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The upper hemicontinuity in distribution of the core correspondence even in the case of 
economies with atoms is proved in a direct way without using prices. The distribution of agents’ 
characteristics together with a specification of the atoms give a sufficient description of an 
economy as far as analysis of the core for large economies is concerned. Let gC(8) be the set 
of distributions of core allocations for the exchange economy 8. It is shown that for every 
distribution 0 of agents’ characteristics there is a standard representation 8‘ among the 
economies 8 having this distribution p such that SC(&) is closed and contains XY(8). 

1. Introduction 

The well-known Limit Theorem on the core by Debreu and Scarf (1963) has 
been generalized recently by several authors : Hildenbrand (1970), Kannai 
(1970), Arrow and Hahn (1971), Grodal (1971), Nishino (1971), Brown and 
Robinson (1972) Khan (1973a, b, c), Bewley (1974), Grodal-Hildenbrand 
(1974) and Hildenbrand (1974). Grodal and Hildenbrand (1974), Bewley (1974) 
and Hildenbrand (1974) use a Theorem of Vind (1965) on existence of prices to 
prove the ‘approximate’ decentralization of core allocations in large but finite 
economies. 

Arrow and Hahn (1971) and Nishino (1971) prove very similar results under 
different assumptions and in different setups. 

Kannai applies the Theorem of Aumann (1964) on the equivalence between 
the core and Walras equilibria to obtain a continuity result for the core. Like 
Kannai also Grodal proves her continuity result on the core in the setups of 
continuous economies. But she does not use prices in her proof. 

A quite different approach is the one of Brown and Robinson (1972) and Khan 
(1973a, b, c). They work with methods of non-standard analysis and prove the 
‘approximate’ decentralization of core-allocations in large economies by applying 
a ‘non-standard version’ of the Equivalence Theorem. 

*This paper is a shortened version of my doctoral dissertation at the University of BOM, 
Germany. I am gratefully indebted to Professor Werner Hildenbrand for suggesting this work 
and for his encouragement and many helpful conversations. I thank also the referee for several 
useful comments. 
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In the present paper, which is an outgrowth of Hildenbrand (1970), we define 
competitive sequences of finite economies, which are more general than the 
purely competitive sequences. 

To such a competitive sequence (8,) we associate a limit economy 6’” and show 
that for every neighborhood U of SC(P) and n large enough we have: 
.5X(8”) c U. %Y(E) denotes the set of distributions of core allocations for the 
economy 8. 

It is a main object of this paper to give a direct proof for this limit theorem in 
the atomless case without using prices. In this case one can then apply the 
Equivalence Theorem to approximately decentralize the core allocations for 
large economies. But we emphasize that our approach makes it possible to deal 
also with situations where per capita endowments of some agents do not tend to 
zero. Therefore the Limit Theorem provides a better insight into the nature of 
atoms in economies as treated in Gabszewicz-Drtze (1971), Gabszewicz- 
Mertens (1971) and Shitovitz (1974). 

Some further results give a justification for the description of an economy by 
the distribution of agents’ characteristics in the analysis of the core. 

2. Notation and definitions 

2.1. Notation 

R’ denotes the Z-dimensional Euclidean space. For x = (x1, . . ., xl), 

Y = (YIP . . ., yJ E R’, x 2 y means xi 2 _Vi for all i, x > y means x 2 y 
and x + y, x 9 y means xi > yi for all i. For x E R’ we will choose the 

(2.1) norm defined by llxll : = ‘jT;=, lxjl. Clearly, any other norm in R’ would 
work as well. Rr+ : = (x E R’ 1 x 2 0} is the positive orthant of R’. The 
closure of a set M c R’ is denoted by R. For any set M c R'+ and for 
anyaoR+\(O),aM:= (~1x1 XEM}. 

2.2. Definitions 

A preference relation is a continuous, irreflexive, transitive binary relation > 
on R'+ . > is monotone if x > y implies x > y. B and 8,, denote the sets of 
preferences and of monotone preferences, respectively. A consumer a is charac- 
terized by an element (>(a), e(a)) E 8,, x R: , where the first component is his 
preference relation, the second one his bundle of initial endowment. 

An exchange economy 8 is a measurable mapping from a probability space 
(A, d, v) into Pm0 x Pm,, x R’+ with finite mean endowment 1 e 0 B dv. The 
mapping e denotes the projection of B,, x RI+ onto R: . With 6’ = (>, e) we 
have therefore e = e 0 I. 

An allocation f for the economy d is an integrable function from A into R!,.. 
Itisattainableifjfdv = fedv. 
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An exchange economy is called : 

jinite, if A is a finite set, every element of which has positive measure; 

simple, if it is finite and v is the equal distribution; 

atomless, if the space (A, .&, v) is atomless; 

competitive with m atoms, if A consists of an atomless part TO with v(T,,) > 0 
and nz atoms ti, i = 1, . . ., m. 

A set S E d is a coalition; it is effective for the allocation f if 

jsfdv = &edv. 

The coalition S can improve upon an allocation f for the economy 8, if 
v(S) > 0 and if there exists an allocation g for d such that S is effective for g 
and g(u) >, f(a), v - a.e. in S. The set of all attainable allocations for 8’ which 
cannot be improved upon by any coalition in d is called the core of the economy 
d and is denoted C(8). 

Since for every agent a E A holds >(a) c R’+ x R: and (e(a)> c R!+, we can 
identify &(a) with the subset >(a) x e(u)} of (R$ x R\) x R’+ . According to 
(2.1) the sets g(u)=&‘(a) are well defined for any real-valued function g on A. 

For any measurable g the function g. d therefore is an economy if g. e is 
integrable. 

For any economy d : (A, J$, v) --f 8,, x R’+ we define its normalized version 

by 

&*:(A,&, v*)-+,,,xR~, 

with 

b”(e) := lk(*)ll-‘*~(*), 
and 

v*(s) := <.ji Ml dv)-’ Js Ile(-)I1 dv, 

foranySE d. 
We will conclude this section with some measure theoretical notions which 

are used later. 
If (A, -01, v) is a measure space, the norm IQ1 of the measurable partition 

Q = (4, . . ., E,) of A is the number maxi=, ,,.,, kv(Ei). 
A sequence (QnhsN of partitions is dense - in (A, d, v) - if, for all E E ,zat and 

for all E > 0, there exist n E N and F,, E d such that 

(1) IF, is a union of sets in Q,; 

(2) v(EA F,) < E. 
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A correspondence cp : (A, d, v) -+ R’+ is measurable if the graph of cp is an 
element of the product a-algebra &‘, x ST[R:]; (d, denotes the completion of 
d relative to v). 

For a correspondence cp : (A, d, v) + R’+, 9, : = {f: A + R’+ (f integrable, 
f(a) E cp(a) v - a.e.} is the set of measurab!e selections of cp. 

A family M of measures on a metric spaye S is called tight if, for every E > 0, 
there exists a compact set K c S such thaib((K) > 1 - E for every p E M. 

For a probability p on a topological space T the smallest closed subset of T 
with measure one is called the support of ,u and denoted supp(p). 

3. Competitive sequences 

The atomless measure space of consumers as introduced by Aumann (1964) 
represents one way to describe perfect competition. Another one, the purely 
competitive sequence, has been defined by Hildenbrand (1974). We recall the 
definition : 

Dejinition. A sequence (&?JneN of simple economies is called purely 
competitive if 

(1) 4, + 00 ; 

(3.1) (2) the sequence (pJnEN of distributions 11, : = v, 0 8’;’ of economies 
8, converges weakly in B,, x R’+ to a distribution p ; 

(3) lim,,,Jedhc, = jedp 9 0. 

For bounded initial endowments, Condition (3) is implied by Condition (2), 
which simply describes convergence in distribution. Condition (3) asserts that 
the sequence (e,) is uniformly integrable. But this is equivalent to 

(3.2) v,(S,,) + 0 => fs, e, dv, -+ 0. 

Thus Condition (3) guarantees that for a group, whose measure tends to zero, 
also the mean endowment does so. Therefore for a group with a positive 
fraction of total endowments it is impossible to be negligible in the limit. 

The notion of a purely competitive sequence was born out of the idea to 
describe perfect competition as an asymptotic property of a sequence of 
economies. The result was a theorem of Hildenbrand (1974) asserting that: 

To every purely competitive sequence (8,) one can associate an atomless 
(3.3) limit economy 8’ such that for every neighborhood U of W(b) and for n 

large enough C(&‘“) c U. 

Combining this theorem with Aumann’s Equivalence Theorem one gets upper 
hemicontinuity in distribution for the core in the case of an atomless limit 
economy. 
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Now if we replace atomless measure spaces by measure spaces with atoms and 
purely competitive sequences by sequences of economies which are not purely 
competitive, can we find a limit theorem connecting these concepts? Can we 
prove the above formulated limit theorem in situations where the Equivalence 
Theorem does not hold? From Gabszewicz-Mertens (1971) and Shitovitz 
(1974) we know that there exist measure spaces with atoms for which the 
Equivalence Theorem holds. But these situations seem to be exceptional. 
Moreover, even in these cases the concept of a purely competitive sequence does 
not work to get a limit theorem. 

Before we try to answer the above questions let us look at an example of a 
sequence that is not purely competitive. 

Example (Gabszewicz). Let (8,) be a sequence of simple economies 
defined as follows : 

8,: A,-+ 8,,xR’+; A,, := (1,. . .,n+l}; 

v”(i) = l/# A, = l/(n+ 1) for all i E A, by definition since the sequence 
(3.4) is simple. 

>,(i> : = ((x, y) E R$ xR: (l/x,+2/x2 > ~YI+v’.Y~), 

for all i E A,, ; e,(l) : = (0,4n), e,(i) : = (4,O) for all i E A,,\{ I} ; n E N. 

Let us see now why this sequence is not purely competitive. Clearly Condition 
(1) of Definition (3.1) is fulfilled. For Condition (2) only the marginal distribu- 
tions on Rt are interesting since >,(i) is constant for all i E A, and all n E N. 
If we denote them again by 11,~ and ,u and define p by supp(p) : = {(4,0)} c R: , 
also (2) is satisfied. But since J e dp, = (0,4n)* l/(n+ 1) + (4, O)*n/(n+ 1) = 
(4n/(n+ 1), 4n/(n+ 1)) tends to (4,4), whereas J e dp = (4,0) # 0, our example 
violates Condition (3). Obviously the mean endowment in the limit is too small, 
because a significant part of the total endowment, i.e. all of commodity 2, is 
concentrated on a null set. Therefore it cannot be taken into account by the 
integral. Formally we describe this situation by saying that the sequence (e,) of 
initial endowments is not uniformly integrable. Looking at the sequence we 
can observe the following phenomenon. As long as we are not in the limit the 
increase in resources is balanced by the decrease in measure for the agents. 
What really counts seems to be the product of resources and measures. But we 
cannot expect to get a suitable description of the limit behavior of the sequence 
unless we guarantee that this product does not degenerate in the limit. Therefore 
we have to look for a new representation of the economic situation described in 
the example. In this new representation both factors of the product, the measure 
and the initial endowment of every agent, have to be bounded away from zero 
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and infinity. Clearly the new measure must be different from the counting 
measure. One way of getting such a new measure is the following one. 

Let us consider an economy 8. We normalize every agent’s endowment in the 
given economy 8, i.e., we replace e(a) by e*(a) := e(u)/]je(a)]]. To keep the 
product of resources and measures constant when changing from the old ones 
to the new ones we must define the new measure for a by v(u)I]e(a)l\ . But since 
we want v* to be a probability measure we have to normalize the measure 
]le(*)j]v. So we get v* : a? + [0, l] with v*(S) = u lle]l dv)-’ js lie(.)]] dv for 
any SE d, i.e., v* = (1 Ile(*)lj dv)-‘I]e(.)[lv. Replacing now the preferences 
>(a) by >*(a) := l/lle(a)ll > (a), we get the normalized version d* of 6”. 
If we now replace all allocations f for d by the allocationsf*( a) : = Ile( *) jJ -‘f( *) 
we have a complete new description of the same economic situation. 

To make this clear, we have to prove that all notions which are important 
for analyzing the core are invariant under the transition from 8 to I*. These 
notions are ‘preferred to’, ‘monotone’, ‘attainable’, ‘effective’. We will prove 
now this invariance : 

‘preferred to’ 

‘monotone’ 

As the diagram shows any of the two implications implies the other one. 

‘efictive’ 

In the same way we get 

fsf* dv* = (j ]le]j dv)-’ fsf dv. 

Therefore S is effective for f in 8 if and only if it is effective forf* in b*. Putting 
S = A we get that also ‘attainable’ is invariant. 

We will replace now the sequence of economies in our example by the sequence 
of their normalized versions. 
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We get: 

S,*: A,+ B,,xR:; A,:= {I,...,n+l}; 

(0, 44 
e,*(l) = - 

/(0,4n)/j = (O, l) ; 
(4,O) e,*(i) = - 

I(49 WI 
= (LO), 

(3.5) >,*(i) = >.(i), 

forall i~A,\(l}; 

for all i c A,\(l) ; 

-1 v,*(l) = ( 4n*1+n.4.- 1 > 

n+l n+l 

*4n* - 1 

n+l 

=-; 1 

2 

v,*(i) = 
( 

l+n.4.1_ 
> 

-1 
4n. 

n+l n+l 
.4*1 = .!_ 

n+l 2n’ 

for all in A,\(l). 

After having replaced the counting measure v by the measure v* we may ask 
what is measured by v*. To answer this we look at our example. For i E A,, 
we get 

v*(i) = CS Ml dv)-’ Jfi) Il4>ll dv 

(3.6) 
= Il&)II *(U#A,) 

jg II4j>II~N#4) 
” 

= Il4lI 
j,c,” Il4.M - 

v*(i) expresses the fraction of total endowments possessed by agent i. Using the 
norm we have chosen means that for evaluating an agent’s fraction one simply 
adds up butter and tea. 

While in the economies of the original sequence all agents have general 
common units for the 1 commodities, now in the normalized versions, every 
agent has his own, possibly different, scale for counting commodities, which 
depends on the size of his own fraction of the total endowments. Whereas the 
old measures describe coalitions’ sizes, the new ones describe the relative sizes 
of coalitions’ endowments. 

Let us check now whether the new sequence S,* is purely competitive.Defining 

P * : = p,*, we get 

J e dp$ = j e dp* = (0, l)*++(l, O)*+ = ($3) S 0. 



254 W. Trockel, A limit theorem on the core 

Obviously all conditions of definition (3.1) are satisfied. But the economies 6’: 
are not simple. Therefore we are going to define a more general class of 
sequences : 

Definition. A sequence (8,) ofjinite economies 8, : A, + 9,, x R’+ with 
A, = (r;, . . ., t;,al,. . .,an#A,-m}’ 1s ca e competitive with m atoms, if II d 

(1) #A,+ CO; 

(2) &J converges weakly on Pm0 x RL fo p ; 

(3.7) (3) limJedpFL, = Jedp % 0; 

(4) sUPi=l,...,#A,-m G-47 +n-rm 0; 

(5) fir all i E (1, . , ., m> : (a) (v(t;)),,N is a constant sequence, and 

(b) (&&l)), 6 N converges in 8,, x RI+. 

Apparently our sequence (8:) is competitive with one atom : 

t’ E 1 n 9 for all n E N, 

a; E i+l, forall iE(l,..., An-l} = #(l,..., n]. 

This is only true since the limit preferences are monotone. In the special case 
of our example the old preferences and the new ones are identical with their 
monotone limit preference since they are homothetic, i.e., > = I > for A > 0. 
But in general any sequence of preferences with lim >,* E 9,, is possible. 

We are going now to discuss Conditions (4) and (5) of the above definition. 
Since the economies of a competitive sequence are not necessarily simple, 

we need a condition that guarantees that all the agents, who don’t have a 
significant portion of the total endowment are asymptotically negligible. That is 
just the meaning of Condition (4). 

It seems to be perhaps more difficult to justify Condition (5). It relates to 
those agents who are not negligible. While the aj’ for growing n lose more and 
more their identity and, as we will see, eventually disappear in the ocean of a limit 
economy, the tf will remain observable and distinguishable even in the limit. 
The 21 and al represent the discrete and continuous part of an hypothetical 
distribution in the nth sample of size # A,, . Since the economies of the sequence 
for growing n should describe approximately the same economic situation, the 
characteristics of the significant economic agents should be approximately the 
same. Therefore the convergence of the two terms in Condition (5) is a reasonable 
condition. That we postulate the first sequence even to be constant has only 
technical reasons.’ 

‘If in our example e,(tln) = (0,4n) is replaced by e.(tln) = (0,4n-(l/n)), we get 

v,*(tl”) < Y*,+&i”+l) < . . . < lim v”*(ti”) = v(t1) = 3. 
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For 8’” the only Walras allocation is f, with 

(3.8) f,(l) = (2n, 2n), L(i) = (2,2), for all i E A,\(l), 

with pricesp = (3, 4) . 
But the core contains the set of all allocations g,” with &(I) = (An, AIZ), 

g,“(i) = (4 - A,4 - A) for all 1 E [2, 31 and for all i E A,\{ l} . Forf,* , g,*” we get 

f,*(i) = y = (3, g, 

(3.9) g,*“(l) = (Y = ($3 ) A& P, 31, 

g*“(i) = (4-A 4-A) 
n 4 =c;,y), 1~[2,3], 

for all i E A,\{ 11. 

For the normalized versions we get 

f*(l) = (4 2 -99 
A. A 

g*“(l) = 4’4 , ( > 
(3.10) lim f,*(GJ = (3 , !A 

” 
li;g:‘(i,) = r*+, 7)) 

;1 E [2,3] for any sequence (i,) with in E A,\{ 11. 

Since (82) is competitive with one atom we may apply the limit theorem of the 
next section. Therefore the limits off,* and g,*” can be described by core alloca- 
tion of a competitive economy with one atom. We get 

e(tI) := lim e:(l) = (0, 1) 

If by a continuous representation, as defined in the next section, the tin and tI are imbedded in 
an abstract measure space, we would get tin t II”+’ c . . . c tl. But this implies by 
0 < v(t,“) = vn(tl”) < v(tl) that tl cannot be an atom. In this case we can normalize in a 
slightly modified way and get a sequence of economies where Condition (5) is fulfilled. For 
details see Trockel(l974). 
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v(tr) := lim v,*(l) = f 

f(h) : = f*(l) = (k $>, g”(Q : = g”“(1) = ;, ; . 
( > 

(3.11) e(a) = lim et(&) = (1,O) 

f(a) = limf,*G.) = (3 , t) 

g”(a) = limg,*“(i,) = (7, 7)) 
for all Iz E 12, 31, for any sequence (i,) with in E A,,\(l), and for 
every a E T, with v(a) = 0 and v(T,,) = 4. 

In our original example in all economies of the sequence 8, the set of Walras 
allocations is a proper subset of the core. We would have supposed that also in 
the limit there is no perfect competitition. But as the example was formulated 
it was impossible to make this conjecture precise, because there was no limit 
economy. By transition to the normalized versions we made it possible to 
associate a limit economy to our sequence, to make the conjecture precise and, 
applying the limit theorem, even to prove it. Thus we have produced an effective 
connection between competitive sequences with m atoms and competitive 
economies with m atoms. Moreover every such economy is the limit of a suitably 
chosen sequence of this kind. This is particularly true for the economies with 
atoms as defined in Gabszewicz-Mertens (1971) and Shitovitz (1974) as long as 
the number of atoms is finite. We have intentionally restricted ourselves to the 
case of finitely many atoms, since otherwise a sequence of economies could not 
describe approximately the economic situation of the limit economy because 
no economy of the sequence contains all significant agents, i.e., atoms. 

To point out the generality of our method we emphasize that the ‘rich’ agent 
in a sequence of economies needs not to be a monopolist in some commodity. 
This fact in our example is unessential. We also can treat situations where the 
mean endowment of a group whose measure tends to zero, does not tend to 
zero. As long as the endowment of every member of the group tends to zero, 
we get an atomless limit economy. Also this situation cannot be analyzed in the 
context of purely competitive sequences, because one needs measures which are 
not simple. Let us try now to interpret the atoms in a competitive economy. 

The ‘rich’ individuals can be identified in each member economy of the 
sequence and even in the limit, where they become proper atoms. This possi- 
bility of tracing back the atoms of the limit economy to the finite economies 
means that we may interpret the atoms in the same way we did their predecessors 
in the finite economies of the sequences. However, we want to point out that 
the tl in the sequence (f;)nsN need not be identical. But the fact that all t;, n E N, 



for fixed i, have the same measures and, for large n, have approximately the same 
characteristics, thus characterizing the atom ti of the limit economy, justifies the 
notion ‘competitive sequence with m atoms’. Therefore an atom must be inter- 
preted as an agent who owns and consumes much more than an average agent 
of the economy. His standard of evaluating commodities and exchanging is 
totally different from the average one. Clearly, this allows us to interpret a 
‘rich’ man as a manager of a syndicate of identical traders, however questionable 
this concept may be. On the other hand this seems to be the only way to explain 
that an agent really consumes much more than the average agent. 

4. The limit theorem 

The following definition provides an important tool for the proof of the limit 
theorem : 

Definition. A continuous representation for a competitive sequence 

(&&ZEN is a triple [(A, d, v), 8, (cr,),,,] with the followingproperties: 

(1) (A, ,rQ, v) is aprobability space; 

(2) 6 : A -+ .P,, x Ri and CL, : A -+ A,, n E N, are measurable 

(4.1) mappings; 

(3) vo~l;‘= v,, HEN; 

(4) lim,.. &,(x,(a)) = &F(a), v - a.e. in A. 

Lemma I (Halmos). Every sequence (Q,), EN of Bore1 partitions of [0, l] with 

lim, 1 Q.1 = 0 is dense in ([0, 11, B[O, 11, AlO,I,). 

For a proof see Halmos (1950, p. 172). 

Lemma 2. B,, is a G, set in the set B ofpreferences. 

This lemma has been proved independently by Grodal (1974) and Trockel 
(1974). 

Lemma 3. For every competitive sequence (&,JneN with m atoms there 

exists a continuous representation [(A, ,ra2, v), E, (sl,),,,] such that 

A = [O, l] LJ U:I (i+l}, 

& = u 
( 

9[0, l] u 6 (i+l} 
i=l ) 

, v((i+ l> = v,(tl), 

&w = 

[ 

l- f d{i+l)) .&o,lI. 

i=l 1 
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Proof. The proof 

every sequence (fn)nsN, f, E C(8,) is unz;formly integrable. 

Proof. The proof given in Hildenbrand (1974, p. 182) for purely competitive 
sequences works as well in our general case. 

The mappings CI, in the next lemma are the same as in Definition (4.1). They 
have the property that 

and 

8,: A,+ g,,,,xR’+, 

8; := 8”o M,: A+ gmoxR+, n E N, 

have the same distributions. 

Lemma 5. For every integrable function g : + R' sequence (Q,JnsN 
s”, := (PA”))’ converges g v a.e. 

Proof. to the that v(a A ) + g(a)} 1. Then 
exists an > 0 that for many m N the of the 

is larger p > Since C& C;,, for m E we have > p. 
lim, v(C;) p exists. continuity of measure v implies 

limv(C;)=v 

Then without of generality some h (1, . . ., I} the set 

inf sup @h,(a)-gh(a)) 2_ E E d 
m nzm 

‘PA. denotes the set of subsets of A,, E(g ) a.-‘(PA,)) denotes the conditional expectation 
of g given the u-algebra a,-‘(PA,). 
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has measure 6, > 0. The sequence (a;r(PA,) n [0, l]),EN is by Lemma 1 and 
by (4) of (3.7) dense in ([0, I], B[O, 11, vItO,r,). Therefore there exist Q’ c Q 
and for all n E Q’ a C,, E a;‘(PA,) such that v(C’ A C,,)nsp, + 0, since by defini- 
tion the restrictions of g, and g, to the atoms (i+ l> = ai’( i E (1, . . ., m}, 
are the same. By definition of the fi,, n E N, that implies : 

0 = fc, b?V!D dv 

= Jc,nce kh--g”!3 dv+fcn\ce kh-83 dv 

(4.4) = Jce (gh-Z) dv+\c,, (gh-8) dv 

+ jc,\ca (gh-9”:) dv 

> [ca s dv-q,, 

with 

(4.5) ~ln :=I (lc,,cs-lc~\c,).(gh-B~) dv. 

Since by Neveu (1965, p. 124) (g”,JneN is uniformly integrable by the integrability 

of g also (gh-S”!%EN is so. Therefore q. in (4.5) converges with n E Q’ to zero. 
For 12 large enough we therefore have with 

(4.6) 0 > SC= s dv-q, = S;s--I?, > 0, 

a contradiction. Q.E.D. 

Before formulating and proving the Limit Theorem we will give a useful 
alternative definition of the core. For an attainable allocation of the economy tP 
we define the correspondence $s,f from A into R’ by 

@a,&) :=+R’If(a) <,x+e(a)I ” (01. 

Proposition 1. Let f be an attainable allocation for the economy 8. 
Then the following three assertions are equivalent: 

(4 f E W> ; 

(4.7) (b) for all h E _Yti8,, : jhdv ~0; 

(c) for all h E Zti8,, : j-hdv+O. 

Proof. To prove ((a) Z- (c)) and ((b) =+ (a)) one needs only standard 
arguments. For ((a) +. (c)) see also Hildenbrand (1974, p. 134). (c) * (b): Let 

fi~&~,,, Jfidv < 0, S:={a~AIh(a)#t}. 

Then we have I?(U) = lim, z,(u) for a suitable sequence (~,(a)),~~ with 
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z,(u) + e(a) >,f(a) for all n E Nor &a) = 0 v-a.e. in A. We define II by 

(4.8) h(a) := 
for aE S, 

for a#S. 

Since z,(u) 4” K(u) v-a.e. in S, by continuity of preferences there exists v-a.e. 
in S a n, E: N with /z(a) + e(a) > a zn, + e(a) > J(a). By transitivity we therefore 
have v - a.e. in S 

and, since h(a) = 0 for a $ S, h E YeI, f. Finally, we have also 

(4.9) jAdv = Jhdv-&$dv < 0. 

Q.E.D. 

Theorem 1 (Limit Theorem). For every competitive sequence (&‘JnEN and for 
every sequence (f”),. N, ,, f E C(&‘,,), there exist subsequences (6,),, Q, (fn),E a, 
Q c N, an economy d and an allocation f E C(6) such that the joint distributions 
z, of 6, andf, converge weakly to the joint distribution z of 8 andf. 

The theorem is essentially a generalization of Theorem 5 in Grodal (1971). 
We will only sketch the proof. For details see Trockel(l974). 

From Lemma 4 we get uniform integrability of the sequence (f.) and thus 
convergence in distribution. Using Skorokhod’s Theorem3 and some standard 
arguments we get a continuous representation [(A, d, v), 6, (CC”)] with 
f, : = f, o CL, converging a.e. to an attainable allocation f. 

It remains to show that f cannot be improved upon. The proof makes use of 
the characterization of the core given in Proposition 1. We assume f $ C(8) and 
can choose therefore an h E _!Y$, , with J h dv < 0. Then we define a sequence 

(h,) by slightly modifying the Ii,’ : = E(h 1 c(~‘(PA,)). By Lemma 5 we get the 
convergence a.e. of this sequence to h. Using a quite general form of Egorov’s 

Theorem and Lemma 1 we get by some standard arguments h, E Ztid i and 

J h, dv -C 0. But this by Proposition 1 is equivalent to f, $ C(S,) . “’ ” 

3Skorokhod’s Theorem: Let (pJnew be a weakly convergent sequence of probabilities on a 
separable metric space T with limit .a. Then there exist a probability space (A, -cP, v) and measur- 
able mappings f and fn, n E N, from A into T such that p and p., n E N, are their respective 
distributions, i.e., ,u = v 0 f-l, JI. = v Q fn-‘, n E N, and lim. f. = f v-a.e. in A. If T is complete 
one chooses(A, I, V) to be ([0, 11, I [0, 11, A,,,,,). For a proof see Skorokhod (1965). 
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Remark. It is Lemma 5 which allows us to get rid of the assumption that 
oI;‘(PA,) C cc,’ (PF!,,+~) for all n. Since this lemma is true only in the case that 
the atomless part of A in the standard representation is the unit interval, we need 
Lemma 2 which allows us to choose A in that way. Since we know from Grodal 
(1974) that all interesting sets of preferences are Borelian, too, one could ask 
why we restrict ourselves to the case of monotone preferences in our Theorem. 
But monotony is essential for Lemma 4 which is needed in the proof of our 
Limit Theorem. 

5. Standard representations 

Let us define now the correspondence y by 

(5.1) y : 8,, x R: x R: + R: 

with r = (>,, e,). Then wehave 

(5.2) Y 0 VJ)(4 = r(%hf(a)) = $r,f(4 

= (x E R' If(a) -& x+e(a)) u (0). 

By Theorem 1 we get for an attainable allocationffor 6’ 

(5.3) f E C(b) - s 7 0 (SJ) dv n R’_ = (0). 

Dejinition. Let gj, j = 1, 2, be two competitive economies with m 

(5.4) 
atoms such that &‘,(t!) = 6f2(tf) and v,<{t,f>> = v,<{tf}> for 

iE {I,. . ., m> and v1 0 8;’ = vz 0 CC?;‘. Then 8, and g2 are called 

m-equivalent. 

Proposition 2. Let Ej, j = 1, 2, be m-equivalent. Let fj be allocations fo, 

~j, j = 1,2, with fi(t!) = f2(t,$, i E (1, . . ., m} and z := v1 0 (b,, fi)-’ = 
v2 0 (8, ,f2)-l. Thenf, E C(bJ -=-f2 E C(b2). 
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Proof. By the Theorems 4 and 5 in Hildenbrand (1974, pp. 64, 67) we get 

s 7 0 (S,J,) dv, 

= s 7 0 @‘,A dv,+ : r((~l,.fi>(tl)>vl({f!)) 
TO’ i=l 

(5.5) = j-7 d( vl 0 (&,A> ITo, --I)+ i, XV, Jd(tfM(t!)) 

= j-7 d( vz oPz,fJ lTo,-l)+ il y((6,,f,)(tz>)v,((t~)) 

= s 7 0 (82,fJ dv,. 

Q.E.D. 

Now we will answer the question whether there is a natural representation 8 
of a distribution p on g,,,, x Rf+ . Clearly, it is possible to find two competitive 
economies with different numbers of atoms having the same distribution 

fi on P)mo~Ri. Thus, since /L does not give us enough information to find a 
standard economy, we need the additional specification of the number of atoms 
and their measures and characteristics for a full description of the economy. 
The notion of a standard representation of an economy in the atomless case has 
been introduced by Hart et al. (1974). We extend this definition for the case of 
competitive economies. 

Dejinition. Let p be a probability OII 9’,,,” x R’+, Ci E (0, I), ri E 9,, x R:, 

i= l,...,nz, with p(rJ >= ci, 1 ci < 1. A standud representation for 

(P>Cci 3 ri>i = 1 ,...,A is a mm@ 

such that for v = /* 0 il,, ,, , : v(((>j, ej)} x [xi’ Pjl) = cj and &~~,r,,m({C~j, 
ej)} X [Ctj, pi] = rjfOYSOtrWCij, pj E [0, l],jE (1,. . ., WZ}. 

Remark. Every standard representation represents an m-equivalence class. 
If the meaning is clear from the context we will write 8’; instead of S:i,r,,,. 
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For an economy d we denote the set of all distributions of core allocations 
by BC(&)>, i.e., 

(5.7) 9C(&?) := (9flfE C(8), 9f := v of-‘>. 

The next two theorems will give some information on standard representations. 

Proposition 3. For a standard representation &, the set 9C(8~) is weakly 
closed. 

The proof of Proposition 3 consists of two parts. One part, the proof for the 
atomless case has been given in Hart et al. (1974, p. 164). The second part is a 
lengthy construction of a modified version of the measure space provided by 
Skorokhod’s Theorem. Its result is that we can restrict the proof to the atomless 
case. For details see Trockel(l974). 

Proposition 4. For every competitive economy 6’ which is m-equivalent to 
&; holds 

2x(8’) c .W(bl). 

Proof. Let 6 E gC(b’). Then there is anf’E C(&‘) with 6 = v’ of’-’ = 97. 
We define z : = v’ 0 (&‘,f’)-’ and get a mapping from g,,,, x R\ x [0, I] into 
pm0 x R\ x R$ with distribution z such that (r, <) I-+ (r,f(r, Q. This works in 
the same way as in Proposition 3 and the corresponding Theorem 2 of Hart et al. 
(1974, p. 164). By Proposition 2 then, we havefE C(6i) and therefore v of-’ = 
6 E zZC(&$. Since gC(E,$ is closed we are finished. Q.E.D. 

Remark. The inclusion in Proposition 4 can be sharpened to equality. This 
is an immediate consequence of the Equivalence Theorem and Theorem 1 of 
Hart et al. (1974, p. 163). 

Basic for the formulation of our Limit Theorem has been the view that the 
distributions of consumption characteristics essentially determine an exchange 
economy and its core. This interpretation is justified by the Propositions 3 and 4. 
Clearly, one could not expect, that the distributions alone could also describe 
the competitive structure of an economy. The formulation of Propositions 3 
and 4 shows that this additional necessary information is given by the exact 
specification of the atoms. 
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