+(d4_1, q) from S onto 

allows us to consider the Haar measure on S as living on a-‘(s) without 
mentioning explicitly the transformation formula for measures. 

Clearly, the measures y and {I,, 5 EP, have image measures under the 
projection from L?? x S restricted to a- ‘(5) onto 8. This gives us the 
following commutative diagram: 

defining probabilities t5 on the orbits { ;<} 0 S = (& 1 q E S}, 5 E 9, as image 
measures of & under projgl,-l(51. 

Definition. A probability ,LL on (I’,%?) is called price-dispersed iff p is the 
marginal distribution on (Y,%3(Y)) of a probability y on (9 x S,%Y(Y x S)) 
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with disintegration 

where <l, is absolutely continuous with respect to the Haar measure on S for 
$-almost every preference 5. 

In an analogous way one could define wealth-dispersion by using the 
action 10, a[ x10, ccc-10, co[, (u, w) H u. w. However, in this simple frame- 
work it appears to be appropriate to directly state the following equivalent 
definition. 

Definition. A probability 6, on ({s} x10, co[, 
wealth-dispersed iff it is absolutely continuous 
measure 2’. 

a({N<> x10, co[)) is called 
with respect to Lebesgue 

In fact, we will make dispersion assumptions which are somewhat more 
restrictive than the definitions above, in particular, we will use compactness 
in various ways. 

Let z =f9 B+(ds) =j9 J9 6,.C5(d5’)$(d5). We assume: 

(Acomp) supp ~1’ is compact. 

Furthermore, we want all the <l,, 5 E supp ,u’, to be a bounded family of 
probabilities all having the same E-space as the Haar measure on some 
compact neighborhood of ides. To make this point precise, let B be a 
compact neighborhood of id ES. Let XE&‘(@ be the restriction of a Haar 
measure to B. For convenience, we will not distinguish between B and 
{s} 0 B and between ./Z’(B) and JZ’({ 5) 0 B). 

Definition. A probability p on (9,93(P)) is called uniformly, locally price- 
dispersed if for all neighborhoods U of idES there are a compact neighbor- 
hood B of id, B c U, and a probability y on (9 x B, 93(9 x B)) such that 

(i) p is the marginal distribution on (9,.49(P)) of y with disintegration 
r=J9 @‘(d5), where ~‘=yo(al~~~)-~; 

(ii) for $-almost every 5, the probabilities & on (B,B(B)) are absolutely 
continuous with respect to x; 

(iii) the densities d&/dx, ,( E suppp’, are elements of some weak*-compact 
subset of P(B, W(B), x). 

We assume: 

(dP) The probability ,U on (e@(Y)) . IS uniformly, locally price-dispersed. 



18 E. Dierker et al., Price-dispersed preferences and C’ mean demand 

Remark. Roughly speaking, one might look at our concept of price- 
dispersion as being based on a decomposition of the space of preferences into 
two factors, the space S of prices and the space S/S of equivalence classes 
5 0 S. Price-dispersed probabilities in this case would be those which have 
marginal distributions on S absolutely continuous with respect to a Haar 
measure on S and any marginal distribution on 9/S. However, this formaliz- 
ation is unsatisfactory since there is no reason why orbits 5 0 S should be 
closed and the a-field generated by these orbits should be standard Borel. 
We should like to mention, though, that monotone preferences on the closed 
consumption set E?+ give rise to closed orbits. 

Our general concept is based on the disintegration theorem which extends 
the generalized Fubini theorem to situations where there is no a priori given 
product of measure spaces. 

Next, we state the wealth-dispersion assumption which by its local and 
uniform character is very similar to assumption (A,), 

Let r={,G,p(ds). We assume: 

(A’,,,) The probabilities 6, are wealth-dispersed with continuous Lebesgue- 
densities h, , 5 ~suppp. Moreover {h+}<Esupp,, is a uniformly bounded 
family of continuous functions on jOycz[ vanishing outside some 
compact interval [a W] c]O, co[. 

Remark. Without continuity of the densities h,, 5 E supp ~1, there is no 
reason why demand aggregated with respect to wealth should be a con- 
tinuously differentiable function of prices. 

Assume (~,,,p~, (A,) aNA,). S ince supp$ and II are compact and a is 
continuous, a((supp p’) x B) is compact. Hence supp y and, accordingly, supp p 
are compact. Furthermore, supp 6, c [IY!, ti] for all 5 E supp p. Finally, supp z 
is a closed subset of (suppp) x [w,W]. This yields: 

Remark. Under the assumptions (A .._,), (A’,) and (A,) the distribution r 
of consumers’ characteristics has a compact support suppr ~9’ x 10, coL. 

Let us sketch the effect of the disintegration of z and of p on the demand 
formula. Mean demand at the price system p is defined as 

F(P)= j dCLp,w)d~. 
9x10, m[ 

Denote by @( 5, .) the demand integrated with respect to wealth, i.e., for 
every p E S, 

<b(~,p)=~~(~,p,w)dd,(w). 
0 
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Using the price-dispersion of p one obtains 

In addition to the dispersion and compactness assumptions we make three 
assumptions on the support of z. 

First, we exclude the case that the Gaussian curvature of an indifference 
hypersurface vanishes at a point in the demand set of some agent 
(5, w) E supp z at some price system p. This assumption will be made, 
because aggregation with respect to wealth which is not the subject of this 
paper, seems to be a promising way to treat vanishing curvature [cf. Dierker 
et al. (1980b, sect. 4)]. 

(A,,,,) For all (5, w) ~suppr, for all PES, and for all XE &L,p, w) the 
Gaussian curvature of the L-indifference hypersurface through x 
does not vanish at x. 

The problem of vanishing Gaussian curvature assumed away, we con- 
centrate on the problem of non-uniqueness of individual demand. Consider a 
fixed preference 5 ~9, represented by a utility function u. Let 

X, = {x E X (Hessian of u(KerDu(x) is negative definite). 

For two different points x,y EX~ to be demanded at price system p it is 
necessary that u(x)=u(y), g(x)=g(y)=p, px=py. These are 1 +(I-- l)+(Z- 1) 
+ 1 = 21 equations in the variables PE S and (x, y) E(X~ x X,\diagonal). The 
solutions of this system of equations form an (I-1)-dimensional Cm- 
submanifold, denoted r+, of S x (X, x X,\diagonal) [cf. Lemma 2 in Dierker 
et al. (1980b, sect. 3)]. - 

Lemma 1. Let 5 E 9. Then the mapping i: I’5 -+S x 10, CD[: (p, x, y) H (p, px) is 
an immersion. 

Individual demand c#~(s,p, w) is a singleton depending smoothly on (p, w) 
unless (p, w)~i(r_J. There are two phenomena which may cause trouble if 
one integrates demand, given 5, with respect to the wealth distribution S, 
near the price system p. First, p can be a critical value of rr 0 i: T,-+S, where 
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rr projects i(T,) to S. Second, i(T,) can cross itself above p. We say that a 
critical jump occurs in the first case and a multiple jump occurs in the second 
case. Both of these situations are illustrated in fig. 1. 

A 
w 

multiple 
j umP 

Fig. 1 

critical 
j umP 

Next we state some kind of normal crossings assumption on i(T,). This 
assumption has been used in Dierker et al. (1980b, Lemma 4)’ to show that 
triple jumps form a manifold of dimension l-2. We assume: 

(JZ%‘,,) Let (5, w) l suppz and let u be a utility function representing 5. Let 
(x,y,z)~X~ xX, xX,, x#y, xfz, y#z, u(x)=u(y)=u(z). Assume 
CI Du(x) = /3 Du(y) = y Du(z) = p, px = py = pz, and x - y = n(y - z). Then 

A #(a - B)/(B - Y). 

Although critical and multiple jumps may occur simultaneously, we shall 
exclude such situations on supp z. Let (so, w”) E suppr. Let (PO, x0, y”) E r5,, 
be a critical point of rco i:T5, 4% We assume that no multiple jump occurs 
at (p”, w’), where w” = pox0 = p’y’. Then there is a neighborhood U of (p”, w”) 
in S x10, oo[ such that i(Tso) n U is a manifold. It follows from rank 
assumption (a.3) that the corank of rr at (p’, w”) is 1. Therefore, one expects 
to find a fold if 1=2, a fold or cusp if 1=3, etc. That is to say, i(TsO) sits in 
S x 10, co[ near (p’, w”) as the hypersurface 

Ck={xl,..., x,)~x,+x,x,+X3X,2+~~~+XkX:-1+X:+1=0}, kSl--1, 

sits in [w’-’ x R. Moreover, changing the preference 5’ slightly will not 
change this picture qualitatively. The reader is referred to the discussion of 
Morin singularities in Golubitsky and Guillemin (1973, ch. VII). We assume: 

‘There this assumption has been denoted (U5). 
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(JZMoriJ Let (do, w”) E supp Z. Let (p’, x0, y") E rsO be a critical point of 
7~0 i:T,,,+S. Then there is a neighborhood I/ of do in 8, a 
natural number k s I - 1, and a continuous mapping 

2: V+Cm(W1 x R,SX]O,oo[).++H~, such that 

(i) H50(0, 0) = (PO, w’), 
(ii) for any ;<, E V, I-I< is a librewise diffeomorphism into 

S x 10, co[, where librewise means that H, is of the form 
H,(% x1) = W&G), H@, x,)), 

(iii) for any 5 E V, 

H,({XEW x R~x,+x,x,+x3X:+ **. +xkx:-1+x:+1=o}) 

=H,(Ck)=i(T,) n imageH,. 

It suftices for our purposes to endow Cm(R’-l x R, S x 10, co[) with the 
topology of uniform Cm-convergence on compact sets. 

Formulating the assumption (JZMoriJ we implicitly use the idea that ‘the 
natural geometric forms are described by stable maps’ [Brijcker and Lander 
(1975, p. 66)]. The special structure of these Morin singularities of Thom- 
Boardman type S ,k 

‘l....,l) 

k 5 I- 1, (‘generalized cusps’) of mapping between 

(I- 1)-dimensional spaces allows us to visualize these singularities in Iw’ - ’ x R. 
Assumption (.JZ~~~~,,) takes advantage of the special structure of generalized 
cusps. This assumption, together with the notion of price-dispersed 
preferences, plays a crucial role in the proof of the central result of this 
paper. 

Theorem. Let z be a probability measure on 9 x10, oo[ satisfying assump- 

tions (A,,,& (A,), (A,), (A,,,,>, (A,,), and (AMwin). Then the mean 
demand 

F:S+X:P++~~ m14(5,wV~ 

is a C? function. 

Here we would like to remark that the derivative of the mean 
demand F is obtained by integrating the derivative of @(&*):S+R’: 

p+W;<N,p&%(d ) w with respect to the distribution p of preferences. 
Sonderman (1976, p. 422) gives an example explaining why interchanging 
the order of differentiation and integration fails, when one considers indi- 
vidual demand 4( ;<,, p, w) instead of @(;i_, p) = jz 9( 5, p, w) 6Jdw). 
Thus aggregation with respect to wealth, given 5, is important when one 
wants to capture the influence of preference non-convexities on the derivative 
DF of mean demand. 

The following lemma states a condition suflicient for interchanging the 



22 E. Dierker et al., Price-dispersed preferences and C’ mean demand 

order of differentiation and integration. The lemma is a simple consequence 
of Lebesgue’s dominated convergence theorem. Hence it is stated without 
proof. For closely related statements, see Bauer (1968, p. 211) or Schwartz 
(1967, p. 721). 

Lemma 2. Let ,u be a probability on (S,33(9’)). For CL-almost every 5 ~9’ let 
@(s, .): S-+R’ be a function which is C’ at p”. Suppose there exists a ,u- 
integrable function j: P+Iw v {a} and a neighborhood of p” such that for all p 
in this neighborhood and for p-almost every 5 ~9 we have 

Then f @(s, .) dp is C’ at p” and 

To be specific, let 11. II denote the Euclidean norm throughout this paper. 

3. Examples 

In this section we study the regularizing effect of price-dispersion of 
preferences in particularly simple cases. We shall consider a multiple, non- 
critical jump in an economy with two commodities and critical jumps in 
economies with two resp. three commodities (fold respectively cusp). To 
illustrate the effect of price-dispersion, we consider one preference 5 ~9 and 
disperse it by the action of a compact neighborhood B of the identity in S, 
i.e., we study the case where p is concentrated on 5 0 B. 

3.1. Multiple, non-critical jump 

Imagine the preference pattern on XC R2 as depicted in fig. 2. To each 
indifference curve there belong three pairs of commodity bundles each of 
which forms a simple jump. To indifference curve a’ there is associated a 
budget situation in which one of these pairs is demanded whereas the other 
two pairs are not demanded in any budget situation. Indifference curve c’ 
exhibits two jumps which are demanded at corresponding price systems, 
whereas one pair is not demanded. The pairs on c’ which are demanded at 
suitable budget situations are formed by points in the middle and on the left 
and by points in the middle and on the right. The only pair demanded on 
indifference curve a’ is formed by points on the left and on the right. The 
indifference curve b’ is exceptional. All three pairs are associated with the 
same budget situation. We say that the three points on the left, in the middle 
and on the right form a multiple jump. Fig. 3 illustrates the budget situations 
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commodity 1 

commodity 2 

Fig. 2 

Fig. 3 

at which a jump occurs. The solid lines correspond to jumps formed by 
demanded pairs, the dotted lines correspond to jumps formed by non- 
demanded pairs. For p<p” the demand aggregated with respect to wealth 
given 5, i.e., @(s;): S-+R’, is the sum of two integrals of C? functions, 
where the upper boundary of the first integral is given by the solid line and 
coincides with the lower boundary of the second integral. The boundaries of 
integration depending differentiably on p, both integrals depend differentiably 
on p. Similarly, for p >p”, the function @(d, .): S+R’ is the sum of three 
integrals, their boundaries being given by the two solid lines. The three 
integrals depend differentiably on p. At p” the function @(d, .): S+R’ exhibits 
a kink. Now let us vary the preference by stretching the vertical axis of the 
positive orthant. The linear mapping (x,, x2) t+(xrq,xJ, qE]O, co[, leaves the 
wealth associated with any budget line unaltered, whereas the price as- 
sociated with a budget line is multiplied by q-l. Furthermore, a jump 
exhibited by 5 before the action of q takes place is transformed into a jump 
exhibited by & after the action has taken place. The function @( dq, .) has a 
kink at p’oq-l. Thus p-almost every preference is C’ at p”. The slopes of 
@(&, .) stay uniformly bounded in a neighborhood of p”. Consequently, 
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there is an integrable Lipschitz constant for @(s,, .), q E S, and Lemma 2 
applies. Therefore mean demand is C? at p”, although all preferences 
considered in this example exhibit a multiple jump. 

3.2. Critical jump: Fold 

Imagine the preference pattern on Xc R2 as depicted in fig 4. To each 
indifference curve there belongs a jump. The lowest and the highest budget 
line in the drawing, a” and c”, are parallel. For any other budget line in 
between a” and C” and parallel to a” and c”, demand is on the left. For any 
parallel budget line below a” or above c”, demand is on the right. A similar 
behavior occurs if we consider families of flatter parallel budget lines until we 
reach the slope of the budget line b” through commodity bundles x and y. 
The budget line through x and y is the ‘flattest’ associated with a jump. It is 
characterized by the fact that Du(x) = Du(y). Fig. 5 represents the set i(T,) of 
budget situations at which a jump occurs in the price-wealth space. The 
price system associated with budget lines a” and c” is a regular value of the 
projection rc: i(T,)+S. The price system associated with budget line b” is a 
critical value of the same projection. Integrating demand with respect to 
wealth, given 5, at p, one obtains three integrals of Cl functions, the 
boundaries of integration being given by i(T,). Hence mean demand, given 
5, i.e., @(s, .): S+R’ is C’ at ~7 [cf. Dierker et al. (1980b)l. When we 
approach p” from the left, the slope of @( 5, .) will not stay bounded as the 

commodity 1 

I 

Fig. 4 
commodity 2 
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boundaries of integration become arbitrarily steep. Therefore @( 5, .) is not 
C’ at p”. 

Now we vary the preference by stretching the vertical axis of the positive 
orthant and proceed as in the first example. Putting logp instead of p on 
the horizontal axis of the diagram (fig. 5) we see that the orbit of 5 
corresponds to a family of transformed folds differing from each other by a 
horizontal translation. The integrability of the Lipschitz constants, called 
j(s) in Lemma 2, does not depend on the resealing p H logp of the 
horizontal axis. To estimate the magnitudes of the Lipschitz constants we 
observe that differences in demand aggregated with respect to wealth are 
essentially determined by the shape of i(T,). Assumption (~Morin) says that 
i(T,) looks like a parabola w =& in a neighborhood U of (p”, w’). Then 
i(rs4) is obtained by shifting i(T,) by q. Elementary geometrical consider- 
ations show that the Lipschitz constant associated with sp is of the order 
(q(-*, hence integrable with respect to the uniform distribution on B. 

3.3. Critical jump: Cusp 

We assume now that we have three commodities and a preference ordering 
with a critical jump (p’, x, y) occuring at budget (p”, w’). The assumption 
(J+!~& says that i(T,) exhibits either a jump or a fold at (p”, w”). Suppose it 
is a cusp. The orbit of 5 consists of preferences which also exhibit cusps. 
Taking logp, and logp, as coordinates for the price space, these cusps 
appear as translations in the price-wealth space of the cusp associated with 
5. These translations keep wealth w fixed. The Lipschitz constant j(s,) of 
Lemma 2 is essentially determined by the geometrical shape of i(r54) and by 
the position of the center of the cusp associated with $. Since the cusps 
under consideration are all the same up to translation, we map each of them 
to a standard cusp centered at the origin in Rz x R and look at the image of 
p” under this mapping. As the original cusps are distributed with a bounded 
density with respect to Lebesgue measure, restricted to a compact Bc S, the 
images of p” under the mappings to the standard cusp are distributed with a 
bounded density with respect to Lebesgue measure on some compact cube C 
centered at 0. 
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Instead of estimating the Lipschitz constant of a preference with respect to 
p”, we shall estimate the Lipschitz constant of a point (the image of p” under 
the mapping to the standard cusp) with respect to the standard cusp. 

The equation for the standard cusp is 

p,+p,w+w3=o. 

The standard cusp enjoys the remarkable property that the change of 
coordinates p1 H ti3p1, p2 H a2p2, w H tlw, a >O, leaves the surface p1 +p2w 
+ w3 =0 invariant. Estimating the Lipschitz constant of a point (pi, p2) thus 
gives an estimate for the Lipschitz constant of any point (a3p,,a2p2), a>O. 
The Lipschitz constant of a point relates differences in direction of the w-axis 
to differences in the (p1,p2)-plane. Going from (p1,p2) to (a3p,,a2p2), 
0 <a < 1, lets the Lipschitz constant increase by no more than (l/a)*. 

Now consider the transformations T: R2 x R+R2 x R defined by 

T(P~~P,,~)=((+)~P&*P~&~ 

and 

?: R*+lR* defined by ?(p1,p2)=(($)3p1,(~)2p2). 

Let C denote a compact cube in R*, centered at the origin and parallel to the 
axes. Let C’=C\?C, C’= T(C”), etc. Then C\uEo C’ is a null set. Instead 
of integrating the Lipschitz constants over C, we integrate over ugo C’. 

PI 

Fig. 6 
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The set Co is bounded away from the origin. As we have seen in the 
previous example that the occurrence of folds does not destroy the integra- 
bility of the Lipschitz constants, it is plausible that the Lebesgue integral of 
the Lipschitz constants over Co exists. Applying transformation T to Co 
leads to an increase of the Lipschitz constants by the order 2’ and to a 
change of the size of an infinitesimal rectangle in Co by the order of (#,“(&)” 
=(i)‘. Therefore the integral of the Lipschitz constants over the cube C 
which equals the sum over the corresponding integrals over all cubes c’, 
exists as Cim,o ($)3i is finite. 

In this example we have exploited a particular invariance property of the 
cusp. The advantage of this approach as compared to more direct estim- 
ations of the integrals of Lipschitz constants as in the fold example is mainly 
that it can easily be extended to the swallow-tail, then to the butterfly, and, 
by induction, to any ‘generalized cusp’ as we have completely similar 
invariance properties in all these cases. 

4. Proofs 

4.1. Proof of Lemma 1 

Let X1 = (x~zX 1 Hessian of uIKerDu(xj is negative definite). Define 
d:X,-rS x10, co[ by d(x) =(g(x),g(x)x). Then rank (6) =I everywhere on X, 
[cf. Debreu (1972)]. Let (p,X,j) ark. Since X and j are in Xi, there are open --_ ___ 
neighborhoods U(X) of X in Xi, U(j) of j in Xi, and V of (p,px) =(p, py) in 
S x10, co[ such that U(X) n U(j) =0 and dlucaj and dluoJ are diffeomorphisms 
onto V Consider the mapping V-6 x U(X) x U(j) CS x R’ x R’, defined by 
(p, w) H (p, (dlu,,,) - ’ (p, w), (dl,,,,) - ’ (p, w)), It is a diffeomorphism onto its 
image, which is an I-dimensional manifold containing r5 n (S x U(3) x U(j)) 
as a hypersurface. The restriction of this diffeomorphism to the pre-image of 
r5 n (S x U(X) x U(J)) has i as a left inverse. Therefore the rank of i at 
(p,X,j) is I- 1. Q.E.D. 

4.2. Proof of the Theorem 

Note that 

w)h,(w) dw where 5 E suPP PL, 

is a family of (single-valued) functions, because of (A,,,) and (MMorin). 
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Let p” E S. To check that F( .) = fb @( 5, *) dp is C’ at p”, we apply Lemma 
2 to the family @( 5, *), 5 E supp p. Lemma 2 requires @( 5, *) to be C? at p” 
for p-almost every 5 ~9’. From Theorem 1 in Dierker et al. (1980b) we 
know that for 5 EP there exists a closed null set N, in the price space S 
such that the restriction to S\N, of @(d;) is a C’ function. This together 
with assumption (A,) underlies the proof of Lemma 3. 

Lemma 3. Under the assumptions of the theorem for p-almost every 5 ~9 
mean demand @(s;) is C’ at p”. 

ProoJ: Let xl- ’ denote a Haar measure on S. By Theorem 1 in Dierker et 
al. (1980b) we have 

x’-~{~ESI@(~;) not C? at 4}=0. 

By the invariance of the Haar measure x* - 1 this is equivalent to 

X’-‘{4~q@(5,9 not C’ at p”04}=0. 

Therefore, by (A’,), we have for all 5 E supp(p), 

5;(q~SI@(d;) is C1 at ~‘04) 

=~;{~ESI@(&~;) is C’ at pO}=l. 

The identification of the measure on S and on a-l(L) allows us to write this 
as 

1=5;{(~,-l,4)1~(~~-1,.) is C’ at P”> 

=5;{(5’,4)Ea- ‘(~)I@(~‘;) is C1 at p”) 

=5;(pr,l.-1&‘{( ~‘EPI@(~‘;) is C’ at p”}. 

=t5((~‘EP)I@(5’;) is C’ at p”}. 

This implies 

l=~‘(P)=j ld~‘(~)=SS,{~‘E~IQi(~‘;) is C’ at p”}dp’(s) 
.9 B 

=p{~‘EPI@(~‘;) is Cl at p”}. Q.E.D. 

Note that we used only price-dispersion of p in the proof rather than the 
stronger uniform, local price-dispersion. 
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We want to find Lipschitz constants j( 5) for @( 5, a) in a neighborhood 
U(p’) of p” such that j: 8-*R u {m} is integrable. 

It is sufficient to define these Lipschitz constants locally. Suppose, there 
exists, for every (s’, wi) E supp z, a neighborhood V( si) of s’, a neighbor- 
hood I(w’) of wi, a neighborhood Vi@‘) of p”, and a measurable function 

such that 

for all 5 E V(si) A suppp and PE U,(pO), 

Since suppz is compact, there are finitely many neighborhoods 

{v(~i)xz(wi)}i=~,...,~ which cover supp z. It is easy to check that j(s) = 

&i15EV(SiJj Li(s) is an integrable Lipschitz constant for @(d, *) in the 
neighborhood U(p”) = nl= I Ui(pO) of p”. 

In order to define the local Lipschitz constants, we distinguish three cases. 

Case I. Individual demand is single-valued. Let (so, w”) E supp z and as- 
sume that 4( s”,po, w”) = {x0}. S ince &P x S x10, co[+X is u.h.c., there 
exist, for E>O, a neighborhood V,(d”) of Lo, a neighborhood U,(p”) of p” 
and a neighborhood I,(wO) of w” such that 4( s,p, w) is contained in the E- 
neighborhood U,(x”) of x0, if (5, p, w) E V,( 5”) x U,(p’) x II( Because of 
(&,,,J the Gaussian curvature K(~~,x~) of the so-hypersurface through x0 
is not zero at x0. 

Claim. There are neighborhoods V,(s”) of 5” in V1(do), U,(p’) of p” in 
U,(p”) and a neighborhood Iz(wo) cZ,(wO) of w” such that 4(s,p, w) is 
single-valued if (5, p, w) E V,( 5”) x U,(p”) x Z,(wO). 

Proof of the claim. Assume the claim is false. Then there are sequences 
(L”)+ so, (p”)-+p’, (w”)-+w”, (x”, y”) E U,(x’) x U,(x’) such that 
(9, y”) E 4( d”, p”, w”) and x” # y”. We can assume that (x”)+x’, (y”)+x’. 
Then K( 5 O, x0) = 0 contrary to the assumption. Q.E.D. 

Consequently, 4: V,( 5”) x U,(p”) x I,(wO)-+ [w’ is a continuous function, 
and for 5 E V,(s’) the function b(L, ., .) is Cl at (p, w) because rc( 5, x) $0. 
The derivative D&(5, p, w) is jointly continuous in (d,p, w). 

Thus there are neighborhoods V(d”) of so, U(p”) of p”, and Z(w’) of w”, 
and a constant L, such that 

J.Math-B 
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(9 ((~l(rv~~~~,~,w)~~(w)dw-~~(,~~~(~,~o,w)~~(w)dwll 

<=L~JIP--POl~ if 5 E V(s”) and PE U(p’). 

Since L is independent of 5 E I’( 5”): 

When individual demand &i,“,p’, w”) is not single-valued, (Ao,,) and 
(‘@.2) imply that &s”,p’, w”) consists of finitely many points. There occur 
two cases: 

(a) there is no (p’,x,y)~r~~ which is a critical point of rc o i:T,,,+S and 
fulfills pox = pay = WO, 

(b) there exists (p',x, y) ETA,, which is a critical point of z o i:TsO+S and 
fulfills pox = pay = wo. 

Case 2. Non-critical jumps. Let (5’. w”) E supp z and assume that no point 
(p’, x, y) E rsO such that pox = pay = w” is a critical point of rc 0 i:TsO+S. In 
the notation of Dierker et al. (1980b) this implies that rank Dcx,y) G,(p’, x, y) 
= 21 for (p’, x, y) E T+, such that p"x=poy = w”. Here we need a slightly 
different characterization of jumps. 

Consider the mapping 

G:@xSx(XxX\diagonal)+R’-‘xRxR’-‘xl& 

defined by 

G(4 P> x3 Y) = (&W - $9 4x) - 4Y), i,(Y) - $7 Pb - YN, 

where u is a utility function for 5 E 9, and where f denotes the first I- 1 
components of a vector z in R’. Clearly, G is jointly continuous in all 
variables and C” with respect to (p, x, y). The derivative D,,,,,,,G is jointly 
continuous in (u, p, x, y). 

If the Hessians of ulKerDu(x) and of rqKerDuo,) are negative definite, the 
argument in Dierker et al. (1980b) shows that 

rank D (p. x, yjG(a, P, x, Y) = 22. 

Let u” be a utility for 5”. For a non-critical jump (PO, x, y) E T5,,, pox= 
pay = w”, we even have 

rank D (x, ,.,G(a’, PO, x, Y) = 21. 

Then the implicit function theorem [cf. Schwartz (1967, p. 278)] implies that 
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there are neighborhoods V(u’) of u” in 8, U(p’) of p” in S and W(x, y) in 
X x X\diagonal and a pair of continuous functions 

(2, Jq: V(uO) x U(p”)+ W(x, y) 

such that G(u,p, n(u,p), y”(u,p)) =O. It is easy to show that D,b(u,p) and 
D,J(u,p) are jointly continuous in (u,p). Therefore 

2 Y(zg x u(p”)-,lR:(u,p)Hp~qu,p)=p~jqU,p) 

has a derivative with respect to p which is jointly continuous in (u,p). 
Since the projection 8-+9 is an open mapping, the implicit function 

theorem also entails the existence of a neighborhood V( 5’) of 5” and of 
continuous functions 

%., .): V( 5 O) x WPO) + w, Y), 

jt.3.): ws”) x ~(PO)-+~(X,Y), 

such that 

(PO, m”, PO)? F( 5 O, PO)) = (PO, x> Y). 

Moreover, D&&p) and D,jj(s,p) exist and are jointly continuous in 
(5,~). Also we can assume that for 5 E V( 5”) the set 

{P~e5~P)~Y(5~P) (PE UP”)> 

contains only regular points of pr,: T,-+S. 
Now we continue our treatment of non-critical jumps. Observe that 

{PO, & y) E T-<o 1 pox = pay = w”] 

contains a finite number of points (p’, xi, y’), i = 1,. . . , r to each of which we 
apply the procedure just described. For i= 1,. . . , r, let Zi( 5, p). y”‘(L, p) be 
defined in a neighborhood I$(L’) x U,(p’), by the implicit function theorem. 

Claim. There exist neighborhoods I’( 5”) of so, U(p’) of p”, an open 
interval Z(w”) containing w”, and a number c>O such that c$(s,p, w) is 
single-valuedif(~,p,w)~V(~“)xU(po)xZ(wo)and ~w-w”~~c~~p-po~~. 
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Proof: Suppose the claim is false. Then, for every c >O, there are sequences 

(5 “)+sO, (p”)-+pO, (w”)+wO with (w”-w”(zc(lpn-poll, and (x”,~“)E 
4(5”, w”) such that x” # y". Since D,G’( 5, p) is jointly continuous in (5, p) 

there is 6,0<6<00, such that for i=l,..., r, and (s.,p)~ n{=r 

V(5”) x ui(P”) 

Choose c=6+maxi=,,.,,,,JJD,~i(~o,p0)11. 
Let fj~(~~,p~,w~)={X~,... ,X”} and let E>O be such that the E- 

neighborhood U,+( d”,po, w”) of 4( d”,po, w”) is the disjoint union of the E- 
neighborhoods U,X’ of Xi, i= 1 , . . . , m. Because of the upper-hemicontinuity of 
4 we can assume that (x”, y”) E U&so, p”, w’), which implies that there are 
converging subsequences, say (x”‘)+$, (y”“)+Y’, (~‘,Y’)qN5°,Po,Wo). 

Because of (A@?,,,,) we have X’ #y’. Therefore (p’,Xl,J’) ~~~~~ Then by the 
implicit function theorem the jump (p”k,~“k,y”k) is of the form 

x”k = a’( s”“, p”“), y"k = j?( s”“, p”“), 

w”k = p”k . z?‘( i,““, p”k) = ,$,‘( s”“, p”“). 

Clearly (I wnk -w”l)/(IIp”k-poll) tends to IID,6,‘(~“,po)ll which is smaller than 
c be definition of c. 

But \wnk-w”I &llp-pO(l by assumption. This is a contradiction. 
Q.E.D. 

Let 5 E V(s”) and p in some neighborhood U of p” such that 
cl U c U(p’). Then 

II !,, 4(5 P, W,(w) dw - I(& 4(5,p”, W,(w) dw 
II 

< = II s 46 P, W,(w) dw 
r~w~~~(wIlw--w~l~ciIP-P~llj 

- 
s &5,p”, W,(w) dw 

I~w~~n~wllw-w~lZCIIP-P~II~ II 
II 

~“+~llP-Poll ~“+~llP-PoII 

+ j 4(5, P, w)h,(w) dw - Wo_~l$,_po,l 4(5.,p”AWWw . 
W”-41P-Poll II 

Clearly, the first term is Lipschitz with Lipschitz constant L, independent 
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of 5 E I’( so), because 4( 5, p, w) is a C’ function for 5 E V( so), p E U, 

~w-w0~2c~~P-P0~~. 
Since 4(&p, w) is uniformly bounded for (5, p, w) E V(d”) x U x (Z(w’) 

and since the densities h,(w) have a uniform upper bound, there exists K > 0 
such that 

Thus we have shown the existence of a local integrable Lipschitz constant for 
the case of non-critical jumps. 

Remark. Until now we only used price-dispersion and compactness of the 
support of ,u, instead of uniform, local price-dispersion. The uniform, local 
price-dispersion comes into play in the next step. 

Case 3. Critical jumps. We first list some terminology which we use 
throughout the remaining part of the paper. 

The manifold Ck c R’ is defined by 

where kE{O,l,..., Z-l}. In particular, 2Y”={(x1,...,xJ~R1~x~=O}. 
Let kE{O,..., l-l}. The hypersurface Ck divides R’ into two connected 

components, G’ and G2. More precisely, R’\Ck=G1 v G2, G’ and G2 
connected. For R E R’ - r and go E R’ - ‘, define 

d(P, 2’) = {xl E I@ 1 (a, x1) E G’, (a’, XJ E G’, for some i# j}. 

Observe that A($ a’) is always a bounded set. Define Q:R’ -r x R’ - ’ \ 
diagonal--f 02 by 

H: R’ - ’ x R+R* -I x R is assumed to be a fibrewise diffeomorphism into 
R” - ’ x R. Fibrewise means that H is of the form 

H(% XI) = (Hi(f), H2@2, Xl)) =(9, Vl). 
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Let j = H’(g), j” = H’(?O), and k E (0,. . . ,I - l}. Define 

AH@, 9”) = {y, E R’ 1 (j, y,) E H(G’), (j”, y,) E H(G’) for some i # j}. 

For jf jO, define 

Lemma 4. Let S’ be a set of fibrewise diffeomorphisms mapping R’ - ’ x R into 
R’ - ’ x R. Assume SF’ is compact in the topology of uniform Cl-convergence on 
compact sets. Let CclR-’ be compact. Then there are constants yl, yz such 
that the following inequality holds unformly for HEX, ($2”) EC x C\ 
diagonal: 

QH(j, 9’) 5 y1 + y'Q(i, a’). 

Proof. The set AH(j,jO) is composed out of two sets, because it consists of 
those y, for which (9, y,) E H(G’) and of those y, for which (j, yJ E H(G*). If 
one can replace AH(j, j”) in the definition of QH(9,Eo) by any of the two 
constituent parts of AH(j,jO) and show that the statement of Lemma 4 holds 
with this modification, then Lemma 4 obtains. To avoid a more complex 
notation, we assume that one of the two constituent parts of AH@, 9’) is 
empty so that (j, yr) E H(G1) and (j’, yr) E H(G*) for all y, E AH@ 9’). 

Next, observe that 

is bounded. Hence ID,H-‘(9, y,)\-l and (~,~-~(jO,y,)l-r are uniformly 
bounded for HE%, 9~ H’(C), ~‘EH’(C), y, ~d~(j,j’). Therefore, by the 
change of variable formula for integrals, there is y’ E R independent of H E 2, 
jeH’(C), j”~k’(C) such that 

A’({$> ix dH(9,9’))~~‘.~l(H-l((9} x dH(j,jO))) 

and 

A’({j’} ~A~(j,j~))~y’+(H-~({~~} x dH(j,jO))). 

This implies 

2~P(dH(j,90))~y’.~1(H-1({j) x AH&j’))) 

+y’*I’(H-‘({j’} x AH&j’))) 
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=y’.A’[proj, H-‘((9) x P(j,j’)) 

A proi H- ‘((9’) x @(9,9°))1 

+2y’.i’[projl II-’ x P(jj,j’)) 

f-7 proi H- ‘@“> x ~H(9,90M, 

where A denotes the symmetric difference. The last inequality is of the type 
;1’(A)+1’(B)=11[AAB]+21’[AnB]. 

Now we examine the term of the form ;1’[A A B]. The set dH(j, 9’) is the 
union of intervals with boundary points in proj, (H(Zk) n (9 x R)) or in 
projl (H(Zk) n (9’ x R)). Since the number of available boundary points is 
uniformly bounded, the number of intervals in AH&j’) is uniformly 
bounded. The sets (9) x dH(jY,jO) and (9”) x dH(jj,jo) are mapped dif- 
feomorphically by proj, ’ H- ’ into two unions of intervals, say uA’ and uB’. 
Now 

uA’AuB’c u(A’aB’). 

Moreover, for every i, 

;1’(/t’AB’)52. sup Iproj, H- ‘(9, YJ -proj, H- ‘(joP YJI. 
YZ E~%P) 

Since 3? and C are compact and dH(j?,fo) is uniformly bounded, there is y” 
such that the inequality 

2. sup ~proj,~-‘(9,~~)-proj,~-‘(9~,y~)~~y”~~(9--9~~~ 
Y, E @(P, 99 

holds uniformly. Summarizing, there is y1 E R such that the inequality 

&‘.A’[proj, H-‘((9) x dH(9,j0))Aproji H-‘({90} X 09990))1 

holds uniformly. 
Next we examine the term of the form I’[,4 n B]. Since, by assumption, 

(9, y,) E H( G’) and (E”, yJ E H( G’) for all y, E d(j, jj’), we have 

[proj, H-‘((9) x AH(9,jo) n proj, ff-‘({9’) X ~H(9,90))lC4-%~o). 

Therefore 

Al[proj, H-‘({E) x P(9,9’) n proj, H-‘((9’) x dH(j,jO))l S~‘(Jf,-f”)). 
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Furthermore, X1 = (23’ 1 3H2 such that (H’,H2) EY?} is compact. An 
application of the mean value theorem yields that there is y”’ E R, such that 

for all H’EX’,REC,Z~EC. 
Finally, combining the last two paragraphs, we have 

----.y’.~l[proj, H-‘((9) x P(j,j’))n proj, IYI-~({~~} x dH(j,jJO))] 
iii& 

5 yq,:~o,l y’ . n’(A(a,a”)) =$ Q(2, a”). 

Put y2 = ,,/,,f’. Q.E.D. 

Lemma 5. Let Cc R’ - ’ be compact, e>O. Denote an e-cube around Z” E Iw’-l 
by W,($O). Assume 

s sup Q(& $‘)I’ - ‘(da’) < co. 
c Si.rV@) 

Then 

E ,::!5 Q( 
f, Z”)l’ -‘(d?‘) < co. 

Proof First we want to show that Q: R’ - ’ x R’ - ‘\diagonal+R is 
continuous. 

Assume 3 9 5 We claim that I’(d(Z”,R)) tends to zero. To see this, let 
(3, x1) E G’, i E { 1,2}. Since G’ is open, we have (5?‘, xr) E G’ for n large enough. 
Let Gh. denote the ?-section of G’. We have l+(x,)+l,$xr) for all x1 and 

thus in i’-measure. Therefore 

Al(Ll(Y, 3)) ;: 0. 

Consider points 5, K”, g2, R” E [w’ - ‘. Define 

M={x,ER’~(~,~JECk or (Z”,xl)~Ck or 

(i, xr) E Zk or (a’, xr) E Ck}. 

We want to show: 

d(%, 2’) A A(%, a”) c A(?, 2) u A(%‘, 2’) u hf. 
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To see this, assume xl #d(K,%) u d(5Z”,io) u M. If xr ~d(K,f’), then 
xI ~d()?‘,$ and therefore xr ~d(f,f’). If xr EA(~,~~), then x1 ~d(Z’,f~) and 
therefore x1 E A(& 2”). Hence xI $ d(Z, 2’) a d(Z,Z”). The continuity of Q 
follows from the facts that A’(M) =0 and A’(d(l,Z)) +A’(d(~“,20)) tends to 
zero if I and ~2 approach 1’ and 2’ respectively. 

Next we want to show that limllall_,m Q(2, a”) =0 uniformly in zZ” E C. 
Observe, for that purpose, that (2,x,) and (2’,x,) belong to different G’ only 
if the line segment connecting them intersects Ck in some point (2,x,) = 
(2’(2, a’), xr). We can assume k # 0. Since (2, xr) E Ck we have, for (x11 2 1, 

Therefore, 

For 11~~~1 large enough and 2’ E C, 2))i-Z”() > llfll> Ilff’ll and JxIIz smax { 1, k/all} 

= klli/I. It follows that, for ~‘Ec, 

Therefore limllr,,+~ Q($ 2”) = 0 uniformly in f” E C. 

Finally, it remains to show sup 20,c sup,@ w,(noJ Q(_?, 2’) < co. Let this be 

false. Then there is a sequence of points ii-O in C and of points a# I4$(2”) with 
Q(?,?‘) unbounded. Since C is compact and lim,,n,,_,m Q(Z,Z”)=O uniformly 
in ion C, we can assume that the sequence of points ($2”) converges to a 

- -0 pair (x,x ) such that 2’~ C, X$ W,(X’). This contradicts the continuity of 

Q. Q.E.D. 

Lemma 6. Let C be a compact cube in R’ -’ parallel to the axes and 

centered at the origin. Then, for Q($z?“) defined with respect to some Zk, where 
O>jk5l-l, 

j sup Q(~Z,2~)12’ - ‘(dz’) < co. 
Cjc,R’-l 

Proof: The proof proceeds by induction on k. For k=O, C’ equals the 
hyperplane defined by the equation y, =O. Hence Q is identically equal to 
zero. 
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Assume that the lemma holds for k’ 5 k- 1 and consider Zk. Define 
~:~'-'+~I-' and T: R’+ IF@ by 

Since C is parallel to the axes and centered at the origin, ?Cc C. Let 
C’=C\?C, C’= ?C”, C2 = !?C1, etc. Then C\uzo C’ is a null set. We 
integrate over u,To c’ instead of over C. 

We can assume that C has a non-empty interior. Then all singularities 
associated with parameter systems in Co have corank 1 and codimension at 
most equal to k- 1. Therefore, if (a”, xJ E Zk, 2’ E Co, then there exist a 
number k’ 5 k- 1, a neighborhood U of the origin in R’ - ’ x R, and a 
fibrewise diffeomorphism mapping 0 to (Z’,xJ, U onto a neighborhood of 
(a”, xr), and Ck’ n U into Ck. By the induction hypothesis and Lemmas 4 and 
5, there exists a neighborhood C(Z’) around 2’ E [w’ - ‘, such that 

j sup Q(a, fO)l’ - ‘(ds’) < co. 
C(P) j, E P- 1 

The compact set C can be covered by a finite number of such neighbor- 
hoods. Hence 

j sup Q(R, fO)l’ - ‘(df’) = a < 00. 
co.%ER’-’ 

Since I(&),l z(l/2k+ ‘)(%,I f or each component h of every vector i 

The transformation T leaves the hypersurface Ck invariant. Hence 

Q( $2, Tg’)-S& -+A’(~I(i,32~)) =2kQ(2,Ro). 

Therefore, for every Z”, 

sup Q( ?X, $2’) 5 2k sup Q(R, 2’). 
EEFP-1 fen’-’ 

The determinant of $ is (4)” + ’ * (4)>” . . . . . (4))” I(+)” +I. The change of variable 
formula for integrals yields 
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;I i;;~, Q(k ROVz -‘(da’) 5 f SUP ZkQ( 2, go) . (+)-,” + ‘1’ - l(dx”) = +a. 
@PER’-’ 

Similarly, 

j sup Q(& ?‘)A - ‘(da’) 5 (+),“a, etc. 
@PEW’- 

Therefore, 

g s sup Q(Z,a”)A’- ‘(d?O) 5 f (+))‘a< co. Q.E.D. 
i=Oci*Ewl-l i=O 

Lemmas 4, 5 and 6 are purely mathematical tools which come into play by 
assumption (.MMorin). Let (so, w”) ~suppz and let (p”, x”,yo) ~~~~ be a 
critical point of rc 0 i: T,,+S. By (-MM& there is a neighborhood I/ of 5’ 
such that H,: I?-’ x l@--+S x10, co[ is a librewise diffeomorphism for all 
5 E I! We can assume that V is chosen so small that there are neighbor- 
hoods U’ of p” in S and U2 of w” =p”xo =p”yo in 10, co[ such that 
U’ x U2 cimageH, for all 5 E l! Let tc v 0’ c U’, 0” c 7_J2 be neighbor- 
hoods of so, p”, w”, respectively, such that P A suppp, o’, o2 are compact. 

In order to show the integrability of an appropriate set of local Lipschitz 
constants, we consider terms of the form 

Let 5 E v (p, w) E image H<, and (p’, w) E image H,. Since R’ -I x R\Ck is 
composed of the open sets G’ and G 2, demand in image H, is described by 
two smooth functions, 4’ and 42, which are associated with H,(G’) and 
H,(G2). 

Firstly, consider the case in which (p, w) belongs to H,(G’) and (p’, w) 
belongs to H,(G2), or vice versa, 5 E p Then there is a constant not 
depending on PE ol, WE 02, 5 E P n supp,u such that 

Here we made use of (A,). For the purpose of integrating local Lipschitz 
constants we can assume that constant = 1 in order to simplify notation. 

Secondly, consider the case in which (p, w) and (p’, w) both belong to the 
same H,(G’), i= 1,2. Then there is a constant, not depending on PE o,, 
WEAL, LEvnssuppp, such that 

< = c,,u;;g x 512 /[D,&~,P, w)llh5(w)5constant. 

i=1.2 
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Here again we used (4,). It follows that we can completely neglect the case 
of (p, w) and (p’, w) both belonging to the same H,(G) when we integrate 
local Lipschitz constants. 

Let us, therefore, concentrate on the first case. Instead of integrating 

~(~,p,w)-~(~,pO,w)h,(w)dw I/ 
over 5 in a neighborhood v of 5” we shall integrate 

sup ~~p-p”))-‘11(w~(p,w)~H5(Gi)n o’x 02, 
PEW 

(p”, w) E H,(g) n 0’ x 02, i#j} 

= sup llp-p”(I-lA1(dH~(p,po)) = sup QHs(p,po) 
p.81 PCV 

over 5 E i? 
The integration makes use of (A%‘,). Let d be some metric on the Polish 

space 9’. Let q be such that B3,,(s0) c V The mapping 9 x S-tlw, 
(5, q) H d(s, s,J, is continuous. Since suppp’ is a compact subset of 9, 
there is a compact symmetric neighborhood B=(B)- ’ of id ES such that 

sup, E sup* p’ supqEs d( i,, 5,) 5 ye. Furthermore, B is assumed to be so small 
that 

We shall use the disintegration associated with B according to the definition 
of uniform, local price dispersion. 

Put m( 5) = suppE 0, QHs(p, p’). Then 

2=~~(5)dA5)=~1&5)~(5)d/45) 
B 

= jJ Iv(5’)m(5’) d&(5’) dN(5) 

=~~l~(~4-,)m(~,-,)d5’,(q)dy’(~). 

Let v be so small that PcB,( 5”). If 5 ~suppp’, C.JEB, then d(5, i,,) <r. 

If, in addition, &E PcB,(d’), then 



E. Dierker et al., Price-dispersed preferences and C’ mean demand 41 

Hence, 9 < co, if 

because p is a finite (probability) measure. Moreover, the measures & have 
densities with respect to x and hence with respect to Lebesgue measure I’-’ 
which are uniformly bounded. Therefore, %< co, if 

sup Jm($)l’-‘(d&co. 
5Esupp$nB2,(50) B 

Now we exploit the fact that i(Fs4) and i(F5) have the same shape up to 
the action of q on the price space. More precisely, 

Lm*(p, p”) = LPqp 0 q, po 0 q). 

5 const . sup QH$p 0 q, p” 0 q). 
psi?’ 

Hence it suffices to show that JB suppE trI QH5(p 0 q, p” 0 q)1’ - ‘(dq) has a bound 
independent of 5 E supp ,u’ A B,,( 5 “). 

Finally, this bound is obtained with the aid of Lemmas 4 and 6. Since 
supp p’ n I?,,( 5’) is compact, there exists a compact cube C in R’ - 1 parallel 
to the axes and centered at the origin such that U’ cH&JC) for all 
5 ~supp,~’ n B2,(5’). By Lemma 4 and the change of variable formula for 
integrals it suffices to show that 

J sup Q(R, z?‘)A’ - ‘(da’) < co, 
c SrPC 

since the determinant of D(Hl)( “) < x is bounded away from zero uniformly in 
2 E C and 5 E supp $ n B,,( 5’). Lemma 6 implies that this integral is indeed 
finite. Q.E.D. 
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