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In his remarks on “Some Issues in the Psychology of Mathematics Instruc-
tion,” Gagné (1983) has stimulated a renewed discussion of the cognitive
phenomena involved when children learn mathematics and of the implica-
tions of cognitive learning theory for mathematics instruction. Gagné gives a
three-phase performance model along with the following core message:
Students should understand how to mathematize a concrete situation that is
described verbally and how to validate a solution once it is obtained, but they
need not understand how the solution is derived. Instead, the skills involved
in the computation phase should be made automatic for the sake of optimal
overall performance, and lots of practice should be devoted to automatizing
such skills. Taken out of their context and inserted into the current climate in
mathematics education, Gagné’s statements are likely to be misunderstood,
giving the wrong impression to teachers and perhaps causing researchers to
reject his ideas.

The purpose of this critique is to make a more careful inquiry into Gagné’s
proposals and, at the same time, to set the discussion of skill automaticity in a
new light. On the one hand, the inquiry may help reconcile Gagné’s appar-
ently unpopular theses with the views of mathematics educators that are best
expressed in the term learning with understanding. On the other hand, the

discussion raises some questions that seem to require further research atten-
tion.

THE QUESTION OF SKILL AND UNDERSTANDING

“A skill is what a learner should be able to do. Skills arise from concepts
and principles and provide a foundation for the development of other con-
cepts and principles. Conceptual thought is derived in part from the under-
standing attained as skills are developed” (Suydam & Dessart, 1980, p. 207).
This view of skill posits intertwined dependencies between skills and concep-
tual knowledge. Resnick and Ford (1981) identify this issue as one of the
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oldest concerns in the psychology of mathematics and claim that “instead of
focusing on the interaction between computation and understanding, be-
tween practice and insight, psychologists and mathematics educators have
been busy trying to demonstrate the superiority of one over the other. . . . The
relationships between skill and understanding were never effectively eluci-
dated” (p. 246; emphasis in original). Any attempt to analyze such relation-
ships should certainly include other mathematical skills besides computation.

Modern cognitive psychology as represented, for example, in the work of
Anderson (1980, p. 223) tends to categorize knowledge as declarative and
procedural. Declarative knowledge comprises the facts that one knows, and
procedural knowledge comprises the skills one knows how to perform. The
declarative-procedural distinction graphically illustrates the two different
aspects of any learning process. Declarative knowledge is stated in propo-
sitions a person constructs and can be verbally communicated; for example, 3
+5 =28, (@ + b)? =a?+ 2ab + b2, or “To solve quadratic equations, one
method is to complete the square.” This type of knowledge is viewed as being
stored in what is called long-term semantic memory. Skills, as procedural
knowledge, are also stored in long-term (procedural) memory but as an
ordered sequence of actions that are performed when recalled. The term
cognitive skill (as opposed to motor skill) refers to the ability to perform
various intellectual procedures. For example, writing out the steps necessary
to solve any quadratic equation by completing the square is a cognitive skill.
Even though the two types of knowledge are not entirely independent, they
require very different instructional procedures.

The learning-with-understanding approach of contemporary mathematics
education has led to the view that the learner should be put in the position of
doing mathematics—for instance, solving a problem~—by deriving it mean-
ingfully from declarative knowledge. However, to a great extent it is pro-
cedural rather than declarative knowledge that governs skilled performance.

AUTOMATICITY OF SKILLS

In explaining his second hypothesis, Gagné (p. 15) refers to the limited
capabilities of working memory, which he claims can be compensated for by
automatizing skills. Anderson (1980, p. 226) lists three steps in skill learning:
(a) the (declarative) cognitive stage, in which a description of the procedure is
learned with the aim of understanding it; (b) the associative stage, in which a
procedure is constructed from the declarative information, that is, 2 method
for performing the actions is worked out; and (c) the autonomous stage, in
which the skill becomes more and more rapid and automatic (by means of
practice), and verbal mediation in the performance of the actions often
disappears. : .

One may question—and this is Gagné’s concern—whether curriculum

developers have not tended to ignore the importance of the thi'rd stage. Much
emphasis has been put on the acquisition of factual (declarative) knowledge
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in the belief that understanding a task will enable the learner to “figure it
out.” Cost-effectiveness standards have been applied to the use of instruc-
tional time, and “too much” practice is to be avoided (NCTM, 1980, pp.
6—12). Further practice of a skill is to be left to problem-solving situations
that require application of the skill. However, this approach may so space
practice as to be counterproductive. Focusing attention on the execution ofa
nonautomatized procedure distracts attention from the problem-solving
task. This distraction could displace trains of thought that have evolved in
organizing the problem-solving process and thus could disturb the process.

In the autonomous stage of skill learning, a skill becomes automatized and
autonomous in the sense that it does not require a verbal equivalent in
declarative form. The efficiency of a skill increases as it gets more and more
automatic, and the mental effort in performing the skill decreases; there is less
need to monitor each action with care. Suydam and Dessart (1980) observe
that mastered skills can be conducted at a “subconscious level.” As the
demands on conscious resources diminish, a reduction in mental work load is
achieved.

It has been shown (Anderson, 1980) that when a skill has been highly
practiced, it ceases to interfere with other ongoing behavior; that is, different
cognitive activities can be conducted simultaneously. Moreover, automatiz-
ing subskills before going on to higher skills can contribute to learning higher
skills. The reason apparently lies in the relationship between attention and
automaticity. (For an example from computer programming, see Anderson,
1980, pp. 249-252. As subcomponents in programming become more au-
tomatic, programmers can focus more attention on higher level problems.)

ROTE SKILLS OR MEANINGFUL SKILLS?

Given any skill, what makes the difference between its being (a) rote or
(b) mc.eam'ngful ? We can further distinguish two cases: First, the skill in
question is not automatized; second, it is automatized.

la. A rote skill that has not been automatized requires the recall of one or
more rules, which are then applied mechanically, without understanding. If
part of a rule or knowledge of how to instantiate the variables is forgotten,

there is no way to reconstruct it from other knowledge. (For instance, this
often happens with the quadratic formula.)

1b. A skill derived meaningfully that has not been automatized makes
refetgnce to factual knowledge a learner has and uses it for a certain purpose.
(For instance, a learner who knows how to represent numbers with Dienes
blocks can use this knowledge to derive the subtraction algorithm, including
“borrow.mg.”) Using a skill that has not been practiced to the point of recall
can l?e vxe\fved as a problem-solving process (Wachsmuth, 1982). Instead of
manipulating symbols “concretely” (Gagné), the learner uses symbols
““abstractly”; that is, the process actually deals with the referents of symbols.
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2a and 2b. The idea of overpracticing a skill to the point of recall—
whether or not it was acquired meaningfully—is the following: The sequence
of actions necessary to do something is made to occur automatically—
without having to derive or reconstruct any action from an understanding or
recall of facts, purposes, and goals. In this process, one step triggers the next,
and it is just the ability to perform the sequence of actions to achieve a goal
that makes up the skill.

Children’s ability to understand why and how a skill works may develop
later than their ability to perform rote skills (e.g., see the discussion on
fraction algorithms in Suydam, 1978, pp. 302-303). In fact, Bergeron and
Herscovics (1982, p. 30) consider the acquisition of a procedure as a precur-
sor of conceptual knowledge (of, e.g., addition); they speak of “procedural
understanding.” The question is whether it would be advantageous if au-
tomatized rote skills preceded a “fuller” understanding of such skills.

When an automatic skill is called on, an action is not derived from an
understanding of how the procedure works. It is rather guided by its own
action scheme. This is somewhat like the difference between understanding
the physics of bicycle riding and being able to ride a bicycle. The common
view that practice in a motor skill should not be interfered with by thinking
about it seems to have an equivalent in the acquisition of procedural mathe-
matical knowledge. Gagné’s first hypothesis (p. 15) about the teaching of
computational skills (omitting reinforcement of incorrect performance plus
teaching correct rules again) is further supported by Davis’s (1978) advice to
teachers: During drill sessions, it is best to emphasize remembering; don’t
explain. For the execution of a procedure, one apparently need not under-
stand it.

Current curricula mix the two goals of learning to perform and learning to
understand a skill. It is still controversial whether better understanding of a
procedure itself gives rise to better performance. Although many mathemat-
ics educators would argue that it does, another issue seems to have been
overlooked: Gagné’s position is that an understanding of when to call on a
procedure must be derived from Phases 1 and 3 in his model, not from
understanding the procedure itself. Some understanding of a procedure,
however, may be important for embedding it correctly in the context of a
problem-solving task.

Two examples suggest why it might also be desirable that a student
understand how a procedure works: (a) Having learned the subtraction
algorithm for tasks like 238 — 190, one would be greatly facilitated in
learning to extend the algorithm to 2.38 — 1.9 if one understood how it
works. (b) If a rote skill has not been employed for a while, decay is possible;
understanding the skill would allow one to reconstruct the procedure from
declarative knowledge. Thus, it might well make sense to teach skills both
rotely and meaningfully, perhaps in a spiral fashion.

Three questions emerge from the discussion thus far:
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1. Should we not think of procedural and declarative knowledge as two
related, but separate, issues of mathematics instruction?

2. Do there exist optimal mental ages for automatizing skills and for
teaching children to understand what they do?

3. If the optimal age for automatizing skills is earlier than the optimal age
for understanding skills, how should instruction proceed?

VALIDATING THE SOLUTION

Gagné notes that students may trust in a result obtained by an algorithm
without inspecting the solution in a meaningful way to reveal a faulty compu-
tation. This point addresses the different levels at which a person can deal
with mathematical symbols. The first is the syntactic level, at which one
manipulates symbols (here numerals) according to certain rules as “concrete”
objects of thought, totally removed from their meanings (as numbers). This is
the normal situation when an algorithm is used routinely. The second is the
semantic level, which Gagné calls “abstract” (p. 13), at which one deals with
the symbols by referring back to their meanings.

In a deeper sense the topic of validating addresses the interaction between
the two levels, which must function well if mathematics is to be employed
meaningfully. Davis and McKnight (1980) report a phenomenon they en-
countered with third and fourth graders who could use the standard subtrac-
tion algorithm correctly, in general, but almost always made the error of
“skipping over intermediate zeros™ in certain subtraction problems. These
children could, on request, use Dienes blocks to represent numbers and
explain trading. But that latent knowledge did not alert them in the al-
gorithmic situation. The two levels at which one can deal with a computa-
tion—syntactic and semantic—appeared to coexist unconnected in their
minds.

A major question raised by Davis and McKnight is whether the phenomenon
is “essentially inevitable for most children of this age [third and fourth
graders], or whether it is a consequence of an excessively ‘algorithmic’ (and
meaningless) program of instruction” (p. 75). Gagné’s position on ways of
verifying solutions is that “it would be desirable if [such ways] were deliber-
ately taught” (p. 13). The actual problem can be expressed in two questions:

4-. How can children be taught ways of verifying solutions, in the sense that
thelr' algorithmic behavior in situations governed by syntactical rules is
monitored by their semantic knowledge?

. 5. Can suf:h an interaction of syntactical and semantical levels of informa-
tion processing be taught at all to children of certain grade levels?

As one of Fhe ten areas of basic mathematical skills listed in the position
paper on b.as1c mathematical skills of the National Council of Supervisors of
Mathematics (1977), ““Alertness to the Reasonableness of Results” is viewed
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as an essential skill. Apparently, alertness comprises the automatic genera-
tion of warnings or cautions in the course of a task performance. So, if a
curriculum that develops both understanding and skilled performance is the
objective, research efforts will have to be devoted to the following question:

6. How can warnings be automatized so as to achieve a reliable, alert
interplay between skill and understanding in mathematics?

Gagné’s view that the cognitive capability required for students in Grades
K-12 is a set of automatized rules (p. 17) is apparently only part of the story.
The rules must also be capable of being carried out meaningfully and must be
accompanied by alertness skills that permit one to “switch to the meaningful
mode” when necessary.
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