On the Uniqueness of Individual Demand at Almost Every Price System

WALTER TROCKEL*

Department of Economics, SFB 21, University of Bonn, West Germany

Received January 20, 1983; revised September 28, 1983

A simple new proof, based on Fubini's theorem, is given for the uniqueness of individual demand at almost every price system, even if preferences are nonconvex. *Journal of Economic Literature* Classification Number: 022.

1. INTRODUCTION

The fact that even in case of a nonconvex preference relation the demand set is a singleton at almost every budget situation has been proved by Mas-Colell [2] and by Mas-Colell and Neuefeind [3]. Mas-Colell's proof made use of the theory of Hausdorff measures on lower dimensional subspaces of a Euclidian space. The proof due to Mas-Colell and Neuefeind relies on an application of the projection theorem for analytic sets due to Marczewski and Ryll-Nardzewski [1] together with Fubini's theorem. In the present note I shall give a new proof which relies only on the disintegration theorem (cf. Parthasarathy, [4, Theorem 8.1, p. 147]), i.e., a general version of Fubini's theorem.

2. Result

Consider $l \ge 2$ perfectly divisible commodities. An agent is described by his consumption set P, the positive orthant of the commodity space \mathbb{R}^l , his preference relation \ge a reflexive, transitive, continuous binary relation on P, and his wealth $w \in L \equiv (0, \infty)$. The preference relation \ge is moreover

^{*} A grant of the Deutsche Forschungsgemeinschaft under which this note was written is gratefully acknowledged.

WALTER TROCKEL

assumed to be weakly monotone, i.e., $(\forall i \in \{1,...,l\}: x_i > y_i) \Rightarrow (x > y)$. The space of normalized price systems p is L^{l-1} . Denote by λ^{l-1} and λ^1 the Lebesgue measures on $(L^{l-1}, \mathscr{B}(L^{l-1}))$ and on $(L, \mathscr{B}(L))$, respectively, and by #M the cardinality of the set M. The demand set of an agent, described by (\geq, w) at the price system p is

$$\varphi(\geq, w, p) = \{x \in P \mid (y > x) \Rightarrow (py > w)\},\$$

i.e., the set of \geq -maximal commodity bundles in his budget set.

PROPOSITION. Let \geq be a weakly monotone continuous preference relation on P. Then

$$\lambda^{l-1} \times \lambda^1(\{(p,w) \in L^1 \mid \#\varphi(\geq, w, p) > 1\}) = 0.$$

Proof. By Fubini's theorem any measurable set of line segments in an (l-1)-dimensional cube is an λ^{l-1} -null set. Although only this is needed, in case l=2 the even stronger statement that a line can contain at most countably many disjoint segments is well known. To simplify notation we choose in the following l=2 without loss of generality.

Let μ be a probability on $(L^2, \mathscr{B}(L^2))$ which is equivalent to λ^2 , i.e., which has the same null sets as λ^2 . Let the utility function u represent \geq and let v be the indirect utility function defined by

$$v: L^2 \to L: (p_1, w) \mapsto u(\varphi(\geq, w, p)).$$

The map v is a continuous, hence measurable map onto its image. Therefore, since L^2 and image(v) are Polish spaces, μ has a disintegration

$$\mu = \int_L \zeta_t \mu \circ v^{-1}(dt),$$

where the probabilities ζ_t on L^2 live on the fibres $v^{-1}(t)$, $t \in \text{image}(v)$. One can easily derive that ζ_t is equivalent to λ^2 , hence atomless for $\mu \circ v^{-1}$ —almost every $t \in L$. This follows from the translation invariance of the Lebesgue measure λ^2 .

Denote by N the measurable set of pairs $(p_1, w) \in L^2$ with $\#\varphi(\geq, w, p) > 1$. For any $t \in image(v)$ the set $N \cap v^{-1}(t)$ can be at most countable, since an indifference curve can have at most countably many disjoint line segments. Therefore we get

$$\lambda^{2}(N) = \mu(N) = \int_{L} \zeta_{t}(N) \, \mu \circ v^{-1}(dt) = \int_{L} \zeta_{t}(N \cap v^{-1}(t)) \, \mu \circ v^{-1}(dt) = 0. \quad \blacksquare$$

REFERENCES

- I. E. MARCZEWSKI AND C. RYLL-NARDZEWSKI, Projections in abstract sets, Fund. Math. 40 (1953), 160-164.
- 2. A. MAS-COLELL, A remark on a smoothness property of convex, complete preorders. J. Math. Econom. 3 (1976), 103-105.
- 3. A. MAS-COLELL AND W. NEUEFEIND, Some generic properties of aggregate excess demand and an application, *Econometrica* 45 (1977), 591–599.
- 4. K. R. PARTHASARATHY, "Probability Measures on Metric Spaces," Academic Press, New York, 1967.