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In this paper we show that for a largs subset of utility functions in the space of all €’ uiility
functions and for all prices the mean demand of those consumers whose taste is represented by a
given utility function in that subset is uniqu=ly determined. This implies that for a large set of
economies mean demand is a continuous function. Qur analysis uses derivatives of first and of
higher order. The result is essentially a consequence of the multijet transversality theorem.

1. Introduction

The price mechanism is commonly believed to achieve the consistency of
individual decisions in a purely competitive economy. However, the complete
coherence of individual decisions based on an equilibrium price system 1s
unlikely to be obtained if iiic aggregate decision is not well-determined by
the price system. In the presence of preference non-convexities, individual
decisions are not necessarily determined by the price system and it is
quesiionable whether the knowledge of equilibrium prices is sufficient to
obtain compatibility of individual decisions.

For the concept of an equilibrium price system to obtain its full power,
one would like to have a continuously differentiable mean demand furction.
Our approach in this paper has indeed been motivated by the yuestion of
when mean demand can be expected to be differentiable. In another paper
[Dierker et al. (1980)] we show that for a fixed preference relation, aggregation
with respect to a continuous income distribution leads to a continuously
differentiable demand function except for prices in a closed null set. But in
this null set of prices demand need not be unique.

In this paper we show that the mean demand of ail consumers is a
uniquely determined bundle for all price systems if tastes are represented by
utility functions belonging to a large subset of a given class. This together

*This paper was written while E. Dierker was on sabbatical leave at the University of
California, Berkeley. The authors have benefited from conversations with several colleagues at
Bonn and Berkeley.
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with the well-known upper hemi-continuity of the mean demand cor-
respondence impiies that the mean demand of the consumption sector is a
continuous function. Our analysis relies heavily on the use of derivatives of
first and of higher order. The result obtained is essentially a consequence of
the multijet transversality theorem [see Golubitsky and Guillemin (1973, p.
57)].! For the study of continuity of mean demand without the use of
derivatives, see Mas-Colell and Neuefeind (1977, sect. 5).

The continuity of mean demand has been studied in the framework of
differentiable utility functions by Sondermann (1975, 1976, 1980), and by
Araujo and Mas-Colell (1978). A major difference between their work and
ours is that they stipulate a manifold structure on the space of preferences
considered, a stipulation which we want to avoid. The manifold structure is
used to express the notion of dispersed preferences. Dispersion of preferences
is not needed in the present paper because the uniqueness of mean demand is
essentially obtained by integration with respect to wealth keeping preferences
fixed. Variation of preferences becomes important, though, if the differ-
entiability of mean demand is studied.

2. Model and result

There are /=2 commodities. The commodity space is R. The consumption
set of every consumer is

X ={xeR'|x>0}.
We consider prices in
S={peR'|p>0,||p||=1}.

The norm is assumed to be C* on the positive orthant of R\ To be specific,
we choose the Euclidean norm.

Let 2 be the space of preference orderings which are representable by C*
utility functions u: X —R satisfying assumptions (U.1), (U.2), and (U.3)

below:
(U.1) Du(x)»0 forall xeX (monotonicity).

(U.2) The closure of each indifference hypersurface is contained in X (a
boundary assumption made to keep demand inside X).

Let g(x)=Du(x)||Du(x)||~'. We postulate:

(U.3) g: X—>S has everywhere maximal rank, i.e., rank [—1.

‘We would like to mention that the multijei transversality theorem has been applied by
Sendermann (1980) to derive results which are closely related to ours.
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This assumption allows indifference hypersurfaces to havs Gaussian curva-
ture zero. However, it rules out the case of two or more prirciple curvatures
vanishing simultaneously.

Let # be the space of C* utility functions u: X - R satisfying (U.1), (U.2)
and (U.3), endowed with the C* Whitney topology.

A neighborhood basis for ue # in the C* Whitney topology is obtained by
taking, for any continuous mapping ¢: X —-]0, [, the sct of those utility
functions for which, at every xe X, the C* distance 1> u is smaller than d(x).
The C* Whitney topology is used for simplicity’s sake.

Let we]0, x[ denote the wealth of a consumer. The demand of an agent
with wealth we]0, x [ and preference ordering < e.# at price system pe S is

p(Z,p.w)=!xeX

PXSW XN,

For given <e.2, let the wealth distribution be described by a probability
measure J.. on A(]0, [), # denoting the Borel g-algebra, such that- the
mean wealth is finite, i.e., j'n'(ii(dw)< x. We assume that d- is absolutely
continuous with respect to the Lebesgue measure 4. Let h. denote the density
of o with respect to 4 Then, for the given preferenve crdering <e 2. the
mean demand at pe S with respect to wealth is

d(2.p)= | p(Z.p.w)in<(w)dz.
(4]

The irtegral of a correspondence ¥ from the measure space (£..</.v) into
R™ is defined as follows. Denote by %, the set of v-integrable functions s:Q
—R™ such that s(w)ey(w) v - ae. in Q. Then the set

{ja'he R""SE Ly
is called the integral of ¢ [cf. Hildenbrand (1974)].

Theorem. The space # has a residual subset # .. such that each element in
U ., represents a preference ordering < for which the meun demand @(<.-):§
— X, given <, is a continuous function.

Remark. Let u be a measure on # such that u - almost all preferences are
representable by utility functions in # .. Then the mean demand F:S-X
given by

Fip)=fo(Z.pudx)

is a continuous function.
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3. Proofs

Let ue# be given. Let k(x) denote the Gaussian curvature of the
indifference hypersurface u™ ' (u(x)) at xe X.

Lemma. Let ued and pe S be given. Then
{w=g(x) x|g(x)=p,x(x)=0} is null.

Proof. The proof exploits the assumption that g has maximal rank
everywhere on X. Let peim(g). Then g~ !(p) is a cne-dimensional differenti-
able manifold. Assume k(x)=J for xeg~!(p). The tangent space T,g~'(p) is
given by the kernel of Dg(x). Since k(x)=0, the kernel of Dg(x) is contained
in T.(u"*(u(x))). It foliows that g~'(p) is tangent in x tc the indifference -
hypersurface u™!'(u(x)) and therefore to the budget hyperplane through x
with normal vector p. Therefore, a point xeg™!(p) with x(x)=0 is a critical
point of the mapping g~ '{p)—R, x—g(x)x. The set of critical values of this
mapping is a null set. Q.E.D.

Remark. The lemma permits one to neglect points with vanishing Gaussian
curvature when demand is integrated with respect to wealth for a given
preference ordering. Assumption (U.3) allows us to achieve this result in a
simple way. Points with vanishing Gaussian curvature can be considered as
points where a catastrophe occurs. One might hope that the use of
catastrophe theory allows a considerable weakening of (U.3).

We want to show that there exists a residual subset % ., of % such that, for
any ue#.. and for any peS, demand is single-valued except for a set of
isolated points we]0, oc[ and except for the null set of w’s described in the
lemma. To show this we use the notion of a jet and a powerful transversality
theorem. See Golubitsky and Guillemin (1973, ch. 2, §2, §4) for the
termrinology and statements to be used.

oifore we get involved with the technicalities, we give an intuitive sketch
of tke basic idea. Suppose ue# is given and the demand at (p, w) does not
contain a point whose associated indifference surface has vanishing Gaussian
curvature. The demand at (p,w) is contained in the intersection of g~ !(p)
and the budget hyperplane B, ,, corresponding to (p,w). The intersection is
transversal because of the non-vanishing Gaussian curvature. Therefore
B,.ng '(p) consists of isolated points. Indeed, #(B,,Nng '(p))<oc
because of the boundary assumption (U.2). Each point in B, , ng~'(p) can
be traced locally if w is varied p remaining fixed. That is to say, there are ¢
>0 and smooth functions hy,....h:Jw—e, w+e[-X, r=#(B,,ng ' (p))
such that, for w'e]Jw—e¢,w+e[, we have B, , ng~ ' (p)={h,(W'),...,h,(w)}.
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Suppose x,=h,(w} and x,=h,(w) are demanded at (p,w). Then, in parti-
cular, uh ‘I_u(Y ) and Du(v \m nrnnnrhrmnl to Du(r-) If I)u(v ) exceeds

P L PL LS I |

Du(x,), then a sllght 1ncrease of Wealth from w to w' prevents hz (w") from
belonging to the demand at (p,w’), because u(h, (w'))>u(h,(w')). Similarly, a
slight decrease of wealth from w to w” prevents h, (w”) from belonging to the
demand at (p,w").

However, the case Du(x,)=Du(x,} cannot be excluded, not even in the
case of only two commoaities. Therefore, assume now Du(x;)=Du(x,). Then
one is led to comsider ihe second order variation of u at x; along h;. If the
second order increase of u at x, along h, exceeds that of u at x, along h,,
then a similar reasoning as above shows that a slight variation of wealth
prevents one of the commodity bundles from belonging to the demand set. If
the first and the second order increase of utility at x, along h; and of x,
along h, happen to coincide, apply a similar argument to the third crder
increase of utility, etc. The condition that all utility increaces up to the order
of & coincide becomes more and more restrictive when k grows. It turns out
that not all utility increases up to the order of I can coincide for a residual
set of uuility functions. However, one can let the exceptional set of utility
functions shrink further by taking derivatives of all orders into account.

To make the preceding reasoning more precise, let J'*!(X,R) be the space
of (I+1)-jets from X to R, 1=2. This space can be conceived of as an open
subset of a Euclidean space by describing an (I+1)-jet with source in the
open set X =R! by the coefficients of the associated Taylor polynomial of
order /+1. Let x be the source of ceJ'*!(X,R). Let ¢ be represenied by
u: X -»R. We have to look at non-degener:te local utility maximizers subject
to the budget constraint. The point x€2 is a non-degenerate local utility
maximizer of u subject to the budget constraint iff Dzu(x)lmuum is negative
definite. Non-degeneracy of the local maximizer x does only depend on the
2-jet of u at x. Let ¢ <J'"1(X,R) consist of those (I+1)-jets ¢ which are
represented by utility functions having a non-cegenerate local maximum

subject to the budget constraint at the source of . Note that € is open.
As suggested by the intuitive sketch of the argument above, we are going

to consider indirect utility. Therefore we map ¢ into J'{S x]0, [, R). This
space can also be conceived of as an open subset of a Euclidean space by
identifying p= (py,...,p;)€ S with (p,,...,p,-;)€R "1 Let 0 € be represented
by a function u. Then there is a neighborhood U of the source x of ¢ such
that the function d, defined by d(x')=(g(x'), g(x')'x'), maps U C*-
diffeomorphically onto a neighborhood V of (p,w)=(g(x),g(x) x) in
Sx1]0, f. Assign the [-jet represented by uod™?! at (p,w) to ceC. This
defines a mapping f: 0—J'(S x]0, o[, R), provided that the I-jet represented
by uod™! at (p,w) is independent of the representation of o by u.

To check this independence, let il be another representative of ¢. That is to
say i ~ ., 4 at x, the symbol ~, denoting contact of order k. It follows that
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d~d at x, where dix)=(Dia(x)||Da(x)||"!, Da(x")||Dii(x")|-x"). Hence
d"tod~,d 'od=id at x. Therefore d '=d 'odod '~ ;d"" at (p,w). This
implies tiod ™! ~uod ™" at (p,w).

Next we want to check that f is differentiable. The l-jet represented by d
at x depends differentiably on ¢. The partial derivatives of d™' of order <k
can be written as rational functions of the partial derivatives of d of order
< k. Hence the I-jet represented by d~! at (g(x),g(x) x) depends differen-
tiably on o. It follows that the /-jet represented by uod™! at (g(x),g(x) x)
depends differentiably on o.

We are interested in the way indirect utility varies with respect to wealth
at a fixed price system. Therefore let = map J'(Sx]0,c[,R)=»R**! as
follows. Assuciate with (p,w,v(p,w), De(p,w),..., D'v(p.w)), which represents
an elemeni of J'(Sx]0,¢[,R), the vector (py,...D-1sW,0(P,W),
D, vip.w)... D v(p,w))e R¥*! where D% denotes the kth partial derivative
with respect to w.

We want to show that mof:(—R**! is a submersion. Write the tangent
space at m(f (")) as R' x R'*!, First we show by induction that {0} x R'™*! is
contained in imT,(nof ). For that purpose we rescale the utility function u
representing ¢ in a neighborhood of x=source of . Consider u(x')=u(x")
+ (u(x')—u(x)), where x' is close to x. Put v=1od™ ! and #=dod ! and let
(p.w)=(g(x), g(x)-x), (p,w)=(g(x"), g(x')-x). Then &(p’,w)—v(p,w')
=(r{p.w)—rv(p,w)). Iterated partial differentiation of ¢—rv at (p,w) with
respect to w yieids that (0,...,0,%,)e R**! is containzd in imT,(no f) for
7,=0. Similarly, adding (u(x')—u(x))"!' to u(x) yields that
(0....0,2,,2)eim T (no '), x, =0. Repeating this argument /41 times, always
lowering k in (u(x')—u(x))* by one additional unit until k=0, one obtains
that [0} xR'""'=imT, (nof). Next, a small translation of the commodity
spacc in a direction not perpendicular to p shows that {0} xRxR'*!
—imT, (nof ). Finally, rotate the commodity space around x to see thati
RY-'cimT,(nof).

Let J5 ' (X,R) denote the 2-fold (/+ 1)-jet bundle and put

C,=(C xCynJY (X, R).

¢, is an open subset of JY"'(X,R). Define a mapping ¢,—»R¥»*! by
assigning n{f(c))—n(f(r)) to (o,7)e,. The origin in R¥*! is a regular
value of this mapping, since nof is a submersion. The inverse image of the
origin is a submanifold W of ¢, and hence of J4" ! (X,R) of codim 2[+ 1.
According to the multijet transversality theorem [cf. Golubitsky-Guillemin
(1973, p. 57)] there is a residual subset of C*(X,R) such that, for u in this
subset, j5 'u intersects W transversally. Since dim(X x X)=2/<codimW,
transversal intersection amounts to empty intcrsection. Observe that # is
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open in C” (X,R). Therefore, for u in a residual subset #,. of #, w¢ have
A lun w=0.

It remains to show ihat, for any utility function u with " 'un W =0 und
for any pe S, the mean demand aggregated with respect to weaiih is single-
valued. According to the lemma it is sufficient to show that the set N
= {we]0, « [|u has no degenerate, but several non-degenerate maximizers on

B, consists of isolated points. Assume the contrary. Let (w,) be a

sequence in N converging to weN. Let x! and x? be two different utility
maximizers on 4, . . Without restriction we assume that (x)) and (x;)

n't

converge to x' and x?. The upper hemi-continuity of the demana cor-

respondence yields that x' and x* are utility maximizers on B, . Since

weN, we have x(x')=0 and therefore x'=x2. Denote the indirect utilit
functions defined locally at x' resp. x* by ! resp.t?. As /5" Turn W=:0, there
exists Kk, 1<kZl such that DY¢'(p.w)=D* 2(p.w) for 1<k<k. and
D'\—"‘.r‘(p., \\')#D"-“.rz(p. w). By Taylor’s theorem this is a contradiction to the
fact that for all n, v' (p,w,)=u(x})=u(x])=02(p.w,).  Q.E.D.

Remark. 1t i1s by no means necessary to consider derivatives only up to the
order of I+ 1. Taking higher derivatives inte account allows us to reduce the
size of the set of exceptional utility functions considerably.
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