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Sensor-based coordination of movements is a
central task for artificial robots and biological
organisms as well. While traditional algorithms
have largely relied on rather detailed models of the
kinematics and dynamics of this process, neural
networks offer the possibility to replace a
significant amount of modeling by adaptation and
learning. Moreover, principles of movement
coordination observed in biological organisms can
be used to construct networks exploiting these
principles for the control of artificial devices. In this
contribution, we will report on some work that
adresses both issues and that is part of a larger,
interdisciplinary research effort aiming at the
construction of a neural-network controlled robot
system,

Die sensorbasierte Steuerung von Bewegungen
bildet eine zentrale Aufgabe fiir Roboter und biolo-
gische Organismen gleichermaBen. Wihrend tradi-
tionelle Algorithmen in erster Linie auf vergleichs-
weise detaillierten Modellen der Kinematik und der
Dynamik des Bewegungsvorgangs beruhen, bieten
Neuronale Netze die Moglichkeit, einen erhebli-
chen Teil dieser Modellierung durch Adaptation
und Lernen zu ersetzen. Dariiberhinaus konnen in
der Natur beobachtete Bewegungskoordinations-

mechanismen als Grundlage fiir das Design von
Netzwerken zur Steuerung kiinstlicher Systeme die-
nen. In diesem Beitrag soll iiber Arbeiten berichtet
werden, die beide Gesichtspunkte zum Gegenstand
haben, und die Bestandteil eines groBeren, interdis-
zipliniren Forschungsprojekts sind, das die Reali-
sierung eines durch Neuronale Netzwerke gesteuer-
ten Robotersystems verfolgt.

1. Introduction

Carrying out skillful movements is a difficult
task. This statement is not supported by our
everyday experience; owing to the superb
performance of the motor systems in our brain we
can appreciate the involved complexities only when
trying to program artificial robots ourselves (see,
e.g. Brady 1989).

Programming robots can be viewed as a problem
of knowledge acquisition. Much of the required
knowledge concerns laws that can coordinate the
movements of multiple joints, taking into account a
complex context provided by a variety of sensory
signals of tactile or visual origin (Hildreth and
Hollerbach 1985). This points out an important
difference to the knowledge acquisition problem
faced by traditional knowledge based systems: in
robotics, a major part of the relevant knowledge
concerns inherently continuous quantities, such as
sensor signals and joint torques. A second
difference may at first glance seem extremely
favorable: since the analysis of movements and of
mechanical interactions can be based on the firm
foundations of classical physics, one might hope
that the problem of knowledge acquisition can to a
large extent be bypassed by a mathematical analysis
of the intended operations, something that usually
cannot even be attempted in many other domains of
interest. However, while extremely powerful in
principle, such analytic approach is severely limited
in practice. Most situations of interest are simply
too complicated to be amenable to analysis at
affordable costs. Imagine typical everyday tasks
such as opening a button, walking over a pile of
stones, picking a candy from a box, or manipulating
spaghetti with a fork. Developing an analytical
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description for each of these tasks constitutes a
daunting problem, yet many of the tasks we would
like to delegate to robots are precisely of this typc.
One should note that the difficulty of these tasks is
not rooted in issues of planning or sophisticated
reasoning. Instead, the main source of their
difficulty is the need to coordinate a large number
of different mechanical degrees of freedom
according to very complex sensory feedback signals
from vision and from tactile and force sensors
(Brooks 1990).

In view of the practical limitations of the
analytical approach we must develop methods to
complement it. Here, we advocate two additional
sources of knowledge: the first is to develop good
methods for robot learning. Since we all are experts
at carrying out movements, good robot learning
algorithms  will greatly facilitate  robot
programming. However, we should not attempt to
start with a “tabula rasa”. To maximally exploit the
potential of learning, we should try to identify
generic types of movement patterns and control
strategies that then need only be refined by
learning. Biology offers a rich reservoir of such
information. Natural motor systems employ a
variety of different movement coordination and
reflex patterns that have been optimized over
millions of years (see, e.g. Cruse 1990). Analysing
these patterns and their underlying laws of
coordination can provide an extremely valuable
basis for technological approaches.

For research on learning algorithms and on
biological motor control strategies a most natural
framework seems to be provided by neural
networks (see, e.g., Rumelhart and McClelland
1985, Grossberg and Kuperstein 1986, Hertz et al.
1991, Ritter et al. 1991). Besides their obvious
relations to both learning and biology, these systems
have a couple of additional attractive features: they
are well suited to represent both continuous and
discrete, symbolic quantities; they offer simple
mechanisms to achieve noise resistance; they can be
taylored to work with imprecise inputs and they are
inherently parallel. These are compelling reasons to
investigate neural network-based strategies for
movement coordination and robot programming
(Britwer and Cruse 1990, Martinetz et al. 1989,
Kawato 1987, Ritter et al. 1991). As concrete
examples, this contribution reports on work that is
focused on two important domains: the generation
and control of hand and of walking movements.
Both domains adress the important issue of multi-
limb coordination under sensory feedback, but at
different levels and with different aspects in the
foreground. In the case of hand movements, the
focus is primarily on the use fo visual feedpaqk
signals to control the grasping process and it is
chiefly the complex kinematics of the interaction
between hand and object that must be controlled.
In the case of the walking movements, the focgs is
on how to control multiple limbs in a synchronized
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fashion to achieve various gaits and to take the
properties of the ground into account. Here,
kinematics alone is no longer sufficient, and
dynamic aspects also need to be considered.

Both projects are part of a larger,
interdisciplinary  research  effort and are
“bracketed” by cooperating research projects
studying on the biological side the ncural basis of
vision in anurans, such as toads and frogs, and by a
project dedicated to the development of an
articulated robot hand on the technological side.
The aim of this larger, joint effort is to evaluate the
potential of neural networks for the realization of
biologically inspired robot control strategics and to
demonstrate their feasability by an actual
implementation in an important practical domain.

2. Motor Learning and the Problem
of Dimensionality

One major obstacle in the control of complex
movements, such as grasp movements, seems to be
the high dimensionality of the configuration space
involved. Leaving aside any complexities arising
from different object shapes, a human hand has of
the order of 16 degrees of freedom. If we attribute
to each degree of freedom the moderate number of
five different independent positions, we arrive at 5
or more than 10" different hand configurations. Of
these, we can at best only explore a tiny fraction
during our human lifetime of considerably less than
109 seconds. In fact, a considerable range of
different hand postures can be generated even with
“convex combinations” of only three different hand
postures. Figs. la—f show a few examples for a
simulated robot hand of 12 degrees of feedom: the
first three images (Fig. la—c) show a stretched

Fig. la—f Top row (a—c): three “basis postures” used to parametrize
configurations of a 12-jointed robot hand. B(‘)Itom row.(d—'f): some
examples of further configurations obtained by linear combination of the
three postures shown in Figs. (a—c).
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hand, a “precision grip” and a fist, which may be
used as a rather versatile set of “basis postures”
from which many further configurations, such as
those shown in Figs. 1d—f, can be derived by linear
combination. Any such combination involves only
three coefficients (in our case, convex combinations
were used, i.e. the coefficients were further
constrained to sum to unity, so that only two degrees
of freedom were involved), thus projecting the vast
configuration space of 12 degrees of freedom of the
full hand to a much more manageable space of three
or even two dimensions. Of course, certain
configurations cannot be realized in this way.
However, for many tasks a sufficiently similar
posture may be found among the linear
combinations, and for the remaining actually
occurring cases a special configuration may be
easily stored, which then may serve as a “center” for
a whole new submanifold of postures obtained by
admixture of the previous three basis hand
postures.

Similarly, actually occurring sensor signals range
only over a tiny subset of the full set of their
combinatorially possible combinations. Often, this
subset can be well described by a fairly restriced
number of “prototypes”, so that the overlaps of the
actual sensor readings with these prototypes
provide sufficiently accurate information to e.g.
make feedback adjustments to an ongoing
movement. Below, we shall demonstrate the
feassibility of this approach for the task of
reconstructing the 3d-posture of the hand shown in
Fig. 1 from 2d-pixel images.

In this way, we can both encode sensory input
and motor output quantities for a robot, using only
low-dimensional, approximate descriptions. These
approximate descriptions can then be manipulated
much more easily than the original, exact
descriptions that involve all degrees of freedom that
are potentially available. The price to pay is a
limited accuracy; however most of our movement
skills are not a result of a particularly high degree of
precision of our motor capabilities. For instance,
our targeting precision for a reaching task without
visual feedback is only in the percent range.
However, with visual and tactile feedback
information available, wc are able to adapt our

Fig. 2 Preprocessing sequence to obtain input vector from pixel image. Left
(a): input image, center (b): edge-image obtained after Laplace filtering and
logarithmic intensity transformation, right (c): arrangement of Gaussian
kernels used to derive 9-dimensional input vector.

movements in very many ways to achieve an
impressive range of sophisticated goals. This
provides strong evidence for the view that precision
and planning is of secondary importance for flexible
movement control; what really counts is the
capability to exploit a rich sensory context to shape
an only coarsely pre-planned movement
continuously towards its goal.

To explicitly program the use of such context,
however, can be a very difficult and tedious task.
However, if we adopt the approach outlined above,
much of this task could be achieved by learning. In
the vast majority of cases, the relation between
sensor signals and required movements can be
expected to be smooth and, therefore, can be
represented by a continuous mapping between the
quantities representing these data. Usually, a major
obstacle for the determination of such mappings is
the high dimensionality of the spaces that are
involved. Working in low-dimensional
representation spaces we can construct good
approximations to these mappings on the basis of
only a limited number of training examples. This
can be achieved efficiently by neural networks
which lend themselves excellently as flexible
“function approximators”. In the next section, we
will describe a particular network type, which in
addition to learning a smooth mapping, also can
optimize the choice of the prototypes used to obtain
a low-dimensional description of the input and
output data, respectively, and which is therefore a
very promising candidate for our approach.

3. Learning with Locally Linear
Neural Maps

In this section, we want to illustrate the concepts
of the previous section with some concrete
simulation resuits. These concern the task of -
extracting the three-dimensional configuration of a
simulated robot hand from perspective pixel
images. The traditional approach would require a
sequence of at least several processing steps, such as
filtering, edge-detection, segmentation, part
identification and finally fitting of a model of the
hand shape to the segmented parts thus obtained
(see, e.g. Horn 1986). In the neural network
approach, only some limited form of preprocessing
is necessary. The network can then learn from a set
of examples to extract the correct hand postures
directly from the preprocessed image data.

We use a network with a single internal layer of
units, labelled by an index r. Each unit receives the
same input, which was chosen as a 9-dimensional
vector x. This vector is obtained from a (computer-
generated) image of the hand, such as Fig. 1, by
some rudimentary preprocessing (Fig. 2). Fig. 2a
shows a typical input image. Applying a 3 X 3-
Laplace mask and clipping any negative values, we
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obtain an image in which mainly edge-information
is preserved. A subsequent logarithmic
transformation compresses the dynamic range of
the intensity values so obtained. The resulting
image (shown in Fig. 2b) is convolved with 9
Gaussians located at the lattice positions indicated
in Fig. 2c (to better depict the locations of the
Gaussians in Fig. 2¢, the displayed widths are only
20% of the widths actually used), and the resulting
9 real values are used as the components x; of the 9-
dimensional input vector x. The task of the network
is to learn a mapping from these 9-dimensional
representation vectors x to the “mixture
coefficients” y = (y1, ¥, y3) that determine the
contribution of each posture prototype to the hand
configuration shown in the original image.
Weighting the joint angles of the 3 basis hand
postures with these coefficients then yields the
hand posture thatis “perceived by the network”.

The network itself consisted of N = 20 units.
Each unit r implements a locally valid linear
mapping, specified by an output weight vector wioud
€ R’ and a 3 X 9-matrix A,. In addition, each unit
carries an input weight vector wi" € F. The
outputy,of a unitis given by

y, = wiou) + A (x — win), (1)

This represents a linear mapping with Jacobian A,,
passing through the point (x, y) = (w", woun).
Which of these mappings is used to obtain the
output y) of the network is determined by the
distances d, = Il x — wi® |I. In the simplest case, the
unit s for which d, = min,d, is used (“winner-take-
all”-network); usually a somewhat better accuracy
can be obtained if a weighted superposition of the
contributions of several units is used, e.g. according
to

Y(nen =§ern (2)
f,=Z 'exp(—d3lo}), 3)
Z =2 exp(—d¥o?), 4)

where o, is a measure of the radius of the “receptive
field” of unit r and may be set, e.g., to minl wiin —
w( || (Saha and Keeler 1990). The ansatz 2)—-4)
for fixed vectors y, is also known as generalized
radial basis function-approach (“GRBF”, see, ¢.2.
Girosi and Poggio 1990) and related to self-
organizing maps (Kohonen 1984), which impose
some additional structure by generalizing the
weights associated with each unit among some
subset of “topological neighbors”. Note, however,
that in contrast to the conventional GRBF-ansatzin
our case the vectors y, are not constant but instead
are linear functions of the input vectors x that are
given by (1). Due to either the winner-take-all-rule

non-linear mapping is, therefore, represented as a
weighted superposition of many locally valid lincar
maps instead of as a superposition of a
corresponding number of fixed output values. This
provides a significantly higher accuracy (Martinetz
1990, Ritteretal. 1991).

Training of the network can proceed in a
supervised manner, using a training set of correct
input-output pairs (x(®, y@), (a) = [, 2 ... M.
Both, input and output weights may be adjusted
according to simple error-correction type rules, i.c.
no backpropagation is necessary:

AW = £, (6 win) )
Ao = g5 (y = o), ©)
AA, =gy - yr)(x(@—-wimTfid2,  (7)

where the & > 0 are learning stcp size parameters (a
more detailed discussion of these learning rules in
the context of self-organizing maps can be found,
e.g.inRitter etal. 1991).

Figs. 3a—c provide some impression of the
performance of the network after training (N = 20
units, several repeated learning cycles through a
data base of M = 2000 learning samples). Each
picture in the top row shows an input image (not
taken from the training set), while the
corresponding picture below shows the hand
posture as reconstructed by the network. As can be
seen, these reconstructions are not entirely
accurate; however, they provide a very good
account of the correct hand posture. During
training, some moderate variation of the viewpoint
(rotations and translations) was introduced for each
new example. As a result, the network can also
correctly identify moderately rotated or translated
versions of a posture, providing a useful degree of
insensitivity ~against imprecise centering or

Fig. 3 Performance of the network on some hand postures. Top row: input
images. Bottom row: Corresponding images of the 3d-posl'ures
reconstructed by the network on the basis of the 9-d-input vectors obtained

by the preprocessing steps outlined in Fig. 2.

(which emerges as the special limiting case 6,— 0%)
or as a result of the exponentials, each of these
linear maps contributes only in the vicinity of the
respective center wi. The whole, usually highly
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moderate changes of the view-direction of the
scene.

The present level of performance has been
achieved without any sophisticated optimizations.
There is still ample room for improvements: better
preprocessing schemes can be devised to improve
invariance, mechanisms for focusing attention to a
subfield of the image may make particularly precise
extraction of local posture information possible and
several subnetworks may cooperate in a paralle] or
hierarchical fashion to assemble partial posture
information into more global representations.
Future research will adress these and related issues
to explore the potential of neural approaches to
sensory-motor control in the important domain of
controlling visually guided grasp movements.

4. Movement Coordination in
Biological Systems

Observation of the leg movements of a walking
animal in the field shows that the legs are well
coordinated in a specific gait. This spatio-temporal
movement pattern of the legs seems to be quite
fixed and its details only vary with walking speed.
The pattern is in fact extremely stable with respect
to disturbances which may result from an
unpredictable environment as for example uneven
surfaces. In some cases the underlying control
system even copes with the problem of the loss of a
leg. How is a system organized which is responsible
for the coordination of leg movement? This is
another example where an algorithmic solution is
possible but requires much more time for
computation if reactions to all sorts of disturbances
are to be taken into account.

Biological experiments have been performed
with six-legged insects or 8-legged crustaceans. On
the basis of these experiments we know that this
coordination is not achieved by means of a central
controller. Rather, each leg has its separate sensory-
ncural unit which controls the movement of the leg.
Each unit can be influenced by neighbouring units
by way of specific signals enabling coordination of
the movement of the different legs (for a review, see
Cruse 1990). The coordination pattern can be
regarded as an emergent property resulting from
the local couplings between the units. Whereas for
the stick insect six types of coordinating signals
have been found, the crayfish seems to be much
more simply organized as only three types of
influences are sufficient to describe its behaviour.
To give an example, Fig. 4 schematically presents
those two types which act between ipsilateral legs,
i.e., between neighbouring legs of the same side of
the body. The two traces represent the movement of
the legs. These consist of two parts, the power
stroke (downward deflection) and the return stroke
(upward deflection). During the power stroke the
leg is moved to the rear and supports the body;

anterior

A) rostrally directed influence
prolongs return stroke of anterior leg

anterior
leg

posterior
leg

B) caudally directed influence
shortens return stroke of posterior leg

Fig. 4 Coordination between the ipsilateral legs of a crayfish.
The upper traces show the anterior leg. Abscissa is time, ordina-
te is position of the leg tip in a body fixed coordinate system.
Each schema is drawn as if only one of the two coordinating me-
chanisms existed. In each case the influencing leg is drawn only
once. For the influenced leg several traces are presented to show
the effect of the coordinating mechanism. The duration and in-
tensity of the influences are roughly indicated by the length and
thickness of the wedges, respectively. (A) The rostrally directed
influence is active during the power stroke of the posterior leg. It
prolongs the return stroke of the anterior leg and can also decrea-
se the speed of the limb movement. (B) The caudally directed
excitatory influence is active at the end of the power stroke and
the beginning of the return stroke of the anterior eg. It “excites”
the start of a power stroke in the controlled, posterior leg.

during the return stroke the leg is swung back to the
initial position to start the next power stroke. In Fig.
4 one leg is plotted in different phase situations
relative to the other leg. These phases might have
been produced by disturbances of the normal walk.
One coordinating mechanism is only rostrally
oriented, i.e., acts only from the posterior (rear) to
the anterior (front) leg. This is illustrated in Fig.
4A: as long as the posterior leg performs a power
stroke, the anterior leg has to perform or continue a
return stroke. In addition, the velocity of the
movement during the return stroke is also
decreased to some extent. Thus the return stroke
can be prolonged so that normal coordination is
regained in the next step. The vertically striped bar
indicates the time during which this influence is
active. The intensity of the influence is roughly
indicated by the thickness of the bar. The second
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influence, illustrated in Fig. 4B, is caudally
directed: when the anterior leg is near the end of its
power stroke or at the beginning of its return stroke,
an influence with increasing intensity has the effect
of ending the return stroke and starting the power
stroke of the posterior leg, thus shortening the
return stroke of the latter. Again normal
coordination is regained within one step. To couple
contralateral legs, i.e., legs of opposite sides of the
body, the crayfish uses a mechanism that closely
resembles the ipsilateral, caudally directed
influence. In contrast to ipsilateral influences, the
contralateral ones act in both directions between
the two legs.

The normal gait of the animal results from the
fact that the units of all neighbouring legs are
coupled by these local rules, as described above.
Since, therefore, this system is found to be of an
inherently parallel nature, it is well suited to be
simulated by means of a neural network. The
sensory-neural units, which have been described as
controlling the movement of a leg, do themselves
not correspond to single neurons but represent a
more complicated system. For the sake of clarity we
will simplify the system and consider only one
property of the leg namely the performing of more
or less rthythmic forward-backward movements, the
alternating return and power strokes. This unit can
then be considered as a simple oscillator. The
oscillator includes sensory feedback because the
transition from power to return stroke and vice
versa is influenced not only by signals from the
other legs, but also by sensory signals from its own
leg. Thus each oscillator consists of several neurons.
Our first aim is to build a network which consists of
coupled neuronal oscillators. The whole system
should produce a properly coordinated leg pattern
which can compensate for external disturbances as
fast as the animals can. To begin with we plan to
utilize our knowledge obtained from biological
experiments as much as possible for the structure of
the network. Improvement by means of learning
algorithms should only be used if the behaviour of
this model shows deficiences.

As mentioned, the simplified model will only
solve the problem of producing coordination
between the legs. The question of how the different
joints of the individual leg are coordinated to
produce an appropriate leg movement during the
power or the return stroke was not considered. This
problem is particularly interesting when the leg
becomes redundant, i.e., when it has more degrees
of freedom than necessary for the task at hand. We
investigated this question using as an example the
control of the human arm and found that the
behaviour could be explained by assuming the
application of four rules (Cruse and Briwer 1987).
These are, first, an equal contribution of all joints
to the movement (this corresponds to the well-
known pseudo-inverse control); second, the
minimization of the static costs by means of a cost

W

function applied to each joint; third, the
minimization of the inertial forces acting at the tip
of the end effector by following a straight lin¢ in the
workspace; and forth, by avoiding movements
which are strongly non-monotonic in the joint space
(this probably decreases dynamic costs).

These rules can be described by an algorithmic
approach but the above-mentioned advantages of
neural network systems ask for a simulation by
means of these principles. Using a simple 3-layer
feedforward network we successfully simulated one
example of these rules (no. 2) (Briwer and Cruse
1990). However, control of the actual leg or arm
requires the use of sensory information. Therefore
a network containing feedback channels is
appropriate and will therefore be investigated in
our project. This system, controlling a multilimbed
leg, will then be implemented in the
abovementioned oscillator.

One particular problem remains to be solved in
relation to the movement during power stroke.
Walking on uneven surfaces means that the body-
to-ground distance has to be adapted individually
for each leg. For this case, too, information is
available from biology: in the stick insect the
vertical distance of each leg (“height™) is subject to
a proportional position controller (Cruse 1976). As
the rearward movement component is subject to
velocity control two different feedback systems
control the same final elements. Thus we have a
case of shared control which has to be solved by the
network. As these controllers contain dynamic
properties, the network has to cope with time
derivatives and properties of temporal filters. In
this case we also start designing the network by
introducing as much a priori knowledge as possible;
but later the question of how to learn dynamical
properties will also be approached.

As mentioned, we are studying the network
which controls the movement of a multilimbed leg.
This “leg” can, of course, also be an arm or a robot
manipulator. In this context it is of interest to know
how the path of the end effector is planned. This is
particularly interesting if the workspace contains
obstacles. On the basis of experiments with human
subjects we are currently investigating the strategies
of human beings and plan to implement these
strategies in a neural network model for path
planning. These models could then be used to
control the movement of a robot manipulator or to
plan the path of a freely moving autonomous robot.

5. Conclusion

One of the aims of the research reported in the
previous sections is to circumvent the kngwledge
acquisition bottleneck currently bprdepmg the
desing and the construction of more intelligent and
flexible robots. Neural networks seem to_offer a
framework that is particularly promising for

6/91



—.l

()
i
N

Moglichkeiten Neuronaler Netze

approaching this goal. Several reasons can be given
in support of this expectation: first, neural
networks are well suited to implement learning
algorithms, particularly in the sensory-motor
domain, where continuous and noisy signals need
to be processed, and where traditional, symbol-
oriented approaches and purely analytical methods
encounter great difficulties. The results reported in
Section 3. provide a concrete example, showing that
a visual recognition task, which, if to be achieved by
conventional image processing techniques, would
require a fairly sophisticated multi-stage system
capable of identifying a complex object of variable
shape, can be achieved by a rather small neural
network on the basis of a modest number of training
examples. By systematically exploring which kinds
of input representations and network architectures
are particularly useful for specific types of tasks, we
may expect to gradually gain the capability to build
larger and significantly more competent systems,
for which a large portion of knowledge acquisition
may boil down to the presentation of examples. An
important role on this way will be played by biology:
by taking information gained from biological
organisms seriously into account for the design of
artificial neural systems, we may be able to develop
technological approaches that would be extremely
hard — or, maybe even impossible — to arrive at by
theorizing alone. From this point of view, neural
network models emerge as a natural tool to
efficiently integrate knowledge from basic
biological research with existing approaches. The
work reported in Sec. 4 provides a concrete example
of this second way of approach. Here, control
strategies for the coordination of complex multi-
limb movements that are robust against a wide
range of disturbances are adopted from nature and
implemented in artificial networks that then make
these strategies usable for robust and vyet
computationally affordable real time control of
artificial walking machines.
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