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Abstract

A system that controls the leg movement of an animal
or a robot walking over irregular ground has to ensure
stable support for the body and at the same time
propel it forward. To do so, it has to react adaptively
to unpredictable features of the environment. As part
of our study of the underlying mechanisms we present
here a model which describes the control of the leg
movement of a 6-legged walking system. The model is
based on biological data obtained from the stick insect.
It represents a combined treatment of realistic
kinematics and biologically motivated, adaptive gait
generation. The model extends a previous algorithmic
model in substituting simple artificial neurons for the
algorithms previously used to control leg state and
interleg coordination. The model is able to walk at
different speeds over irregular surfaces. The control
system rapidely reestablishes a stable gait when the
movement of the legs is disturbed or the model begins
walking from an arbitrary starting configuration.

1 Introduction

Neural networks which initiate and control the behavior of
animals embody several features. One feature concerns
the role of sensory input. At one extreme are networks
which mediate actions that are direct responses to sensory
input, i.c., reactive or sensory-driven actions. At the other
are networks which themselves generate the basic
activation or movement parameters for the behavior, i,
autonomous activity or actions controlled by central
pattern generators. For a system to produce suitable
actions in an unpredictable environment, however, the
control system usually contains elements of both kinds, A
second feature concerns the structure of the control
network. In most complex biological networks, control
functions, whether sensory-driven or autonomous, are
dispersed among several subsystems which interact more
or less strongly.

Both aspects are especially true for walking, Although itis
sometimes regarded as quite a simple behavior, it involves
a very strong and complex interaction with the physical
environment. Typical control systems involve autonomous
clements as well as simple reflexes and more complex
sensory-driven modulations of central activity (Cruse Dean
Heuer Schmidt 1990). The combination makes the walking
system independent of particular stimulus inputs but at the
same time enables the walking system to adapt to changes
in the environment. The flexible control appears to arise
from the cooperation of several autonomous control
centers (in the terminology of Minski (1985) these may be
called "agents") each of which controls the movement of
one leg. Each center is responsible for two mutually
exclusive microbehaviors ("states"), stance or power stroke
and swing or return stroke. On a higher level the control
systems for the individual leg have to cooperate to
produce a suitable behavior of the overall system,
propelling the body while maintaining postural stability.

From a biological point of view, walking is simple enough
that one can hope to gain a complete understanding of the
basic mechanisms. In fact, a lot of information has been
collected in recent years on how animals control the
movement of the legs during walking (review Cruse 1990).
A study of this system might therefore be of interest not
only in itself but also as a model for the control of other,
morc complicated behaviors. From an applied control
point of view, the next step is to incorporate the insights
gained from the biological experiments into a model able
to control a walking system.

To reach this goal, several problems have to be solved.
One question concerns the way the movement of the
individual leg is controlled. The second question refers to
the coordination between legs. From biological
experiments - most of the information comes from
experiments using the stick insect - the following answers
can be given. First, each leg has its own control system
which generates rhythmic step movements (review Bassler
1983). The behavior of this control system corresponds to
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that of a relaxation oscillator in which the change of state,
the transition between power and return strokes, is
determined by thresholds based on leg position. Second,
the coordination of the legs is not determined by a
hierarchically superior control system. Instead, the gait
pattern emerges from the cooperation of the separate
control systems of the individual legs. This cooperation is
based on different types of signals which convey
information on the actual state of the sender to the
control systems of the neighboring legs. The receiving
system collects this information and, on this basis, decides
on its own action. This distributed architecture results in
a very stable gait but nevertheless allows the whole system
to react flexibly to disturbances. At the present time no
detailed information is available concerning the control of
the individual leg joints of the walking animal and the
control of the dynamics.

In an earlier paper (Miiller-Wilm et al., 1992) a model
was presented based on these biological results and, where
necessary, several ad hoc assumptions. This model was
constructed using the classical algorithmic approach.
Because models using distributed networks show a
number of advantages, such as error tolerance,
generalisation etc., we plan to replace successively the
algorithms of this earlier model by modules of artificial
neural nets. In the present report we describe neural
network moduls for controlling the oscillatory movement
of the individual leg and the coordination of legs. The
movement of the individual joints of a leg is still
controlled by the classical methods described in Miiller-
Wilm et al. (1992) and Pfeiffer, Weidemann, Danowski
(1990).

The movement of the individual leg consists of two parts,
the power stroke and the return stoke. During the power
stroke, the leg is on the ground, supports the body and, in
the forward walking animal, moves backwards with respect
to the body. During the return stroke, the leg is lifted off
the ground and moved in the direction of walking where
it can begin a new power stroke. The anterior transition
point, ie. the transition from return stroke to power
stroke in the forward walking animal, has been called the
anterior extreme position (AEP) and the posterior
transition point has been called the posterior extreme
position (PEP). Either as a hypothesis or on the basis of
experimental results several authors (Wendler 1968,
Bissler 1977, Graham 1972, Cruse 1985b) proposed the
idea that the transition from one mode to the other occurs
when the leg reaches a given criterion position and that
the step generator can thus be considered a relaxation
oscillator. The role of load in modifying this criterion will
be neglected here (see however Bissler 1977, Cruse 1983,
Dean 1991a).

Fig 1. (a) Schematic drawing of a stick insect wgith the
location of the body-centered coordinates, (b) mechanical
model: arrangement of the joints and their axes of
rotation, (c) single leg of a stick insect showing the axes of
rotation, (d) the joints of the simplified leg of the model.

As in the model of Miiller-Wilm et al. (1992), each leg is
represented by three segments which are connected to
each other and to the body by three simple hinge joints.

Contact with the ground is assumed to occur at a non-
slipping hemisphere at the end of the distal segment. This
simplified leg omits the set of short segments forming the
tarsus or foot of the insect. The structure of the leg and
the definition of the angles are shown in Fig 1. The axes
of rotation of the basal joints are arranged in the same
way as in the stick insect and, therefore, are not
orthogonal with respect to the body-fixed coordinate
system shown in Fig 1. In the stick insect the basal joint
actually is a ball and socket joint. However, the primary
movement during walking involves only one axis of
rotation (Cruse 1976). Therefore, for the present model
we assume that the basal joint is used only to move the
leg in the forward-backward direction and that all the
up-down movement is performed at the coxa-trochanter
joint,

2 Model

The movement of the individual leg is controlled in the
following way. In order to simplify the model, we assume
for the straight walking considered here that the tarsus
always moves in a vertical plane parallel to the long axis
of the body. The rhythmic movement in the direction of
the x-axis (Fig 1), i.c. the axis parallel to the long axis of
the body, is controlled by an oscillatory system, How can
this be done using a neuronal system?

The oldest and simplest proposal for a network oscillator
with neuronal elements is the Brown half center model
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Fig 2. A model for the control of rhythmic leg movement
using mutual inhibition between the motor units RS
(return stroke) and PS (power stroke). Leg position is
obtained by integration of the output of RS and PS. Once
the leg has reached a given threshold (AEP, PEP), the
system switches from one state to the other, (a) classical

(Brown 1911). Two neurones are connected by mutual
inhibition (Fig 2a), forming a bistable system (flip-flop), in
which either one neuron or the other is active. If the
inhibitory channels are provided with high pass properties
and tonic excitation is applied, the system oscillates,
Alternative, two-neuron networks are discussed by Camhi
(1984). For example, oscillation can also occur if the
mutual inhibition is replaced by mutual excitation passed
through a delay clement. Some central pattern generators
which have been characterized physiologically contain
ncurons with still more com plex dynamical properties and
conncctions (e.g. Getting and Dekin 1985)

As mentioncd above, (he step
arthropods is better described g
which depends on sensory feedbac
periphery has (o be included iy the
shown in Fig 2a, the signals from
provide appropriate feedback 1o
movement (Land 1972, Bissler

pattern generator of
a relaxation oscillator
k. This means that the
system. In this case, a5

produce a rhythmic
1977, for a general

the leg forward, is applied to the |
signals that the AEP has becn re
turas off the motor ynit PS. This
and causes the leg to move to the

cg until a sense organ
ached. This Sensory unit
unit in turn inhibits RS
rear until a sense organ

version. (b) the same system constructed as a fully
recurrent network. (c) the output vector for consecutive
iteration steps in one completc step. The square brackets

on the left side indicatc the input and output vectors used
for training,

signals that the PEP has been reached, This sense organ
turns off the unit RS which in turn inhibits PS. As a result
the system oscillates rhythmically moving the leg between
AEP and PEP. The transformation from leg velocity to leg
position is symbolized by the integrator in Fig 2a.

Fig 2b shows the same system in another, morc general
format. The four units are now part of a fully connected
recurrent network. The weights of the synapses are given.
If no number is given this means that the weight after
training is zero. Again the integrator represents the
mechanical periphery, the movement of the leg under the
influence of RS and PS, The leg position oscillates as long
as both motor units receive ap input of 1 which can be
interpreted as an "o" signal from higher centers. Fig 2¢

shows the output of the system for consecutive iteration
steps.

An advantage of the artificial neural network approach is

that training procedures can be used to find alternative
and possibly better solutions, In order to test whether
other versions of such oscillatory systems exist we started
with a fully connected Tccurrent network with randomly
distributed weights because, apart from the absence of
hidden units, this is the most general form. We trained
networks with thig structure using a linear activation
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function and the Delta rule as proposed by Levin (1990)
for the training. In a recurrent system the output vector is
also the feedback vector and therefore the input vector for
the next iteration. Thercfore the Delta rule can be applied
using the output vector of one time step as input for the
next. In this way the net was trained on two
autoassociative tasks: when the net is in power stroke
(output vector: 0100), it should stay in that state, and the
same should be the case for the return stroke (output
vector: 1000). In addition, the net was trained on two
hetcroassociative tasks: the desired reponse to the
feedback vector 1001, ie. "return stroke on" and "AEP
reached", was "power stroke on" (i.e. 0100) and the desired
response o the feedback vector 0110, i.e. "power stroke
on" and "PEP reached" was "return stroke on” (1..1000).
Using the Delta rule with an learning rate of 0.1 the error
decreased to zero. The resulting weights are shown in Fig
3a. In this net the motor units receive a self-excitation
instead of reciprocal inhibition, The sensory units have
two different effects on the two motor units. One is
excitatory, the other is inhibitory: Fig 3b shows the output
of the system after training, This output lacks one cycle
present in the results of Fig 2c.

—

For training vectors with values symmetrically distributed
around zero, i.c. values of 0.5 or -0.5 instead of values of
0 and 1, another set of weighs is obtained (Table 1). The
network looks like a mixture of both the "inhibitory
system” of Fig 2a and the "excitatory system" of Fig 3a.
The behavior of the system corresponds to that shown in
Fig 2b.

b)
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Fig 3. A model, obtained
by training, for the
control of the

rhythmic leg movement,
20l The oscillatory behavior
of the system
100
13 Power corresponds to that
(0 11 0y PEPon B stoke shown in Fig 2 except
for the intermediate
191 vectors marked by
100 0y PEPoft |Reum in Fi
RS Stroke stars in Fig 2c,
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Table 1 The weight distribution of a network producing
rhythmic oscillations. The format is the same as in Figs 2b
and 3a.

receiver
sender RS PS PEP AEP
AEP -0.5 0.5 0 0
PEP 0.5 -0.5 0 0
PS -1.5 0.5 0 0
RS 0.5 -15 0 0

Although the unperturbed behavior of all three systems is
nearly the same, they might still differ in stability when
noise is present. To investigate this, the performance of all
three oscillators was tested with noise of increasing
amplitude range added to all four feedback lines. The
stability was measured by observing the oscillatory
behavior of the systems. When the noise amplitude
exceeded a certain threshold, the oscillatory behavior
suddenly vanished in all three systems. The inhibitory
system (Fig 2) was most sensitive and the excitatory
system (Fig 3) was least sensitive to noise. Quantitatively,
a noisc amplitude of +/- 0.25 is sufficient to disrupt the
oscillatory behavior of the inhibitory system whercas
amplitudes of about + /- 0.50 and + /- 0.76, repsectively,
are required to disturb the mixed systcm (Table 1) and
the excitatory system (Fig 3) to the same extend. These
differences in the stability correspond to the size of the
mean error during the training procedure. For the
excitatory system the sum of the total squared error was
smaller than 0.01 after 180 epochs and approximated zero.
For the mixed system this error could not be made
smaller than 4.2, The inhibitory system was never obtained
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through training, even when the starting weights were
chosen to correspond exactly to this solution.

It should be mentioned that the systems shown in Fig 3
and Table 1 can be switched on by a short impulse to one
of the motor units. They do not require a continuous input
as the inhibitory system does. As the excitatory system has
proved to be the most stable we decided to use this
module to control the state (power stroke, return stroke)
of each leg. For the stick insect it has been shown that in
both the power stroke and the return stroke the
movement of the tarsus is controlled by a velocity
controlling feedback system (Cruse 1985a, Dean 1984,
Weiland and Koch 1987). Therefore, we use the output
values of the state controller as reference signals for a
velocity feedback controller. However, the state value is
first put through a low pass filter. This causes the
reversals in the direction of movement to be less abrupt
and therefore more realistic.

This reference signal is used to control the movement of
the leg tip (tarsus) in the horizontal and vertical
directions, i.c. parallel to the x-axis and parallel to the z-
axis, respectively (Fig 1). However, the movement along
the x-axis is governed by a velocity controller, that along
the z-axis by a position controller. When walking on
irregular surfaces, the end of the downward movement
during the final part of the return stroke has to be
determined by an additional sensor which is assumed here
to be a contact sensor ("ground contact” GC in Fig 4). The
determination of the tarsus trajectory is described in detail
by Miiller-Wilm et al, (1992) and therefore not repeated
here. Once the trajectory of the tarsus relative to the body
is selected, the values of the joint angles can be calculated.

This is done here using the inverse kinematic solution

described })y Pleiffer et al. (1990). The calculation of the
tarsus trajectory and the required joint movements is
symbolized by the box marked (TT-JC) in Fig 4.

How are the movements of
In all, six different coupling
for the stick insect (review

these oscillators coordinated?
mechanisms have been found
Cruse 1990). Two of these will

» and therefore the end-po;
of a power s_lroke (PEP), is modulated by t[l)x(:'l:;
nfechams.ms.a'nsing from ipsilateral legs: (1) a rostrally
directed inhibition during the return stroke of the next
caudal leg, (2) a rostrally directed excitation when the next

caudal leg begins active retraction, and (3) a caudally

Fig 4. The four coordinating influences used in the model
illustrated for a middle leg recciving the signals. Two
influences occur from the front leg and two from the hind
leg onto a centrally located middle leg. The oscillator,
which corresponds to that of Fig 3, controls the state and
forward-backward movement of the leg. The derivation of
the corresponding tarsus trajectory and joint angles occurs
in the box marked (TT-JC). The sensory input GC
registers ground contact. See text for further explanations.
directed influence depending upon the position of the next
rostral leg. The beginning of the power stroke (AEP) is
modulated by a single, caudally directed influence (4)
dependipg on the position of the next rostral leg; this
mechanism is responsible for the targeting behavior.

Influences (2) and (3) are also active between
contralateral legs.

Fig 4 shows, as an example,
leg and the hind leg ont
Influences (1), 2,
influence (4) acts o
active, i.e. different
ground contact, |
has no ground
conditional effects
symbol for convenj

the influences from the front
o the ipsilateral middle leg.
and (3) act on the PEP unit, whereas
n the AEP unit. Influence (1) is only
from zero, when the caudal leg has no
nfluence (2) is zero when the caudal leg
contact. In neuronal terms these
(in Fig 4 shown by a multiplication
ence) are represented by inhibition
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Fig 5. Stability of the coordination pattern. (a) movement
of the legs when the power stroke of the right middle leg
is interrupted for a short time. (b) Ilustration of how the
normal contralateral alternation is established when
contralateral legs start from the same position.

subsequent rectification. If the caudal leg has ground
contact, influence (2) corresponds to the band pass filtered
value of the position signal of the caudal leg. The band
pass filter (BPF in Fig 4) which is constructed of a small
recurrent network consisting on six linear units (not
shown) is followed by a rectifier. Influence (3) is zero
when the rostral leg is lifted (again this is represented in
Fig 4 by a multiplication symbol) and depends on the
position of the rostral leg when the latter is in power
stroke. This value passes through a non-linear
characteristic (NL in Fig 4) the form of which depends
logarithmically on a central command, v, corresponding to
the general walking velocity. This command also serves as
a gain factor in all power stroke units. The output of the
NL - characteristic passes a non linear clipping function.
Influence (4), which determines the AEP, is determined in
a similar manner as influence (3). The main difference is

. Fig 6. Two sections of superimposed frames from a video

film showing the model walking over an obstacle. Upper
part: top view, lower part side view. Leg position is shown
only for every 5th frame, body position is shown only for
every 15th frame. (a) The model approaches the obstacle
and places the front legs onto it. (b) The model leaves the
obstacle. The left hind leg steps onto the obstacle whereas
the right hind leg touches the ground beyond the obstacle.

that the position value depends on the parameter v, the
retraction velocity, in a linear way (LC in Fig 4). The
activation function is clipped only for values in the positive
range. The contralateral influences correspond to the
ipsilateral influences (2) and (3) and are not shown in Fig
4. In the contralateral form of influence (3), the
dependence on the parameter v is linear.

3 Results

The model shows a proper coordination of the legs when
walking at different speeds on a horizontal plane. With
increasing walking speed the typical change of
coordination from the tetrapod to the tripod gait (Graham
1972) is found. As the movement of the legs is very
similar to those found in the algorithmic model (Miiller-
Wilm et al., 1992) this is not shown here in detail.
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The coordination pattern is very stable. For example,
when the movement of the right middle leg is inter‘ruchd
briefly during the power stroke, the normal coordmatgon
is regained immediately at the end of the pertutbat!on
(Fig 5a). A critical test of the stability of the coordination
pattern is to consider the behavior of the model whe.n
starting to walk from arbitrary leg positions. The.start is
particularly difficult when contralaterally neighbqrmg legs
begin from the same x- position. In this case,
contralaterally neighbouring legs reach their PEP
thresholds at the same time, whereas they normally
alternate, Fig 5b shows such a test: the normal
coordination is regained after a very few steps. The 3-
dimensional plot, which is not shown here, demonstrates
that the model also maintains postural stability except for
starts from some unnatural starting configurations.

The height control is illustrated in Fig 6. Here the model
has to step over an obstacle. This figure represents two
sections of a video film. Different frames are
superimposed here to give an impression of the movement
of the whole model. The figure also indicates that the leg
glides over the ground for a short time after touch down.
This gliding would correspond to a force decelerating the
body if the tarsi were fixed to the substrate,

4 Discussion

The model proposed here represents a combined
treatment of realistic kinematics and of biologically
motivated, adaptive gait generation. In contrast to earlier
biologically motivated models it contains the joint
geometry and, with some simplifying assumptions,
describes the movement of the joints and the tarsi. The
movement of the tarsus is also more realistic in the sense
that the velocity profile is rounded at the transition points,
The results show that the information obtained from
biological experiments can be incorporated into a 6-legged
model which is able to walk at different speeds at different
speeds over irregular surfaces, The model shows a stable
gait even when the movement of the legs is disturbed. The
system can control walks beginning from arbitrary leg
positions. Thus, the control system described here can be
uscd to control a real walking machine, To increase the

stability for difficult starting positions, the introduction of
load feedback might be helpful,

The system is based on
Unlike the model propose
the model consists of sim
that part which controls

extremely simple connections,
d by Miiller-Wilm et g, (1992),
ple artificial heurons, except for

were learned.

The connections which provide the coordination between

Wilson (1966) on

legs were hard-wired based on biological eXp.Cl'ifnCl.ltS.
Current work with various, biologically based optimization
methods (reinforcement learning, genetic algorithms, etc.)
is testing whether these mechanisms can be further
improved. (In our modelling of a six-legged 'walker, we
relied heavily on results with stick insects, but it should be
noted that other animals walking under diffe.rcnt
conditions use different coordinating mechanisms
(crayfish: Cruse Miiller 1986, Miiller Cruse 1991, cat:
Cruse Warnecke 1992).

Other approaches to modelling walking have incorporated
biological features to different degrees. Knowledge of t_he
neural control of walking in any animal is still quite
rudimentary. Brown’s (1911) half-center hypothesis, that
alternating activity for stepping arises from two subsystems
coupled by reciprocal inhibition, is still the most applicable
model. Vertebrate walkers have proved quite intractable
neurophysiologically. However, work on a simple model
system, lamprey swimming (Grillner et al. 1991), has
shown that even simple systems embodying this reciprocal
inhibition depend upon complex neuron properties and
interconnections. Pearson (1972), working with an insect,
proposed a model of alternation in which activity of one
center is periodically interrupted by activity in a second

center initiated either by peripheral sensory signals or by
intrinsic neural properties.

This organization has parallels in the subsumption
architecture created by Brooks to step control in a
successful hexapod robot (1986, 1989). For interleg
coordination this robot used a typical insect gait, the
alternating tripod gait, but this gait was generated by a

single timing center. Hence, interleg coordination in this
robot did not eémerge out of interactions among semi-
autonomous centers in the way that is more typical of
animals, This property was exhibited by a later version in
which the subsumption architecture was extended to
control interactions among independent leg controllers

(Maes Brooks 1990). These interactions were not based

on biological models, Nevertheless, they were able to learn
the tripod coordination,

Such decentralized mechani
several researchers,
insect preparation,
walking insect pr
activation which

serving for interle

sms have been considered by
Based on physiological results from an
Pearson and Iles (1973), studying a non
eparation, described intersegmental
could mediate reciprocal inhibition
& coordination, an idea proposed by
Wilson the basis of behavioral studies. This
mhlb.ltlon resembles mechanism 1 in the present model
As discussed clsewhere (Cruse 1980, Dean 1991c, 1992b),
this mechanism alope provides incomplete control of step
Phase. Moreover, it can easily produce tripod gait but

requires a gradient of natura] step frequencies in different
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legs if metachronal rhythms are to occur, Nevertheless,
this type of inhibition has been incorporated into several
robot control systems (Donner 1984, Beer, Chiel and
coworkers 1989, 1992). Beer and Gallagher (1992) have
also used genetic algorithms to successfully train intra-
and interleg coordination under conditions where tripod
gait is the gait of choice. Our results show that a
combination of mechanisms provides a better control of
phase, which is necessary for example in controlling starts
from unfavorable leg configurations.

Our future studies are directed toward removing three
restrictions in the present model. First, the movement of
the tarsus is restricted to a vertical plane parallel to the
long axis of the body. Besides being somewhat artificial,
this does not permit turns to be simulated. Second, our
model does not take into account the dynamics of the
system, i.c. the forces needed to perform the described
movements. Third, we did not consider the mechanical
coupling of the legs in power stroke through the substrate
and the resulting effects when the legs attempt to move
with different velocities. The reader is referred to Miiller-
Wilm et al. (1992) for a more detailed discussion of these
restrictions. Fourth, all robots mentioned above use
relatively simple legs, possessing two degrees of freedom
and fixed to the body in an orthogonal and bilaterally
symmetrical manner. We hope that a leg geometry more
similar to that evolved in animals will provide greater
flexibility.
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