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Abstract: The charge transfer between hemispheres is investigated in the framework of a model 
with neutral and isotropic clusters. Without specifying the production mechanism of the clus- 
ters, the charge-transfer distribution can be uniquely determined by inclusive spectra. Minor 
discrepancies observed in the comparison with experimental data are attributed to the influ- 
ence of the charges of the leading particles, and further tests are proposed. 

1. Introduction 

In view of recent NAL and ISR data, models with predominantly neutral and iso- 
tropically decaying clusters have received considerable attention [ 1, 2] ,  and cluster- 
ing is tentatively called the "third general feature of  high energy hadron collisions" 
[3].  For a more detailed examination of this concept, it is useful to consider charge 
transfer distributions [4, 5],  as they critically depend on the nature of the clusters. 

The aim of this paper is therefore to derive relevant formulae, using the formalism 
of generating functionals [6] (section 2), and to discuss the presently available data 
[ 7 - 1 0 ] .  We generalize the recently found relation between the dispersion of the 
charge-transfer distribution [ 1, 5] and the inclusive single-particle spectrum and show 
that independent of the mechanism of the cluster formation, all moments of the 
charge-transfer distribution are simply related to inclusive spectra (sect. 3). In such 
models with neutral and isotropic clusters, the charge transfer cannot better help to 
discriminate between special production mechanisms than just the corresponding in- 
clusive spectra. The strong predictions of  these relations are experimentally satisfied; 
existing minor discrepancies may be attributed to the influence of the charges of the 
leading particles, which is expected to vanish at ISR energies where charge indepen- 
dence should already hold in the central region. A suitable experiment is proposed to 
measure charge transfer at ISR. We derive (approximate) relations between the mo- 
ments of  the charge transfer distribution and inclusive spectra for fixed associated 
multiplicities and compare them with existing data (sect. 4). 

* Supported by the Deutsche Forschungsgemeinschaft. 



R. Baier, F. W. Bopp, Neutral cluster models 345 

2. Generating functional for the neutral cluster model 

The inelastic production of particles at high energies is described in cluster models 
by a two-step mechanism: the formation of intermediate clusters and their subsequent 
decay into the observable particles [ 1, 2]. For the present discussion, only one type 
of neutral clusters is assumed, which means that at a given mass all clusters have iden- 
tical decay distributions in their rest frames. This assumption ignores differences be- 
tween central and leading clusters. 

A convenient way to analyse this kind of models is given in terms of generating 
functionals. As described in detail in a previous paper [12], the generating functional 
G[~q)]  for the production of identical particles with momenta q can be expressed 
by combining the functionals for the formation of clusters with masses M and mo- 
menta Qc' GF [(~(Qc' M)], and the functional for the decay of a cluster G D [(9(q),Qc,M ] 
in the following way 

G [~q)] = G F[G D [~b(q), Qc' M] 1, (1) 

G D with its dependence on M and Qc is just the argument of G F. The functionals are 
normalized as 

G F'D [~b = 1] = 1. 

The generalisation of eq. (I)  to include charged particles (the neutrals are implicitely 
summed over) and neutral clusters is straight forward 

G[q~+(q+), q~-(q-)] = G v [G D [~b+(q+), ~b-(4-), Qe,M] ]. (2) 

One can express the functionals in terms of the inclusive correlation functions C F for 
the formation of clusters and the normalized exclusive decay distributionsfOm+m for 
m+ positive and m negative secondaries emitted by a cluster with momentum Qc and 
mass M as 

{k~= 1 I f  k d3Oci F iV1 
G[~p+(q+), q~-(q-)] = exp k! i~=l ~ dMi C~ (Qcl .... Qck"" k ) 

x [7 (G D [q~+(q+), ~b-(q-), Qei, Mi] - 1) , (3) 
i=1 

m+ m_ d3q+ 
i ¢(q+) 

GD [q~+(q+)' q~-(q-)' Qc' M] = ~ 1 f [-I [-I T 
m+,m_ m+!m ! i=I ]=1 qoi 

d3q/7 
x -  q~-(qT) D fm+,m_ (q+l - Qc ..... qm_ - ac 'M)" (4) 

qo] 
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For neutral clusters, charge conservation implies an equal number of positive and 
negative secondaries per cluster; this restricts the summation to the values m+ = m_ = 
m. For mathematical convenience, one can define spectra s ~D , which are normalized 
to one, by 

1 fD = 5 pD (343 fO(q+_ Qe' q-  - Qc' M). (5) m+!m_!~m+,m m+,m_ m" " 

Here PD m (M) is the probability that a cluster with mass M contains m charged pairs. 
In the following, we only treat the dependence with respect to the cluster and 

particle rapidities (with the integration of the transverse momenta already performed). 
For the cluster decay, the following weak assumptions' are made: a cluster decays iso- 
tropically in its rest frame and strong angular correlations between various momenta 
do not substantially destroy the isotropy as soon as one particle is produced at a fixed 
angle; furthermore the decay distributions are smooth around their centre. Then the 
rapidity dependence o f ]  D is mainly determined by the Jacobian of the transforma- 
tion from momenta to rapidities [t3, 14], and f  D can be approximated by the prod- 
u c t  

2 m  

jD = I-I J(Yi - Yc)' (6) 
i=1 

and J(y) is the normalized Jacobian 

]~v) = ½ cosh-2Cv). (7) 

The known transverse-momentum distributions suggest that the above approximation 
is valid for the dominant small momenta. 

Combining the last equations, the generating functional is written as 

G [q~+(y+), ~-(y-)] = exp f [-] dYci (Yc 1 .... , Mk)  
= " i = 1  

x 1-1 (a  o [4~÷(Y+), ~-(Y-),Yei,  Mi] - 1) , 
i=1 

(8) 

with 

GD [1 = ~ PD(M') [fdY+~b+Cv+)arc v+ - Yc)l m [fdy-qV(v-)J(y- - Y c ) l  m, (9) 
m = 0  

which is symmetric with respect to the interchange of q~+ and q~-. Functionals are 
used here just as a tool to obtain generating functions for discrete distributions by 
considering special choices of variations in the parameter functions ¢+ and ¢-. 



R. Baier, F. W. Bopp, Neutral cluster models 347 

3. Charge transfer 

In order to discuss the production of  charged particles in different regions, say a 
right hemisphere w i thy  >.~ and a left one wi thy  < y ,  one has to substitute 

¢ 0 , )  -* hRo~y - y )  + h~O~y - y), (lO) 

0(y) is the step function. Repeated differentiations of  the corresponding generating 
function G(h R, h L) with respect to h R,L at h R,L = 0 lead to the cross sections for 
producing n R and n L charged particles in the considered hemispheres [ 1 5].  In this 
way one can-derive the distribution pk(y)  = ak(p)/Oinel in the net charge transfer k = 
n+R _ n R_ = n L - n+L between these two hemispheres from a generating function [5] 

+00 

G.~(x) = ~ PkOT)xk , (11) 

which is obtained from the functional G[~b +, ~b-] by substituting 

¢ 0 ' )  --' x 00, - ~) + o07 - y ) ,  

1 
~-(y)-~xO~y - y)  + O07- y). 

(12) 

The operation (x3/3x) n applied to Gy(x) at x = 1 provides the nth moment  of  the 
charge-transfer probability 

x 3  ) n +~ qcn07)) = ~x Gy(X)lx=l = ~ gn pk07). (13) 
k=-~ 

But unlike the multiplicity distributions, the probability pk07) in eq. (1 1) can no 
longer be obtained by derivatives at x = O. It is therefore convenient to substitute 
x = e it and to define the characteristic function [16] Gy(t), which can be expressed 
by pk07) 

Gy(t )=  ~ Pk(~)eitk. (14) 
k=-o. 

Alternative representations of this function in terms of moments  (kn07)) or the 
equivalent cumulants Kn07) are 

G~(t) = n ~  O= (kn07)) = exp n ~  " (iO n . (15) 
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The probability Pk(v) can be obtained by inverting eq. (14): 

+I t  
1 pk(y) : ~ f e-irk Gy(t)dt. 

- - I t  

(16) 

Since for the cluster model only G D [¢+, ~b-] depends explicitly on the functions 
¢-+, we apply the substitution in eq. (12) to G D to derive the corresponding function 
GD(x' ye, M) for the charge transfer at y = y 

GD(x' Yc' M) = ~ pD(M)[1 + ½(x + 1 _  2)T07 _ yc)]m (17) 
X 

m 

where 

TO7 - Yc) = 2 f dy+ dy-O@ +'- Y)O(7 - y-)J(Y+ - Yc).J(Y- - Yc)" 

The integral over the cosh -2 functions can be exactly calculated: 

(18) 

T(.~ - yc) = ½cosh-207 - Yc) = J(~ - Yc )" (19) 

One can now compare G D with the generating function ~D for the emission of nega- y_ 
tire (= positive) particles from a given cluster with rapidities all a ty  =7 .  ~D is ob- 
tained by substituting 

O-(y) ---> 1 + (z - 1)6Cv - .v), ¢+(y) --,'- 1, (20) 

in eq. (9), and has the explicit form 

~yD(z, Yc, M)= ~ PDm(M)[1 + ( z - 1 ) J ( . V - Y c ) l  m. (21) 
m 

By comparison, one observes that 

Using eq. (8), we get the same relation for the corresponding generating functions of 
the overall process independent of the mechanism of the cluster formation. One can 
now express Gy(z) in terms of the normalized inclusive distribution functions p n for 
the production of negative (= positive) particles, all of them with rapidities.7, and ob- 
tain a representation of G~(x) in terms of these spectra, 

1) PnOV, ..v ' G~(x = ) -  cos t 1 + n! "")" 
n=l 

(23) 
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We expand (cos t - 1) n as 

(cos t - 1) n = n! m~n (it)2m Z(m n) 
= ~ 

where 

n! Z(m n) = ~ (2m)! 
{u,,...Vn} (2Vl)! ... (2Vn)! " 

Z v i = m  , u i > 0 

(24) 

(25) 

By comparing powers in t in the above expression of the characteristic function with 
that in eq. (15), all odd moments  are seen to vanish, and for the even ones the follow- 
ing relation is obtained: 

n 

(k2n(v)} = ~ Z (m) am(V, Y ....  ~'). (26) 
m=l  

Alternatively, one can describe Gy in terms of the correlation functions C n for 
negative (or positive) secondaries to get 

Gr,(x = e it) = G-/1 x + 1Ix _ 
Y \  2 J 

) In~=l ( c ° s t - 1 ) n  cos t = exp n! Cn(V ..... 37)] .  (27) 

In much the same way as before, we compare this expression with the one for the 
characteristic function, this time in terms of cumulants [eq. (15)].  All odd cumulants 
vanish; the even ones are given by 

n 

K~n(V)= ~ Z(nm)Cm(v ..... Y). (28) 
m = l  

Explicitly, the first few relations are 

K~(V) = (k2~)) = p-(p) = p+(V), (29a) 

K~(V) = (k4(g))  - 3((k2CV)} 2 = p-C V) + 3C2CV ' v ) ,  (29b) 

K~07) = o-C V) + 15C2(V, y )  + 15C3(V, .g, g ) .  (29c) 

One has to note that the input of  assumptions needed to apply the described for- 
malism can be actually somewhat relaxed. The dominance of the Jacobian is not nec- 
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essary if the mass dependence of the cluster decay distribution factorizes and the 
spectra exhibit weak factorization properties. One can again go through the steps above, 
with J(v - Yc) now just an arbitrary function. Only eq. (19) will not longer be valid, 
but i fJ(y - ~) and hence also T(y - ~) are still sharply peaked (relative to the smooth 
formation spectrum) one can approximate 

r f y  - Yc) = + J(Y - Yc), (30)  

where 6 is an additional parameter depending on the properties of J; e.g. for the 
Gaussian form 

1 exp , (31) Jo,) 

a calculation gives 6 = V/~'~ro = 1.25 o (which is almost one for the width o = 0.7 - 
0.9 [13, 14]. The modification due to eq. (30) leads then simply to the replacement 
Z (m) --, ~mz(nm) in the results given in eqs. (26) and (28). 

4. Comparison with experimental data 

Concerning the relations between the moments of the charge transfer distribution 
and the inclusive charged particle distributions, it is important to point out that they 
hold irrespective of the production mechanism of the clusters; the only essential as- 
sumptions are the neutrality and isotropy of the clusters. The moments of the charge- 
transfer distribution therefore cannot better distinguish between various formation 
mechanism than the corresponding inclusive spectra. This means, for instance, that the 
dispersion (k2(g)) cannot discriminate between suitable multiperipheral-, independent 
emission-, or even nova-(fragmentation-) type cluster models, at least as long as all 
these models are dealing with predominantly neutral, almost isotropically decaying 
clusters. Nevertheless measurements of charge transfer quantities in addition to in- 
clusive distributions are very helpful in order to test the cluster concept and the above 
stated assumptions. 

Fig. 1 shows the experimental values of the dispersion [7-10] (k2(0)) and the 
corresponding points of the inclusive single-particle spectra [ 10, 17] for positive and 
negative pions (p+(0) and p-(0)) for proton-proton collisions. According to the model, 
all the points should be equal at fixed energy, but one finds that the equality [eq. 
(29a)] is violated for p-(0) by about 50% at Plab = 12 GeV/c and by 30% at 102 
GeV/c, whereas the agreement between the dispersion and p+(0) is much better. Fur- 
thermore, one observes that the considered quantities approach each other with in- 
creasing energy. It seems therefore quite probable that the compared values will coin- 
cide at energies for which p+(0) ~ p-(0). The observed discrepancy can just be at- 
tributed to the additional positive charge coming from the leading proton (via p ~ n + 

-t- Xslow ). Such charges obviously contribute to the single-particle spectrum p+(0) and 
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Fig. l. Data on the dispersion (k2(0)) and on inclusive single particle spectra for positive (e) and 
negative (~) pions in inelastic proton-proton collisions [7-10, 17 ]. 

to the charge-transfer distributiont. 
A more conclusive test can be expected at ISR energies, where the charge distribu- 

tion dQ/dy should be negligibly small in the central region. Instead of measuring the 
charge transfer between hemispheres, for which the whole phase space has to be 
covered, it would be interesting to measure"the distribution with respect to the dif- 
ference of positive and negative charges in a fixed interval [ -y ,  V] around the centre. 
This interval has to be small enough so that its boundaries lie within the central region, 
but large enough so that the decay products of one cluster do not contribute signifi- 
cantly to the charge transfer at both of the boundary points. A value o f y  = 1.2 will 
be a reasonable choice in order to fulfill these conditions. The cluster model then pre- 
dicts, within an estimated error of about 1%, that the dispersion of this distribution 
should be equal to the sum of the single-particle spectra a t 7  and -V,  respectively, 

<k2(-Y,  Y)> = p(-Y')  + p(Y'), 2 = 1.2 (32) 

if charge independence already holds for the spectra, p+ = p-. 
According to eqs. (26) and (28), the higher moments of the charge-transfer dis- 

tribution are related to the higher correlation functions. With the existing proton- 
proton data at 102 and 205 GeV/c [10], one can compare (k4(0)) with the value of 

t An e~timate of this additional charge transfer in a multi-Regge model is (k2(0))leading charge = 
(2c~ f f -  2c~ff) -1 (~(0) - p-(O)), 
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p(0)[1 + 3p(0) (R(0, o) + 1)] "" 2.3 - 3.0, 

using R" (0 ,  0) ~,R++(0, 0) "" 0.35 - 0 . 4 0  and p-(0)  = 0.65 or p+(0) = 0.75, respec- 
tively. Since (k (0)) is even more sensitive than the dispersion to the higher charge- 
transfer cross sections with larger errors the calculated value of (k4(0)) = 2.5 - 3.0 
has to be taken with caution. 

A further test of  the cluster-model approach to inelastic scattering can be found 
by relating the following moments  of  the charge-transfer distribution 

(k2m07))n = ~ k 2m °kn 07) 
k = -n Oinel 

(33) 

1 to the/-particle spectrum pn(Yl, ...yl) , both with fixed associated multiplicity 
n (n = n+ = n_). I f  this multiplicity is not too small to destroy the assumed factoriza- 
tion properties, one can apply the arguments given above to derive 

m 

(k2m07))n = ~ -m7(l)fl~'n ~rtw .... y) ,  pnl= 0 for n < l. (34) 
l=1 

A comparison of the available data [7 -10 ,  17] - h e r e  mainly just indirectly obtained 
from figures - for dispersion (k2(0))n and the distribution 

pln (0) - 1 d°n~= 0 
Oinel dy 

for positive and negative pions is given in fig. 2 for various multiplcities (instead of  the 
normalization to the inelastic cross section the normalisation to the corresponding 
prong cross sections [ 18] is used). It can be seen that the discrepancies found between 
(k2(0)) and p+(0) (p-(0)) seem to show up mainly at the four-prong level and that they 
decrease with increasing associated multiplcity. This may be an additional indication 
that effects due to the charges of  the leading particles - which should for statistical 
reasons show up dominantly at lower multiplicities - are indeed responsible for the 
above disagreement. Some clarification of this picture might come from a measure- 
ment  of  the rapidity dependence of the dispersion (k207))n for  fixed associated mul- 
tiplicities. 

According to eq. (28), one can determine the cumulants KC2n(Y) from the correla- 
tion functions C 1 07, y ...). Therefore the energy dependence of the charge-transfer 
probability P c 0  ~) is related to that of  the correlation functions. For the charge-transfer 
distribution from forward to backward hemispheres, V = 0, we have 

1 [.  +~ dte_it k exp (it)2n ~ Z (l) Cl(O, 0, ...0) . (35) 
J ~ ~=I n 
- - 9  
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Fig. 2. Data on the normalized dispersion ~k2ak/an and the distribution (l/on)/don(Y = 0)/dy 
for positive (e) and negative (e) pions for different associated multiplicities in inelastic proton- 
proton collisions [7, 10, 17, 18]. 

Because of the weak energy dependence observed for pCh(0) and RCh(0, 0) at NAL 
and ISR energies, a weak dependence of Pk(0) on energy is indicated as it is indead 
observed. 

It is now interesting to approximate the integral [eq. (35)] by assuming that the 
correlation functions for equally charged particles at the centre, Cl(O , 0 . . . .  ), de- 
crease strongly with increasing order l. Such a behaviour is to be expected in the 
neutral cluster model, if the average number of  particles per cluster is small. An in- 
dication may be found from existing data, when one compares CI (0  ) = p-(0)  "~ 0.65 
with C2(0 , 0) "" 0.17 and p+(0) ----- 0.75 with C;(0,  0) "" 0.22 at NAL energies [10] 
(there is of  course a strong dependence on the size of  the diffractive component) .  In 
this approach, the integral can now be performed: 

pk(O)=e-~C2(O,O)-z ~ ~ [i-~-z) I k ( z ) + O ( C 3 ) ,  (36) 
/=0 
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where lk(Z ) are the modi f ied  Bessel funct ions  [ 19] and z = p(0)  - C2(0,  0). At  NAL 

energies, only the first two terms of  the sum cont r ibute  significantly, and they give 
for the charge-transfer cross sections o k=0 "" 17 rob, alk. I=1 "~ 12 mb and o Ikl=2 "" 

3 mb,  which have to be compared  with the measured values o f  15.8 -+ 2.7 (15.6 -+ 3.0), 

13.0 + 2.7 (13.3 -+ 3.0) and 2.6 -+ 0.5 (3.2 + 0.7) atPla b = 102 GeV/c  (205 GeV/c) .  
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