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Abstract. For  the control of the movement of a multi- 
joint manipulator a "mental model" which represents the 
geometrical properties of the arm may prove helpful. 
Using this model the direct and the inverse kinematic 
problem could be solved. Here we propose such a model 
which is based on a recurrent network. It is realized for 
the example of a three-joint manipulator working in 
a two-dimensional plane, i.e., for a manipulator with one 
extra degree of freedom. The system computes the com- 
plete set of variables, in our example the three joint 
angles and the two work-space coordinates of the end- 
point of the manipulator. The system finds a stable state 
and a geometrically correct solution even if only a part of 
these state variables is given. Thus, the direct and the 
inverse kinematic problem as well as any mixed problem, 
including the underconstrained case, can be solved by the 
network. 

1 Introduction 

An important problem of motor  control is the coordina- 
tion of movement of a multilimbed manipulator, for 
example, the human arm. The underlying control algo- 
rithm could work in two different domains, or coordinate 
systems. First, the control system might work in the joint 
space. This means that the position of the manipulator, in 
particular the position of its endpoint (end effector)is 
given in joint-angle coordinates, q~. Alternatively, the 
control system might work in hand space or work space 
coordinates, xi. This means that world coordinates, for 
example, of a polar coordinate system are used to de- 
scribe the manipulator positions. The question as to 
which of these coordinate systems is used and, in particu- 
lar, how to distinguish experimentally between both pos- 
sibilities is extensively discussed by Hollerbach and 
Atkeson (1987). As sense organs might provide informa- 
tion in one or the other coordinate system (e.g., angle 
values are provided by joint receptors, whereas world 

Correspondence to: H. Cruse 

coordinates are provided by visual systems), transforma- 
tions in both directions might be necessary. 

A number of solutions exist for these transformations, 
the direct kinematic problem (to compute x from q) or 
the inverse kinematics problem (computation of q from 
x), but these solutions have several drawbacks. First, 
both transformations are given as separate programs. 
This means that a supervising system is necessary to 
decide which of the two programs is required for the 
particular task. Second, the solutions require a number of 
calculations, in particular when the manipulator is re- 
dundant, i.e., has extra degrees of freedom. Third, when 
calculating the inverse kinematic problem, the appear- 
ance of singularities is possible. This happens for some 
positions of the manipulator where the determinant of 
a matrix involved in the transformation becomes zero 
and the matrix can no longer be inverted. Here we 
propose a system which does not involve these problems 
because one and the same algorithm can be used to solve 
the direct and the inverse kinematic problem. It is based 
on a massively parallel structure and is not affected by 
the problems of singularities. 

Mussa Ivaldi et al. (1988) pointed out that the inverse 
kinematic problem could be easily solved by a mechan- 
ical model of the manipulator provided with springs to 
simulate the muscles, in the following way. By simply 
moving the tip of the (arbitrarily complicated) manipula- 
tor in the direction of the position of the intended target 
point, the joint angles of this mechanical model auto- 
matically find their appropriate values. The angle values 
of this model could then be used to control the real arm. 
Mussa Ivaldi et al. called this the passive motion paradigm. 
A similar idea was proposed by Hinton (1984). However, 
how could the properties of such a mechanical model be 
implemented in a neural network to form the basis of 
a "mental model" of the arm? Here we propose such 
a system which represents the geometry of the multi 
limbed arm. This system contains a neuron for each 
geometric variable, i.e., the joint angles or the work- 
space coordinates of the endpoint of the arm. These are 
called the state variables of the system. As input, an 
arbitrary combination of a subset of the state variables 
can be used, and the task of the system is to complete 
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automatically the whole set of state variables. This means 
that the same system can be used to calculate both the 
direct or the inverse kinematics, depending on which 
subset of input variables is chosen. In addition, mixed 
problems can be solved, as will be shown below. The 
system will be explained here using the simple example of 
a three-joint arm working in a plane, but it can be 
adapted to manipulators  of higher dimensions. 

2 The principles of the system 

We consider a manipulator  with n degrees of freedom. 
These might be provided by rotational joints or, if the 
length of the limbs can be changed, by translational 
joints. The system is redundant when, given an m-dimen- 
sional work space, n is larger than m. The state of the 
system can be described by at least n + m variables 
although it is uniquely defined by any subset of n of these 
n + m state variables. The task of the system proposed 
here is to complete the full set of n + m values, given any 
subset of n values. Later, we will also show that a geomet- 
rically possible "true" state can be constructed if less than 
n values are given for the system. 

The pr imary task of the system is to reconstruct the 
whole set of state variables even though only a subset of 
these variables as external input values is available. Prin- 
cipally, such a property is known from the classical 
Hopfield network (1984). The complete set of variables 
can be considered as an attractor. In a Hopfield-like 
recurrent network, the at tractor can be reached, even if 
some of the input variables do not have the appropriate 
values. Therefore, the basic structure of our system is 
similar to that of the Hopfield network in that it contains 
recurrent or feedback connections between the units. 
However, the Hopfield network is not really appropriate 
for our task because it permits only a limited number of 
discrete attractors, whereas our task involves an infinite 
number  of attractors since, within the geometrically pos- 
sible borderlines, every point of the n-dimensional sub- 
space of the (n + m)-dimensional state space should be 
able to act as an attractor. This can be obtained by 
introducing the following quantitative and qualitative 
changes to the basic Hopfield structure. The nonlinear 
properties of the activation functions, which in principle 
also occur in the Hopfield network, show a larger vari- 
ation. They can be simple rectifiers, rectified square root 
functions, sine, cosine, and arccosine functions; they also 
can have a nonmonotonic  form. As a further nonlin- 
earity, multiplicative interactions between the outputs of 
two neurons are possible. A major qualitative difference 
to the Hopfield structure is that in our system the con- 
nections between two neurons are allowed to be strongly 
asymmetrical. Apart  from these structural differences, the 
most significant property of our system is the following. 
A strong redundancy is introduced into the system as the 
value of one state variable is not calculated only once, 
but independently in several different ways. The final 
value of this variable is then determined by calculating 
a mean value. This will be summarized here as the mean 
of multiple computat ions (MMC). 
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Fig. la, b. Definition of the geometric values to describe the position 
of a three-joint manipulator working in a two-dimensional plane. The 
values are shown in two different diagrams for clarity 

Provided the connections between the units are 
selected properly, this system is capable of using each 
geometrically possible point in the (m + n)-dimensional 
state space as an attractor. This means that an arbitrary 
combination of n variables provided at the input will 
drive the system to show all m + n variables at the 
output. 

3 Model 

A realization of this system will be shown here using 
a three-joint arm which works in a two-dimensional 
plane (Fig. la). Because m = 3 and n = 2, this system has 
one degree of freedom more than necessary; it is thus 
redundant. The first basic principle of this network is that 
each important geometrical value, i.e., each state vari- 
able, is not only calculated one way. Rather, different 
equations to calculate this value are solved, and the 
corresponding analog solutions are then implemented 
into the network. In the case of the joint angles it is 
helpful not only to calculate them as such, but also to 
calculate precursors which are defined parts of a joint 
angle. This leads to 17 internal state variables. Each 
corresponds to an output unit in the network (the units in 
the horizontal row in Fig. 2). The geometrical meaning of 
these variables is shown in Fig. 1. The multiple calcu- 
lations of a variable will be explained using the angle fl as 
an example. The following six equations are used to 
calculate fl: 

fl = arccos [(L12 + L22 - D22)/(2L1 L2)] (1) 

,8 = ,81 + f12 (2) 

,8 = ~ - (e l  + 71) (3) 

,8 = x - (e - e2  + ~' - 7 2 )  ( 4 )  

/~ = 7t - (~ l  + ? - ~2)  (5)  

fl = ~ - ( e -  e2 + ?1) (6) 

As these equations show, the analog calculation requires 
a network which contains several nonlinearities. In Fig. 2 
each set of these equations is symbolized by a black 
rectangle. The number of equations used for each vari- 
able is symbolized by the number of arrows connecting 
the black rectangle and the circular unit below. All 
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Fig. 2. Basic structure of the network 
used to model the geometric properties of 
the three-joint arm shown in Fig. 1. Each 
black rectangle represents a set of equa- 
tions which calculate the value shown in 
the circle below. The circles stand for cal- 
culation of the arithmetic mean 

these calculations are easily possible if all variables 
are presented at the input level (Fig. 2, left vertical 
column). With the appropr ia te  hardware these calcu- 
lations can all be performed in parallel and thus very 
fast. As Fig. 2 shows, not all possible connections 
occur. The connections, in particular, are asymmet-  
rical. 

The multiple computa t ion  of the internal variables 
introduces a redundancy into the system which has to 
be removed in order to obtain unique values. This is 
done by calculating a mean value of the different solu- 
tions presented by the system for each variable. Several 
possibilities exist. Here we used the simple arithmetic 
mean. In some cases a variable cannot  be calculated, 
either because no solution of the corresponding equa- 
tion exists (e.g., when a square root  with negative argu- 
ment  occurs) or when an internal value enters ranges 
where the limited accuracy of the calculating system 
produces errors too large. In the first case the argument  
of the square root  function is set to zero. To cope with 
the second problem, all equations corresponding to (1) 
are extended as follows: if one of the values of the 
denominator ,  in this example L1 or L2, becomes smaller 
than 0.1 then (1) is replaced by (2). Thirdly, if the argu- 
ment  of the arccosine function is > 1 or < - 1, it is 
replaced by 1 or - 1, respectively. The output  of these 
mean calculations, which are symbolized in Fig. 2 as 
circles, is fed back to the input layer (the left-hand 
column in Fig. 2) and used for the calculation of the 
next cycle. A value can arrive at the input layer either 
via the feedback line, or it can be provided from outside, 
i.e., as an actual input value. In the system itself the 
internal feedback channel is suppressed when an ex- 
ternal signal appears. The input layer in Fig. 2 also 
offers the possibility to change the values L1, L2, and 
L3, which describe the length of the limbs. In the simula- 
tions shown here, these values are held constant  at 
a length of 1, but this does not affect the general validity 
of the results. 

8 9 O 

5 6 7 

1 2 3 4 

b d 

Fig. 3. a Arrangement of the nine target points and the starting posi- 
tion of the arm; Ir-d positions of the arm when the target points are 
reached 

4 Results 

The first question that arises is whether such a recurrent 
system has stable solutions. This is experimentally tested 
for the following situations. Nine target points, which 
were distributed over a large part  of the work space were 
selected and numbered 1 to 9 (Fig. 3a). For  each end- 
point an arbitrary, geometrically possible, arm position 
was chosen which was then defined by the values of the 
joint angles ~, fl, and ~. These arm positions are shown in 
Fig. 3. The arm started at the position shown in Fig. 3a. 
Then the three angle values representing point 1 were 
used as input to the network, and the relaxation of the 
system was observed. After 30 time steps, the angles of 
point 2 were given as input. This was repeated for every 
point until point 9 was reached. Figure 4a-c shows the 
corresponding angle values over time. Figure 4d,e shows 
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Fig. 4a-f. Solving the direct kinematic 
problem, a--c The angle values which are 
given as input to the system, d-f  The tem- 
poral development of angle p (tl), length 
R (e), and of the target error (f). Abscissa in 
this and the following figures is the number 
of iteration cycles. The numbers above this 
and the following figures indicate the cor- 
responding target points as defined in 
Fig. 3. The angle values in this and the 
following figures are given in radians 
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Fig. 5. The temporal development of the target error (x  0.5) when 
approaching point 4, shown for a longer time than in Fig. 4f 

the values of angle p and the length of R. As can be seen, 
in most cases a stable value is reached before the 30th 
time step. This can be seen even more clearly in Fig. 4f, 
which shows the geometric distance between the tip of 
the arm, defined by the endpoint coordinates (R, p) and 
the target point (target error). Thus, this figure illustrates 
the relaxation behavior of the system. The target is con- 
sidered to be reached when the error is smaller than 0.01 
length units. In some cases the criterion is met after only 
l0 time steps. In other cases it takes somewhat longer 
than 30 steps. The worst case was found for point 4. The 
development of the target error in this case is shown in 
Fig. 5 on a longer time scale. In all cases investigated the 

system solves the problem of direct kinematics. When 
using another set of angle values for these 9 target points, 
the behavior of the system was not found to be essentially 
different. 

To test the behavior of the system when solving the 
inverse kinematic problem, the same target points and 
the same starting position, as shown for Fig. 3, were used. 
In this case only the coordinates of the target points are 
given as input. This means that the system is undercon- 
strained; it has one extra degree of freedom. Figure 6 
shows the behavior in the same way as was done 
above for the direct kinematics. Figure 6a, b shows the 
input values of the polar coordinates p and R over time. 
Figure 6 c ~  shows the development of the three joint 
angles, and Fig. 6f that of the target error. In this and the 
following figures the target error shows the distance 
between target point and the endpoint coordinates of the 
arm, calculated from the actual values of ~, fl, and 7. 
Again, in most cases the target is reached in less than 30 
time steps. In one case (point 4) the system needed about 
60 steps to converge. This is shown in Fig. 7 on a longer 
time scale. 

In the example of Figs. 6 and 7 the arm started in 
a somewhat extreme position as the angle of the hand 
joint has a negative value (see Fig. 3a). When starting 
from a more "comfortable" position (Fig. 8a), the system 
relaxes into different positions for each target point and 
the relaxation is a little faster in some cases (Fig. 8b). 
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Fig. 6a-f. Solving the inverse kinematic 
problem, a, b The polar coordinates of the 
target points which are given to the system. 
e - f  The development of angle ct (c), angle 
fl (d), angle ~ (e), and the target error (f) 
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Fig. 7. The temporal development of the target error (x 0.5) when 
approaching point 4, shown for a longer time than in Fig. 6f 

Figure 9 shows the behavior of the system when the 
two target-point coordinates plus one joint angle, in this 
case angle e, are used as input. Because the same posi- 
tions as above are taken, only the temporal development 
of the angles fl and 3~ and the target error is shown, which 
is again very similar to the earlier results. Figure 10 
shows the results when one target coordinate plus two 
other angles, fl and 7, are used as input. In this case the 
relaxation needs a little more time for points 1-3, but 
relatively less time for point 4. 

5 Discussion 

The MMC system shown here is based on a type of 
network which can be applied when (1) the variables of 
the system depend on each other, (2) these dependencies 
can be described quantitatively, and (3) more variables 
can be defined than are necessary to describe the state of 
the system. The results have shown that the MMC sys- 
tem proposed here can be used to calculate the direct and 
the inverse kinematics. The system calculates a complete 
set of state variables, in our example the three joint angles 
and the endpoint coordinates when only three of these 
five variables are given. The system can therefore be 
considered to correct errors or, in other words, to com- 
plete missing information. MMC even finds a stable and 
geometrically correct solution when a smaller number of 
input values is given (underconstrained system). In this 
case, the system finds a solution which is influenced by 
the earlier state of the system (this is only implicitly 
shown in Fig. 8). Even for large step sizes at the input the 
system usually needs less than 30 cycles to find a stable 
solution. In no case was it found to need more than 60 
cycles to approach the target point. The exact relaxation 
time seems to depend on different factors which could 
be the position of the target point within the work space, 
the input parameters selected, or, when calculating the 
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Fig. 8a, b. Solving the inverse kinematic problem, a The start- 
ing position of the arm. b The development of the target error. 
All arm positions are generally different from those shown in 
Fig. 3. 
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Fig. 10. Solving a mixed problem. As input to the system one polar 
coordinate (p) and two joint angles, fl and ";, are used. These values can 
be found in Figs. 6a, 4b, and 4c, respectively. Development of the 
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Fig. 9a--c. Solving a mixed problem. As input to the system the values 
of both polar coordinates and the angle ~ are used. These values can be 
found in Fig. 6a, b and Fig. 4a, respectively. Development of angle fl (a), 
of angle 7 (b), and of the target error (c) 

underconstrained inverse kinematic problem, the starting 
position of the arm. These dependencies have to be fur- 
ther investigated. In our experiments we never found the 
network not to converge. Work to prove the general 
convergence properties of the system is in progress. 

After a change in the input signals, the system needs 
some time for relaxation. During this time the state 
variables may not represent a geometrically possible con- 
figuration. Two possibilities exist to use the system for 
direct control of a robot arm. Either the output values 
have to be frozen during this "refractory period" until the 
internal system has relaxed - one might speculate that 
this corresponds to the well-known psychological refrac- 
tory period - or the actual values for ~,/Y, and 7 must be 
used to control the arm. Oscillations occurring in these 
values might be overcome by using either a low-pass 
filter or, more simply, only the output values of every 
second time step. 

An important  problem in classical systems calculat- 
ing the inverse kinematics is the possible occurrence of 
singularities. These arise when for some special positions 
a division by zero becomes necessary. Of course, this can 
also happen in our system, but this would only mean that 
one of the different parallel computations provides no 



significant value. Due to the redundancy of the network 
this does not significantly affect the behavior of the whole 
system. Generally, the highly parallel structure makes the 
system rather independent of errors occurring within the 
system. 

As mentioned, M M C  can be used to solve the direct 
kinematic and the inverse kinematic problem. An im- 
mediate change from one task to the other is possible 
simply by changing the corresponding input values. Fur- 
thermore, mixed problems can be solved, too, in the sense 
that an arbitrary combination of state variables can be 
prescribed. For  example, only one of the two world 
coordinates might be fixed, and the other could be left to 
the discretion of the system. Or  it is possible that one 
specific joint angle is clamped to a fixed value or pre- 
vented from exceeding a given value. One might also 
extend the external conditions such that a given joint is 
not supposed to move beyond a given position in the 
work space, for example, because of the presence of an 
obstacle. Furthermore,  the whole system could be con- 
nected to another network in order to supervise the first 
system with a general aim, for example, to observe the 
minimum cost principle (Cruse 1986). This means that for 
a given end effector position, the arm should adopt  
a position in which each joint stays as near as possible to 
an optimal (minimum cost) angle value. 

Morasso et al. (1989) and Morasso and Sanguineti 
(1991) proposed a network to control redundant motor  
systems, based on the idea that a mental model of the 
motor  system is used to calculate a virtual movement,  
with the resulting variables of the model then being used 
to control the actual motor  system. The model of these 
authors differs from ours in the following respects: their 
model solves the problem of redundancy by relying on 
the elastic properties of the muscles and ligaments. Our  
model is purely geometric, but there are pros and cons. 
Morasso et al.'s model directly provides a signal to con- 
trol the muscles, whereas our model only provides angle 
values. On the other hand, in our system we can easily fix 
some arbitrary variables and, thus, can also solve the 
direct kinematic problem. Morasso et al.'s model chooses 
one specific way to solve the redundancy problem, name- 
ly taking into account the elasticity of the muscles and 
ligaments. Our  system works on a higher level of abstrac- 
tion and, therefore, opens the possibility to introduce 
different strategies to control the redundancy, such as the 
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minimum cost principle. The main difference, however, is 
the fact that for the calculation within the network we 
introduce a highly redundant computat ion and sub- 
sequently a mean value operation on the different results, 
what we call the method of the MMC. 

Finally, it should be mentioned that this principle 
could also be applied to other tasks where the formation 
of an internal kinematic model might be helpful. An 
immediate application is the following. The example 
shown in Fig. 1 might be interpreted as a standing up- 
right human body, with the angle ~ describing the posi- 
tion of the ankle joint, angle fl that of the knee, and angle 

that of the hip joint. The end effector might describe the 
position of the center of gravity of the body. If one uses 
cartesian coordinates (x, y) as world coordinates instead 
of the polar coordinates used in Fig. 1, the system can be 
used to control body height (y) and body displacement 
(x). Thus, equilibrium control and control of leg move- 
ment are not separate but can be solved by the same 
system. 
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