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individual demand at almost every price system, even if preferences are nonconvex. 
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1. INTR~OIJ~TI~N 

The fact that even in case of a nonconvex preference relation the demand 
set is a singleton at almost every budget situation has been proved by 
Mas-Cole11 [2] and by Mas-Cole11 and Neuefeind [3]. Mas-Colell’s proof 
made use of the theory of Hausdorff measures on lower dimensional 
subspaces of a Euclidian space. The proof due to Mas-Cole11 and Neuefeind 
relies on an application of the projection theorem for analytic sets due to 
Marczewski and Ryll-Nardzewski [l] together with Fubini’s theorem. In the 
present note I shall give a new proof which relies only on the disintegration 
theorem (cf. Parthasarathy, [4, Theorem 8.1, p. 1471). i.e., a general version 
of Fubini’s theorem. 

2. RESULT 

Consider I> 2 perfectly divisible commodities. An agent is described by 
his consumption set P, the positive orthant of the commodity space IR’, his 
preference relation > a reflexive, transitive, continuous binary relation on P, 
and his wealth w E L = (0, 03). The preference relation > is moreover 
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assumed to be weakly monotone, i.e., (Vi E { l,..., I}: xi > yi) * (X > y). The 
space of normalized price systems p is L’- ‘. Denote by A’-’ and 1’ the 
Lebesgue measures on (L/-l, 9&-l)) and on (L, 9(L)), respectively, and 
by #M the cardinality of the set M. The demand set of an agent, described 
by (>, w) at the price system p is 

ulck w.p) = Ix E lJ I (Y > x) * (PY > w)I, 

i.e., the set of >-maximal commodity bundles in his budget set. 

PROPOSITION. Let > be a weakly monotone continuous preference 
relation on P. Then 

A’-’ xn’(((p, w)EL’I#cp(>, w,p)> l})=O. 

ProoJ By Fubini’s theorem any measurable set of line segments in an 
(I- 1)-dimensional cube is an A’-‘-null set. Although only this is needed, in 
case 1 = 2 the even stronger statement that a line can contain at most coun- 
tably many disjoint segments is well known. To simplify notation we choose 
in the following I= 2 without loss of generality. 

Let p be a probability on (L’, 9(L*)) which is equivalent to 12*, i.e., which 
has the same null sets as d2. Let the utility function u represent > and let u 
be the indirect utility function defined by 

The map v is a continuous, hence measurable map onto its image. Therefore, 
since L* and image(v) are Polish spaces, ,U has a disintegration 

where the probabilities & on L2 live on the fibres v-‘(t), t E image(v). One 
can easily derive that cl is equivalent to AZ, hence atomless for 
/IOU- -almost every t E L. This follows from the translation invariance of 
the Lebesgue measure 12. 

Denote by N the measurable set of pairs (pl, w) E L2 with 
#& w,p) > 1. For any t E image(v) the set N n u-‘(t) can be at most 
countable, since an indifference curve can have at most countably many 
disjoint line segments. Therefore we get 
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