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In this paper we show that for a larg- subset of utility functions in the space of all C’ urihty 
functions and for all prices the mean demand of those consumers whose taste is represented by a 
given utility function in that subset is uniquely determined. This implies that for a large set of 
economies mean demand is a continuous function. Our analysis uses derivatives of first and of 
higher order. The result is essentially a consequence of the multijst transversality theorem. 

1. Introduction 

The price mechanism is commonly believed to achieve the consistency of 
individual decisions in a purely competitive ecoilomy. However, the complete 
coherence of individual decisions based on an equilibrium price system is 
unlikely to be obtained if jilt: aggregate decision is not well-determined by 
the price system. In the presence of preference non-convexities, individua.1 
decisions are not necessarily determined by the price system and it is 
questionable whether the knowledge of equilibrium prices is sufficient to 
obtain compatibility of individual decisions. 

For the concept of an equilibrium price system to obtain its full power, 
one would like to have a continuously differentiable mean demand fuI::%n. 
Our approach in this paper has indeed been motivated by the +iestion of 
when mean demand can be expected to be differentiable. In another paper 
[Dierker et al. (NSO)] we show that for a fixed preference relation, aggregation 
with respect to a continuous income distribution leads to a continuously 
differentiable demand function except for prices in a closed Al set. Rut in 

set of prices demand need not be unique. 
In this paper we show that the mean demand of All consunlers is ;I 

uniquely determined bundle for all price systems if tastes are represented by 
utility functionS belonging to a large subset of a given cl;~. This tog&her 

*This paper wa. s written while E. Dierker was on sabbatical leave at the I;,;ivcrsity cjf 
California, Berkeley. The authors ha\e benefited from cxlversations with setera collea~ucs a1 
Bonn and Berkeley. 



with the well-known upper hemi-continuity of the mean demand cor- 
respondence implies that the mean demand of the consumption sector is a 
continuous function. Our analysis relies heavily on the use of derivatives of 
first and of higher order. The result obtained is essentially a consequence of 
the multijet transversality theorem [see Golubitsky and Guillemin (1973, p. 
57)].’ For the study of continuity of mean demand without the use of 
derivatives, see Mas-Cole11 and Neuefeind (1977, sect. 5). 

The continuity of mean demand has been studied in the framework of 
differentiable utility functions by Sondermann (1375, 1974, 1980), and by 
Araujo and Mas-Cole11 (2978). A major difference between their work and 
ours is that they stipulate a manifold structure on the space of preferences 
considered, a stipulation which &II;: want to avoid. The manifold structure is 
used to express the notion of dispersed preferences. Dispersion of preferences 
is not needed in the present paper because the uniqueness of mean demand is 
essentially obtained by integration with respect to wealth keeping preferences 
fixed. Variation of preferences becomes important, though, if the differ- 
entiability of mean demand is studied. 

2. Model and result 

There are I22 commodities. The commodity space is R’. The consumption 
set of every consumer is 

We consider prices in 

The norm is assumed to be Cx on the positive orthant of R’. To be specific, 
we choose the Euclidean norm. 

Let .P be the space of preference orderings which are representable by C” 
utility functions u: X -=+R satisfying assumptions (U.l), (U.2), and (U.3) . 
below: 

IU.1) Du(.u)$O for all x~X (rnonotonicity). 

IU.2) The closure of each indifference hypersurface is contained in X (a 
boundary assumption made to keep demand inside X). 

Let g(x)=Du(~)llDu(s)l(-‘. We postulate: 

(U.3) g: X-4 has everywhere maximal rank, i.e., rank I- 1. 
‘We would like to mentron that the multijei transversality theorem has been applied by 

Sondcrmann (1980) to derive results which are closely related to ours. 



This assumption allows indifference hypersurfaces to have Gaussian curva- 
ture zero. However, it rules out the case of two or more pritxiple curvatures 
vanishing simultaneously. 

Let # be the space of C ’ utility functions u: X-+ R satisfying (U. l)? (U.2) 
and (U.3), endowed with the Cl Whitney topology. 

A neighborhood basis for UE /u in the Ck Whitney topology is obtained bv 
taking, for any continuous mapping 6: X--+10, x[, Ge pet of those utility 
functions for which. at every x E X, the Ck distance td~ u is smaller than ci(s ). 
The C’ Whitney topology is used for simplicity’s sake. 

Let ~‘~10, x.J denote the wealth of a consumer. The demand of an agent 
with wealth w~]0, x [ and preference ordering 5 ~-9 at price system /IE S is 

For given 5 E.P, let the wealth distribution be described bq’ a probability 
measure ii, on .&(]O, x[). .& denoting the Bore1 r?-algebra, such that. the 

mean wealth is finite, i.e., l rr16 = (d\t*) < x. We assume that ii, is absolutely 
continuous with respect to the Lebesgue measure 2. Let II, denote the density 
of 6, with respect to i.. Then. for the given preference ordering 5 E 4. the 
mean demand at p E S with respect to wealth is 

The ip?tegral of a correspondence $ from the me;lsurc spaces (Q. .cY’. 1~) into 
R”’ is defined as fc%llows Denote by Y’, the set of \--integrable functions s: (2 
---) R”’ such that s (\t’ ) E t,b ( 11’) \’ a.e. in Q. Then the set 

is called the integral of # [cf. Hildenbrand (1974)]. 

Remurk. Let 11 be a measure on 2 such that p - almost ail1 preferences are 
representable by utility functions in +Vrrec. Then the mean demand F: S-4’ 
giveu by 

F(C=j@(SpMd5) 

is a continuous function. 
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Let u&V be given. Let K(X) denote the Gaussian curvature of the 
i rence hypersu5ace tf - 1 (24 (x)) at x E X. 

(w=g(x) l xlg(x)=p,K(X)=O} is VlUIL 

roc$ The proof exploits the assumption that g has maximal rank 
everywhere on X. Let ~&m(g). Then g-l (p) is a cne-dimensional differenti- 

manifold. Assume K(X) = 3 for x E g- ’ (p). The tangent space T,g- ’ (p) is 
vcn by the kernel of Dg(x). Since K(X) =0, the kernel of Dg (x) is contained 

TY (u- 1 (lr(.q j). It follows that g- l (p) is tangent in x ta the indifference 
rsurf;lce u - ’ (u(x)) and therefore to the budget hyperplane through x 
normal vector 4. Therefore, a point x E g- ’ (p) with K(X) =0 is a critical 

oint of the mapping g- 1 (p)+R, x-g(x) 0 x. The set of critical values of this 
mapping is a null set. Q.E.D. 

mark. The lemma permits one to neglect points with vanishing Gaussian 
vature when demand is integrated with respect to wealth for a given 

preference ordering. Assumption (C.3) allows us to achieve this result in a 
simple way. Points with vanishing Gaussian curvature can be considered as 
points where a catastrophe occurs, One might hope that the use of 
catastrophe theory allows a considerable weakening of (U.3). 

We want to show that there exists a residual subset eres of +Y such that, for 
y u E l+Y,,, and for an:/ pi S, demand is single-valued except for a set of 

isolated points w ~10, x [ and except for the null set of w’s described in the 
lemma. To show this we use the notion of a jet and a powerful transversality 

eorem. See Golubitsky and Guillemin (1973, ch, 2, 82, §4) for the 
terminology and statements to be used. 

Y: fore we get involved with the technicali+ies, we give an intuitive sketch 
of tte basic idea. Suppose u E @ is given and the demand at (p, w) does not 
contain a point whose associated indifference surface has vanishing Gaussian 
curvature. The demand at (p, w) is contained in the intersection of g-r (p) 
ai: e budget hyperplane BP,,, corresponding to (p, w). The intersection is 
transversal because of the non-vanishing Gaussian curvature. Therefore 
B,, ic’ n g- ' (p) consists of isolated points. Indeed, # (BP, w n g- ’ (p)) < oc 

of the boundary assumption (U.2). Each point in B,+ n g’-l (p) can 
d locally if w is varied p remaining fixed. That is to say, there are E 

l,...,h,:]w-&, w+c[+X, I= # (l$,,ng-l(p)) 
-E, W-I- E[, we have B, 9 w’ n g- ’ (p) = (12, (w’), . . ., h,(w’)). 
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suppose x, =h,(w! and x2 =h, (w) are demanded at (p, kv). Then, in parti- 
cular? u (x,) =u&) and Du (x,) is proportional to Du (x, ). If DU (x1 ) exceeds 
Du (x,), then a slight increase of wealth from w to w’ prevents h, (IV’) from 
belonging to the demand at (p, w’), because u (h, (w’)) > u (h2 (w')). Similar~v. a N 
slight decrease of wealth from w to w” prevents h, (w”) from bekmging to the 

demand at (p, w”). 
However, the case Du (x, ) = Du(x, i cannot be excluded, not even in the 

case of only two commoa;ties. Therefore, assume now Du (x, ) = DU (x,). Then 
one is led to consider :he second order variation of u at xi along hi. If’ the 
second order increase of u at x, along h, exceeds that of u at x2 along Iz,, 
then a similar reasoning as above shows that a slight variation of wealth 
prevents one of the commodity bundles from belonging to the demand set. If 
the first and the second order increase of utility at x, along h, and of x2 
along h, happen to coincide, apply a similar argument to the third xder 
increase of utility, etc. The condition that all utility increaces up to the order 
of k coincide becomes more and more restrictive when k grows. It turns out 
that not all utility increases up to the order of 1 can coincide for a residual 
set of utility functions. However, one can let the exceptional set of utility 
functions shrink further by taking derivatives of all orders into account. 

To make the preceding reasoning more precise, let J’+ 1 (X, R) be the space 
of (I + Q-jets from X to R, I>= 2. This space can be conceived of as an open 
subset of a Euclidean space by describing an (I + 1 )-jet with source in the 
open set Xc R’ by the coefficients of the associated Taylor polynomial of 
order I + 1. Let x be the source of CT E J” ’ (X, R). Let 0 be represented bq’ 
u: X-4. We have to look at non-degenerate local utility maximizers subject. 
to the budget constraint. The point XE Jr’ is a non-degenerate local utility 
ma.ximizer of u subject to the budget constraint iff D2u(~)~kerOiix~ is rlegative 
definite. Non-degeneracy of the local maximizer x does only depend on the 
2-jet of tl at x. Let OCJ’+~(X, R) consist of those (I + 1 )-jets G which are 
represented by utility functions having a non-degenerate local maximum 
subject to the budget constraint at the source of 0. Note that 6 is open. 

As suggested by the intuitive sketch of the argument above, we are going 
to consider indirect utility. Therefore we map C into J’(S x 10, z [, R). This 
space can also be conceived of as an open subset of a Euclidean space bj 
identifying p = (pi,, . ,, pr ) E S with (pl, . . ., pi _ l ) E R’ - lo Let 0 E c/’ be rep**esented 
by a function u. Then there is a neighborhood U of the source x of 0 such 
that the function n, defined by d(x’)= (g(x’), g(x’) * x’), maps b @“- 
diffeomorphically onto a neighborhood V of (p, w)= (g(x), g(x) l x) in 
S x 10, x[. Assign the l-jet represented by u 0 d-’ at (p, w) to 6 EC. This 
defines a mapping f: 8-+ J’(S x 10, co [, R), provided that the I-jet represented 
by I.&-’ at (p, w) is independent of the representation of 0 by u. 

To check this independence, let z? be another representative of 0. That is to 
say u” -‘1+1 u at x3 the symbol mk denoting contact of order k. 



i? - ,tl at s, where &x’) = (D~(x’)(lDi3(.u’)l~~ ‘, Du’(x’)((Dii(x’)(( 9 x’). Hence 

(7,. i od +j--‘&&id at X. Therefore LT-’ =d-‘o&d-* -+F’ at (p,w). This 
implies 6~ 7 - ’ -pdl at (/WV). 

Next ive want to clxck that f’ is differentiable. The I-jet represented by d 
at _x &pen& differentiably on ct. The partial derivatives of d- ’ of order 5 k 
can be written as rational functions of the partial derivatives of d of order 
<s k. Hence the I-jet represented by d’- ’ at (g(x), g(x) l x) depends differen- 
tiably on ts. It follows that the C-jet represented by u 06 ’ at (g(x), g(x) l x) 

depends differentiably on CL 
We are interested in the way indirect utility varies with respect to wealth 

at a fixed price system. Therefore let 71 map J’( S x]O,30[, R)--+R*‘+ ’ as 

follows. Ass&ate with I/I? w, Q, M:), LILT@, IV), . . ., D’o(p. IV)), which represents 
an element of f’( S x JO, x[, R ), the vector (pl, . . ., pr_ 1, w, u(p, w), 

B,.r dp, If )” . . ,Df,.r(p,w))~ R2j+ ‘, where D”, denotes the kth partial derivative 
with respect to 1~. 

We want to show that n of: G-+ R”” ’ is a submersion. Write the tangent 
space at z(f(P)) as R’x R? First we show by induction that (0} x R’+ ’ is 
contained in imT& oj*). For that purpose we rescale the utility function u 
representing (T in a neighborhood of ?c = source of 6. Consider fi(x’) = zc (x’) 
+= (u(ru’)--u(x))I, where SC’ is close to x. Put t’=tioK’ and fi=u^od-’ and let 
(p. \t’)= (g(?r), g(x) - x), (p’, b) == (g(x’), g(x’) - x’). Then L$I’, NJ’) - ~(p’, ~7’) 
== (l@‘. ~7’) 7 r(i), Q~))‘. Iterated partial differentiation of I? - t: at (p, \v) with 
respect to N* yields that (0,. . ., 0, x1 ) E R2” ’ is contained in imT,(n of’) for 
%I z=o. Sirailar!y, adding (~((s’) - I&))~-- ’ to 21 (s’) yields that 
(0.. * .) O,z,.x)Eim T,(D\‘), IX, , $0. Repeating this argument I+ 1 times, always 
lowering k in (u(Y) -- u(.# by one additional unit until k =O, one obtains 
that !Ot x R” I = imT, (n of‘). Next, a small translation of the commodity 
spzct in a dIrection not perpendicular to p shows that (0) x R x R’+ 1 
c imT,(nqf ). Finally, rotate the commodity space around x to see that 
Rz’+ * c imT,(n of). 

Let Jy ’ (X, R ) denote the 2-fold (1+ t )-jet bundle and put 

i’*= (t!‘x&)nJ:+‘(X,R). 

c * is an open subset of Jpl (X,R). Define a mapping G2-+R2’+l by 
a~si~~j~~ z(J(~))-- sz(f’(s)) to (G,‘c)EG~~. The origin in RZi+i is a regular 

ale of this mapping, since mJ’ is a submersion. The inverse image of the 
ortgin is a submaniftild W of ti2 and hence of JF1 (X, R) of codim 21+ 1. 
According to the multijet transversality theorem [cf. Golubitsky-Guillemin 

)] there is a residual subset of C” (X, R) such that, for II in this 
II inr-crsects I+’ transversally. Since dim(X x X ) = 21< codim M! 
intersection amount5 to empty intersection. observe that -4Y is 
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open in C ’ (X. R ). Therefore. for II in a residual subset 41 r~., of ‘I/, WL h;\vc 
j’,“Ii n W=@ 

It remains to show that, for any utility function 11 with j\’ ‘II n b’ = (9 ;lnd 
for any PE S, the mean demand aggregated with respect to wc;i;;h i:; :;Jl&- 
valued. According to the lemma it is sufficient to show that the set hi 
= (M’E]~, x [ Iti has no degenerate, but several non-degenerate maximizers on 
B ’ consists of isolated points. Assume the contrary. Let (KJ be a p. H’ J 
sequence in N converging to NX,V. Let _Y,‘, and .uf be two different utility 
maximizers on MP, ,,,,,. Without restriction we assume that (XI’, i and 1-1: ) 
converge to .Y’ and _Y’. The upper hemi-continuif y of the demana (;‘or- 
respondence yields that .x1 and .? arc utility maximizers on B,, ,,.. Since 
U*E: N, we have K(.Y~) ~0 and therefore s1 *x2. Denote the indire& utility 
functioIls defined locally at s’ resp. _Y’ by I*’ resp. I*‘. As ji’ ’ ZI f-1 W =x 0. there 
exists i?, 1 s&i. such that D:J’ (11. \t.)= 0: *‘(p, 1~) for 1 5 k < g. ;md 
Dt.r*’ (I>. ~9) + D&J*’ (p. EI* ). By Taylor’s theorem this is a contradiction to the 
fact that for all 12, 1” (p, wn ) = 0 (s,l ) = 14 (xf ) = 2~~ (I>. w,, ). Q.E.D. 

Rrrncrr*k. It is by no means necessary to consider derivatives only up to the 
order of I + 1. Taking higher derivatives into account allows us to reduce the 
size of the set of exceptional utility functions considerably. 

Reterences 

Araujo. A. and A. Mas-c 41. 1978. Notes on the smoothing of ;lggrcgr 21tc demand. Journsl (ii‘ 
Mathematical Economics, S, 113 1?7. 

Dierker. E.. l-t. Dierker and ‘W. Trot) ~11, 1980. Smwthing cfsm3nd h> agfri‘g;Lt ion \i I( h 1-c pc’c‘! 
tc wealth. Journal of Mathematical Economics, forthcoming. 

Golubitsky, M. and V. Guillemin 1973, Stable mappings and their singularities (Springer. Bcrlln 1. 
Hildenbrand, W.. 1974. Core and equilibria of a iargc CCOIICI..~ (Princeton lini\ersitIY Pi-w. 

Princeton, NJ). 
Ma> Colell, A. and W. Neuefeind, 1977, Some generic properties of aggr~~~itc CXCCbS dCIll;tlld 

:.nd an application, Econometrica 45. 591 599. 
Sondermann, D., 1975, Smoothing demand by aggregation, Journal of Mathema;ic, ’ Econc~mtc~ 

1. 201 223. 
Sc ndermann, D.. 1976. On a measure thwrttical problem in m~~thcmatical ccom mc~. III : 

SI\ringer Lecture Notes in Mathematics 541. 

Journal of Mathematic;jl F-,conomics. forthcoming. 


