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1. Introduction

The main objective of consumer theory is to determine the impact on observable
demands for commodities of alternative assumptions on the objectives and on the
behavioral rules of the consumer, and on the constraints which he faces when
making a decision. The traditional model of the consumer takes preferences over
alternative bundles to describe the objectives. Its behavioral rule consists of
maximization of these preferences under a budget restriction which determines
the trading possibilities. The principal results of the theory consist of the
qualitative implications on observed demand of changes in the parameters which
determine the decision of the consumer.

The historical development of consumer theory indicates a long tradition of
interest of economists in the subject, which has undergone substantial conceptual
changes over time to reach its present form. A detailed survey of its history can be
found in Katzner (1970).
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2. Commodities and prices

Commodities can be divided into goods and services. Each commodity is com-
pletely specified by its physical characteristics, its location, and date at which it is
available. In studies of behavior under uncertainty an additional specification of
the characteristics of a commodity relating to the state of nature occurring may be
added [see Arrow (1953) and Debreu ( 1959)], which leads to the description of a
contingent commodity. With such an extensive definition of a commodity the
theory of the consumer subsumes all more specific theories of consumer choice of
location and trade, of intertemporal choice over time, and of certain aspects of
the theory of decisions under uncertainty. Formally these are equivalent. The
traditional theory usually assumes that there exists a finite number f of commodi-
ties implying that a finite specification of physical characteristics, location, etc.
suffices for the problems studied. Quantities of each commodity are measured by
real numbers. A commodity bundle, i.e. a list of real numbers (x,), h=1,....°f,
indicating the quantity of each commodity, can be described therefore as an
f-dimensional vector x =(x,...,x,) and as a point in f-dimensional Euclidean
space R’, the commodity space. Under perfect divisibility of all commodities any
real number is possible as a quantity for each commodity so that any point of the
commodity space R'is a possible commodity bundle. The finite specification of
the number of commodities excludes treatment of situations in which characteris-
tics may vary continuously. Such situations arise in a natural way, for example, in
the context of quality choice of commodities, and in the context of location
theory when real distance on a surface is the appropriate criterion. As regards the
time specification of commodities, each model with an infinite time horizon,
whether in discrete or continuous time, requires a larger commodity space. This is
also the case for models of uncertainty with sufficiently dispersed random events.
These situations lead in a natural way to the study of infinite dimensional
commodity spaces taken as vector spaces over the reals. Applications can be
found in Gabszewicz (1968) and Bewley (1970, 1972), with an interpretation
regarding time and uncertainty. Mas-Colell (1975) contains an analysis of quality
differentiation. As far as the theory of the consumer is concerned many of the
usual results of the traditional theory in a finite dimensional commodity space
can be extended to the infinite dimensional case, This survey restricts itself to the
finite dimensional case.

The price p, of a commodity h, h=1,....¢, is a real number which is the
amount paid in exchange for one unit of the commodity. With the specification of
location and date the theory usually assumes the general convention that the
prices of all commodities are those quoted now on the floor of the exchange for
delivery at different locations and at different dates. It is clear that other
conventions or constructions are possible and meaningful. A price system or a
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price vector p=( p,,..., p,) can thus be represented by a point in Euclidean space
R'". The value of a commodity bundle given a price vector p is 22: | PrXy =P x.

3. Consumers

Some bundles of the commodity space are excluded as consumption possibilities
for a consumer by physical or logical restrictions. The set of all consumption
bundles which are possible is called the consumption set. This is a non-empty
subset of the commodity space, denoted by X. Traditionally, inputs in consump-
tion are described by positive quantities and outputs by negative quantities. This
implies, in particular, that all labor components of a consumption bundle x are
non-positive. One usually assumes that the consumption set X is closed, convex,
and bounded below, the lower bound being justified by finite constraints on the
amount of labor a consumer is able to perform. A consumer must choose a
bundle from his consumption set in order to exist.

Given the sign convention on inputs and outputs and a price vector p, the value
p-x of a bundle xEX indicates the ner outlay, i.e. expenses minus receipts,
associated with the bundle x. Since the consumer is considered to trade in a
market, his choices are further restricted by the fact that the value of his
consumption should not exceed his initial wealth (or income). This may be given
to him in the form of a fixed non-negative number w. He may also own a fixed
vector of initial resources w, a vector of the commodity space R'. In the latter case
his initial wealth given a price vector p is defined as w=p-w. The set of possible
consumption bundles whose value does not exceed the initial wealth of the
consumer is called the budger ser and is defined by

B(p,w)={xEX|p x=w}. (3.1)

The ultimate decision of a consumer to choose a bundle from the consumption
set depends on his tastes and desires. These are represented by his preference
relation Z which is a binary relation on X. For any two bundles x and y,
XE€X, yEX, xZy means that x is at least as good as y. Given the preferences the
consumer chooses a most preferred bundle in his budget set as his demand. This is
defined as

o(p.w)={x€B(p,w)|x' EB( p,w) implies xZx’ or not x'Zx}. (3.2)
Much of consumer theory, in particular the earlier contributions, describe

consumer behavior as one of utility maximization rather than of preference
maximization. Historically there has been a long debate whether the well-being of
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an individual can be measured by some real valued function. The relationship
between these two approaches has been studied extensively after the first rigorous
axiomatic introduction of the concept of a preference relation by Frisch (1926). It
has been shown that the notion of the preference relation is the more basic
concept of consumer theory, which is therefore taken as the starting point of any
analysis of consumer behavior. The relationship to the concept of a utility
function, however, as a convenient device or as an equivalent approach to
describe consumer behavior, constitutes a major element of the foundations of
consumer theory. The following analysis therefore is divided basically into two
parts. The first part, Sections 4-9, deals with the axiomatic foundations of
preference theory and utility theory and with the existence and basic continuity
results of consumer demand. The second part, Sections 10~ 15, presents the more

classical results of demand theory mainly in the context of differentiable demand
functions.

4. Preferences

Among alternative commodity bundles in the consumption set, the consumer is
assumed to have preferences represented by a binary relation ZZ on X. For two
bundles x and y in X the statement xZy is read as “x is at least as good as ¥y

Three basic axioms are usually imposed on the preference relation which are often
taken as a definition of a rational consumer.

Axiom I (Reflexivity)

For all x€ X, xZx, i.e. any bundle is as good as itself.

Axiom 2 (Transitivity)

For any three bundles x, y, z in X such that xZy and yZz it is true that x 2.
Axiom 3 (Completeness)

For any two bundles x and y in X, xZy or yZx.

A preference relation 2 which satisfies these three axioms is a complete
preordering on X and will be called a preference order. Two other relations can be
derived immediately from a preference order. These are the relation of strict
preference > and the relation of indifference ~ .

Definition 4.1

A bundle x is said to be strictly preferred to a bundle y.1.e. x>y if and only if
xZy and not yZ x.
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Definition 4.2

A bundle x is said to be indifferent 10 a bundle v. i.e. x ~yif and only if xZy and

yZx.

With Z being reflexive and transitive the strict preference relation is clearly
irreflexive and transitive. It will be assumed throughout that there exist at least
two bundles x” and x” such that x">x". The indifference relation ~ defines an
equivalence relation on X, i.e. ~ is reflexive, symmetric, and transitive.

The validity of these three axioms is not questioned in most of consumer
theory. They do represent assumptions, however, which are subject to empirical
tests. Observable behavior in many cases will show inconsistencies, in particular
with respect to transitivity and completeness. Concerning the latter, it is some-
times argued that it is too much to ask of a consumer to be able to order all
possible bundles when his actual decisions will be concerned only with a certain
subset of his consumption set. Empirical observations or experimental results
frequently indicate intransitivities of choices. These may be due to simple errors
which individuals make in real life or in experimental situations. On the other
hand, transitivity may also fail for some theoretical reasons. For example, if a
consumer unit is a household consisting of several individuals where each
individual’s preference relation satisfies the three axioms above, the preference
relation of the household may be non-transitive if decisions are made by majority
rule. Some recent developments in the theory of consumer demand indicate that
some weaker axioms suffice to describe and derive consistent demand behavior
[see, for example, Chipman et al. (1971), Sonnenschein (197 1), Katzner (1971),
Hildenbrand (1974), and Shafer (1974)]. Some of these we will indicate after
developing the results of the traditional theory.

The possibility of defining a strict preference relation > from the weaker one
Z. and vice versa, suggests in principle an alternative approach of starting with
the strict relation > as the primitive concept and deriving the weaker one and the
indifference relation. This may be a convenient approach in certain situations,
and it seems to be slightly more general since the completeness axiom for the
strict relation has no role in general. On the other hand, a derived indifference
relation will generally not be transitive. Other properties are required to make the
two approaches equivalent, which then, in turn, imply that the derived weak
relation is complete. However, from an empirical point of view the weak relation
* seems to be the more natural concept. The observed choice of a bundle yovera
bundle x can only be interpreted in the sense of the weak relation and not as an
indication of strict preference.

Axioms 1-3 describe order properties of a preference relation which have
intuitive meaning in the context of the theory of choice. This is much less so with
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the topological conditions which are usually assumed as well. The most common
one is given in Axiom 4 below.

Axiom 4 (Continuity)
For every x € X the sets { EX|yZx} and {y € X|xZy} are closed relative to X,

The set {y€X|yZx) is called the upper contour set and {y € X |xZy} is called
the lower contour ser. Intuitively Axiom 4 requires that the consumer behaves
consistently in the “small”, i.e. given any sequence of bundles y” converging to a
bundle y such that for all # each y" 13 at least as good as some bundle x, then yis
also at least as good as x. For a preference order, i.e. for a relation satisfying
Axioms 1-3, the intersection of the upper and lower contour sets for a given
point x defines the indifference class I(x)={yE€X|y~x} which is a closed set
under Axiom 4. For alternative bundles x these are the familiar indifference
curves for the case of XCR2. Axioms 1-4 together also imply that the upper and
the lower contour sets of the derived strict preference relation > are open, i.e.
{y€X|y>x) and {y€X|x>y) are open.

Many known relations do not display the continuity property. The most
commonly known of them is the lexicographic order which is in fact a strict

preference relation which is transitive and complete. Its indifference classes
consist of single elements.

Definition 4.3

Let X=(xy,..., xp) and y=(y,,..., y,) denote two points of R'. Then x is said to
be lexicographically preferred to , x Lex . if there exists k, 1 Sk=¢, such that

X =y,
J J .
J<k.
xk >_yk9

It can easily be seen that the upper contour set for any point x is neither open
nor closed.

The relationship between the order properties of Axioms 1-3 and the topologi-
cal property of Axiom 4 has not been studied extensively. Schmeidler (1971),
however, indicated that continuity of a preference relation which is transitive
implies completeness. The case when transitivity is implied by continuity and
completeness is examined by Sonnenschein ( 1965).

Theorem 4.1 [Schmeidler (197D)]

Let < denote a transitive binary relation on a connected topological space X.
Define the associated strict preference relation > by x>y if and only if xZy and
not ¥Zx, and assume that there exists at least one pair X, ¥ such that x> 7. If for



Ch. 9: Consumer Theory 387

every xe X

() {yE€X|yZx} and {yE€X|xZy) are closed
and

(i) {y€X|y>x} and {yEX]|x>y} are open,
then Z is complete. -

Proof

The proof makes use of the fact that the only non-empty subset of a connected
topological space which is open and closed is the space itself. First it is shown
that for any x and y such that x>y

{z]z=y}Uu{z|x>z}=X.
By definition one has
{z|z>yYu{z|x>z) C{z]zZ y} U{z]xZ 2)}.

The set on the left-hand side of the inclusion is open by assumption (ii), the one
on the right-hand side is closed by assumption (i). Therefore equality of the two
sets proves the assertion. Suppose u€{z|zZ y} and u&(z|z> y}. Then yZ u.
Since x > y, one obtains x > u. Therefore u € {z]|x >z}, which proves equality of
the two sets since symmetric arguments hold for all points of the set on the
right-hand side.

Now assume that there are two points v and w in X which are not comparable.
Since x>y and (z|z>p}U{z|X>z}=X, one must have v>J or ¥>v. Without
loss of generality, assume v>>y. Applying the above result to v and ¥ yields

{z]z>v}U{z]o>z}=X.

Since v and w are not comparable one has to have w>y and v> y. By assumption
the two sets {z|v>z) and {z|w>z} are open and so is their intersection.

The intersection is non-empty and not equal to X by the non-comparability of
v and w. It will be shown that

{zle=z}n{z|w>z}={z|vZz} N {z|wZz),

contradicting the connectedness of X. Suppose vZz and w’2z. zZv and transitiv-
ity implies wZv. contradicting non-comparability. Similarly, zZw and ¢=2
implies v Zw. Therefore v>z and w>>z, which proves equality of the two sets and
the theorem. Q.E.D.
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3. Utility functions

The problem of the representability of a preference relation by a numerical
function was given a complete and final solution in a series of publications by
Eilenberg (1941), Debreu (1954, 1959, 1964). Rader (1963), and Bowen (1968).
Historically the concept of a utility function was taken first as a cardinal concept
to measure a consumer’s well-being. Pareto (1896) seemed to be the first to
recognize that arbitrary increasing transformations of a given utility function
would result in identical maximization behavior of a consumer. The importance
and methodological consequence, however, were only recognized much later by
Slutsky (1915) and especially by Wold ( 1943-44) who gave the first rigorous
study of the representation problem.

Definition 5.1

Let X denote a set and Z a binary relation on X. Then a function u from X into
the reals R is a representation of =, ie. a utility function for the preference
relation Z, if, for any two points x and v, w(x)Zu(y) if and only if xZy.

It is clear that for any utility function ¥ and any increasing transformation
f: R — R the function v = fou is also a utility function for the same preference
relation Z. Some weaker forms of representability were introduced in the
literature [see, for example, Aumann (1962) and Katzner (1970)]. But they have
not proved useful in consumer theory.

One basic requirement of a utility function in applications to consumer theory
is that the utility function be continuous. It is seen easily that Axioms 1-4 are
necessary conditions for the existence of a continuous utility function. That this is
true for Axioms 1-3 follows directly from the definition of a representation. To
demonstrate necessity of Axiom 4 for the continuity of the function u one
observes that. for any point x, the upper and lower contour sets of the preference
relation coincide with the two sets {(zEX|u(z)Zu(x)) and {zEX|u(x)Zu(z2))
which are closed sets by the continuity of u. The basic result of utility theory is
that Axioms 1-4 combined with some weak assumption on the consumption set
X is also sufficient for the existence of a continuous utility function.

Theorem 5.1 (Debreu, Eilenberg, Rader)

Let X denote a topological space with a countable base of open sets (or a
connected. separable topological space) and = a continuous preference order

defined on X, i.e. a preference relation which satisfies Axioms 1-4. Then there
exists a continuous utility function u.

We will give a proof for the case where X has a countable base. It divides into
two parts. The first is concerned with a construction of a representation function
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v given by Rader (1963). The second applies a basic result of Debreu (1964) to
show continuity of an appropriate increasing transformation of the function o,

Proof

(i) Existence. Let O,,0,.... denote the open sets in the countable base. For
any x consider N(x)={n|x>z, Vz€0,} and define

o(x)= 3 o
neE N(x)
If yZ x, then N(x)C N(y). so that v(x)= v(y). On the other hand, if y > x
there exists n &€ N(y) such that x& 0, but not n&€ N(x). Therefore N(x)g::
N(y) and v(y)>ov(x). Hence v is a utility function.

(1) Continuity. Let S denote an arbitrary set of the extended real line which
later will be taken to be v(X). S as well as its complement may consist of
non-degenerate and degenerate intervals. A gap of § is a maximal non-
degenerate interval of the complement of S which has an upper and a lower
bound in S. The following theorem is due to Debreu (1964).

Theorem 5.2

If S is a subset of the extended real line R there exists an increasing function g
from S to R such that ail the gaps of g(S) are open.

Applying the theorem one defines a new utility function u=go . According to
the theorem all the gaps of u( X) are open. For the continuity of u it suffices to
show that for any r€R the sets u ({1, + c0]) and u ™~ ([ - oo, 1]) are closed.

If t€u(X), there exists y€ X such that u(y)=t. Then u"([t,+oo])={xe
X|xZy} and u " ([—o0,t))= {xEX|yZx}). Both of these sets are closed by
assumption.

If ru(X) and 1 is not contained in a gap, then

(@) 7=Infu(X), or
(b) t=Supu(X), or
© [t.+o]= N [a, + 0]
el %)
and

[~o.1]= [ [—.a]

<a
acu( X)
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(a) implies u~'([¢, + o0])= X and u \([—o0,t)=2,
(b) implies u™'([t, + c0])= & and u~'([— oo, 1) = X.

Both X and the empty set @, are closed.
In the case of (c),

u ([t,+])= ) u ([a,+0])

a<y
a€u(X)

and

u”!([~o0,t])= N u7([~o,a])
aéxu>('X)

are closed as intersections of closed sets.
If 1 belongs to an open gap, i.e. t€]a, b[, where @ and b belong to u( X), then

u='([t,+o0])=u""([b,+0]) whichis closed

and

u ([—co,7]=u""([~,a]) whichisclosed. Q.E.D.

Theorem 5.1 indicates that the concepts of utility function and of the underly-
ing preferences may be used interchangeably to determine demand, provided the
preferences satisfy Axioms 1-4. In many situations, therefore, it becomes a
matter of taste or of mathematical convenience to choose one or the other.

6. Properties of preferences and of utility functions

In applications additional assumptions on the preferences and /or on the utility
function are frequently made. For some of them there exist almost definitional
equivalence of the specific property of preferences and of the corresponding
property of the utility function. Others require some demonstration. We will
discuss the ones most commonly used in an order which represents roughly an
increasing degree of mathematical involvement to demonstrate equivalence.

6.1.  Monotonicity, non-satiation, and convexity
6.1.1.  Monotonicity
Definition 6.1

A preference order on R'is called monotonic if xZy and x# y implies x>y.
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This property states that more of any one good is preferred, which means that
all goods are desired (desirability). The associated utility function of a monotonic
preference order is an increasing function on R'.

6.1.2. Non-satiation
Definition 6.2

A point x € X is called a satiation point for the preference order = if xZy holds
true for all ye X,

A satiation point is a maximal point with respect to the preference order. Most
parts of consumer theory discuss situations in which such global maxima do not
exist or, at least for the discussion of demand problems, where an improvement of
the consumer can be achieved by a change of his chosen consumption bundle. In
other words, the situations under discussion will be points of non-satiation. If at
some point x an improvement can be found in any neighborhood of x, one says
that the consumer is locally not satiated at x. More precisely:

Definition 6.3

A consumer is locally not satiated at x € X if for every neighborhood V of x there
exists a z€ V such that z>x.

This property excludes the possibility of indifference classes with non-empty
interiors and it implies that the utility function is non-constant in the neighbor-
hood of x.

6.1.3.  Convexity
Definition 6.4

A preference order on XC R'is called convex if the set {yE€X|yZx} is convex for
all xe X.

This definition states that all upper contour sets are convex. The associated
concept for a utility function is that of quasi-concavity.

Definition 6.5

A function u: X— R is called quasi-concave if u(Ax+(1—X\)y)= min {u(x) u(y)}
for all x, yE X and any A, 0SAZ 1,

Itis easy to see that the upper level sets of a quasi-concave function are convex.
Therefore. a utility function u for a preference order = is quasi-concave if and
only if the preference order is convex. Thus. quasi-concavity is a property which
relates directly to the ordering. Therefore it is preserved under increasing
transformations. Such properties of a utility function are sometimes called ordinal
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properties as opposed to cardinal properties which are related to some specific
representation function u. Concavity, for example, is one such cardinal property.
Since the class of concave functions is a subclass of the class of quasi-concave
functions, one may ask which additional properties of a convex preference order
are required such that there exists a concave utility function. A final answer to
this question was given by Kannai (1977). A treatment of this problem would go
beyond the scope of this survey.

Definition 6.6

A preference order is called strictly convex if for any two bundles x and x’, x#x’,
xZx’, and for A, O<A<I, Ax+(1 —A)x">x’,

Any associated utility function of a strictly convex preference relation is a
strictly quasi-concave function. Strict convexity excludes all preference relations
whose indifference classes have non-empty interiors.

6.2.  Separability

Separable utility functions were used in classical consumer theory long before an
associated property on preferences had been defined. The problem has been
studied by Sono (1945), Leontief (1947), Samuelson (1947a), Houthakker (1960),
Debreu (1960), Koopmans (1972), and others. Katzner (1970) presented a general
characterization of essentially two notions of separability which we will also use
here.

Let N={N}%_| denote a partition of the set {1,....,f} and assume that the
consumption set X=5,X --- X §,. Such partitions arise in a natural way if
consumption is considered over several dates, locations, etc. Loosely speaking,
separability then implies that preferences for bundles in each element of the
partition (i.e. at each date, location, etc.) are independent of the consumption
levels outside. Let J={1,....k} and, for any j€ J and any x&€ X, write x =
(x,,...,z)‘cj_ 1> Xj+10-++. X, ) for the vector of components different from x;. For any
fixed x~the preference ordering = induces a preference ordering on S; which is
defined by x,Z <% x/ if and only if (x?, x;)Z (x2, x7) for any x; and x} in S;. In
general, such an induced ordering will depend on the particular choice of x2. The

first notion of separability states that these orderings for a particular element jof
the partition are identical for all x 7

Definition 6.7 (weak separability of preferences)

A preference order Z on X =[] ses5; 1s called weakly separable if for each JEJ

Dol S : > At
X~ x; implies x 7«7 x for alf x<ll . ,S.

The induced ordering can then be denoted by Z ;. The corresponding notion of
a weakly separable utility function is given in the next definition.
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Definition 6.8 (weak separability of utility functions)

A utility function u: [] jes9 ~ R is called weakly separable if there exist continu-
ous functions v;: §; >R, jEJ and V: R* - R such that u(x)=

V(oy(x)),..., 0,0x)).

The following theorem establishes the equivalence of the two notions of weak
separability. Its proof is straightforward and can be found in Katzner (1970).

Theorem 6.1

Let ZZ be a continuous preference order. Then 2 is weakly separable if and only
if every continuous representation of it is weakly separable.

Historically a stronger notion of separability was used first. Early writers in
utility theory thought of each commodity as having its own intrinsic utility
represented by some scalar function. The overall level of utility then was simply
taken as the sum of these functions. With the more general development of
preference and utility theory the additive utility function has remained an
interesting case used frequently in certain classes of economic problems. Its
relationship to the properties of the underlying preferences is now well under-
stood, the essential result being due to Debreu (1960).

Definition 6.9 (strong separability of utility functions)

A utility function u: ][] jesS; >R 1s called strongly separable if there exist
continuous functions v;: S~ R, jeJ and V: R— R such that

u(x):V( » vj(xj)).

jeJ

Since V is continuous and increasing one observes immediately that the
function ¥ ~'ou is additive, representing the same preference relation. The
problem of finding conditions on preference relations which vield strong separa-
bility for all of its representations is therefore equivalent to the one of establishing
conditions under which an additive representation exists.

Let u(x)=2,c,u,(x;) denote an additive utility function with respect to the
partition N. Consider any non-empty proper subset / CJ and two bundles x and
x” where all components j belonging to J\[ are kept at the same level x J‘-’, JEII.
We can write therefore x=(x,,x.;) and x'=(x}, x%,). Since u is additive it
is immediately apparent that the induced utility function on [] jerS; 1s indepen-
dent of the particular choice of xJ.;, which also makes the underlying induced
preference order independent. This property holds true for any non-empty proper
subset /CJ. It also supplies the motivation for the definition of a strongly
separable preference relation.
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Definition 6.10 (strong separability of preferences)

A preference order Z on X= HJ.E ;5; 1s called strongly separable if it is weakly
separable with respect to all proper partitions of all possible unions of N freees Ny

Equivalently, a preference order is strongly separable if for any proper subset I

of J, the induced preference order on [] jerd; 1s independent of the particular
choice of x¢ .

Theorem 6.2 [Debreu (1964)]

Let Z be a continuous preference order. Then Z is strongly separable if and only
if every continuous representation is strongly separable.

6.3. Smooth preferences and differentiable utility functions

The previous sections on preferences and utility functions indicated the close
relationship between the continuity of the utility function and the chosen concept
of continuity for a preference order. It was shown that the two concepts are
identical. Section 7 uses this fact to demonstrate that, under some conditions,
demand behaves continuously when prices and wealth change. When continuous
differentiability of the demand function is required, continuity of the preference
order will no longer be sufficient. It is clear that some degree of differentiability
of the utility function is necessary. Since the utility function is the derived concept
the differentiability problem has to be studied with respect to the underlying
preferences. The first rigorous attempt to study differentiable preference orders
goes back to Antonelli (1886) and an extensive literature has developed studying
the so-called integrability problem, which was surveyed completely by Hurwicz
(1971). Debreu (1972) has chosen a more direct approach to characterize differen-
tiable preference orders. His results indicate that sufficiently “smooth”, i.e.
differentiable preference orders, are essentially equivalent to sufficiently differen-
tiable utility functions and that a solution to the integrability problem can be
found along the same lines. [See also Debreu (1976) and Mas-Colell (1975).]

To present the approach of Debreu we will assume, for the purpose of this
section as well as for all later sections which deal with differentiability problems,
that the consumption set X is the interior of the positive cone of Rf which will be
denoted P. The preference order Z is considered as a subset of PXP, ie.
ZCPXP, and it is assumed to be continuous and monotonic. To describe a
smooth preference order, differentiability assumptions will be made on the graph
of the indifference relation in PxXp

Let C*, k21, denote the class of functions which have continuous partial
derivatives up to order k, and consider two open sets X and Y in R”. A function A
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from X onto Y is a C*-diffeomorphism if 4 is one-to-one and both # and h~! are
of class C*. A subset M of R"is a C*-hypersurface if for every z €M, there exists
an open neighborhood U of z, a C*-diffeomorphism of U onto an open set
VCR", and a hyperplane HC R" such that k(M U)YCVNH. Up to the diffeo-
morphism 4, the hypersurface M has locally the structure of a hyperplane. The
hypersurface of interest here  with respect to the preference order is the indif-
ference surface I defined as /= {(x, y)EPXP|x~y}. Smooth preference orders
are those which have an indifference hypersurface of class C?, and we will say
that Z is a C?-preference order. The result of Debreu states that C 2-utility
functions are generated by preference orders of class C2 and vice versa.

Theorem 6.3 [Debreu (1972)]

Let Z denote a continuous and monotonic preference order on the interior of the
positive cone of R'. There exists a monotonic utility function of class C? with no
critical point for Z if and only if [ is a C 2-hypersurface.

7. Continuous demand

Given a price vector p#0 and the initial wealth w the consumer chooses the best
bundle in his budget set as his demand. For preference orders satisfying Axioms
1-3 any best element with respect to the preference relation is also a maximizer
for any utility function representing it, and vice versa. Thus, preference maximiza-
tion and utility maximization lead to the same set of demand bundles. We now
study the dependence of demand on its two ¢xogenous parameters, price and
wealth.

The budget set of a consumer was defined as B( p, w)= {(XEX|p-x=w)}. Let
SCR™! denote the set of price-wealth pairs for which the budget set is
non-empty. Then B describes a correspondence (i.e. a set valued function) from S
into R'. The two notions of continuity of correspondences used in the sequel are
the usual ones of upper hemi-continuity and lower hemi-continuity [see, for
example, Hildenbrand (1974), Hildenbrand and Kirman (1976), or Green and
Heller, Chapter 1 in Volume I of this Handbook].

Definition 7.1

A correspondence ¢ from S into 7, a compact subset of R, is upper hemi-
continuous (u.h.c.) at a point y € S if, for all sequences z” -z and ¥" =y such that
z"eyY(y"), it follows that z €y( ).

With T being compact this definition says that y is upper hemi-continuous if it
has a closed graph. Furthermore, one immediately observes that any upper
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hemi-continuous correspondence which is single valued is in fact a continuous
function.

Definition 7.2

A correspondence ¢ from S into an arbitrary subset T of R is lower hemi-
continuous (Lh.c.) at a point y€S if for any z° €Y(y) and for any sequence
y" -y there exists a sequence z” —z° such that z” ey(y") for all n.

A correspondence is continuous if it is both lower and upper hemi-continuous.
With these notions of continuity the following two lemmas are easily established.
[For proofs see, for example, Debreu (1959) or Hildenbrand (1974).]

Lemma 7.1

The budget set correspondence B: S—X has a closed graph and is lower
hemi-continuous at every point ( p,w) for which w>min { P x|x € X} holds.

The condition w>min { p-x|x € X} is usually referred to as the minimal wealth
condition.

It was argued above that preference maximization and utility maximization
lead to the same set of demand bundles if the preference relation is reflexive,
transitive, and complete. Therefore, if u: X— R is a utility function the demand of
a consumer can be defined as

v(p.w)={x€B(p.w)lu(x)Zu(x’), x' €B(p,w)), (7.1)

which is equivalent to definition (3.2). With a continuous utility function the
demand set o( p, w) will be non-empty if the budget set is compact. In this case
an application of a fundamental theorem by Berge (1966) yields the following
lemma on the continuity of the demand correspondence.

Lemma 7.2

For any continuous utility function u: X — R the demand correspondence

®: $— X is non-empty valued and upper hemi-continuous at each (p,w)ES,
where B( p,w) is compact and w <min{p-x|x€ X}.

From the definition of the budget correspondence and the demand correspon-
dence it follows immediately that ¢(Ap, Aw)=q( p,w) for any A>0 and for any
price-wealth pair ( p.w). This property states in particular that demand is
homogeneous of degree zero in prices and wealth. For convex preference orders
the demand correspondence will be convex-valued, a property which plays a
crucial role in existence proofs of competitive equilibrium. If the preference order
is strictly convex then the demand correspondence is single-valued, i.e. one
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obtains a demand function. Upper hemi-continuity then implies the usual con-
tinuity, To summarize this section, we indicate in the following lemma the
weakest assumptions of traditional demand theory which will generate a continu-
ous demand function.

Lemima 7.3

Let Z denote a strictly convex and continuous preference order. Then the
demand correspondence ¢: S— X is a continuous function at every (p,w)€ES for
which B( p,w) is compact and w>min { p-x|x € X} holds. Moreover, for all A\>0,
(A p, Aw)=g( p,w), i.e.  is homogeneous of degree zero in prices and wealth.

For the remainder of this survey, following the traditional notational conven-
tion, the letter f will be used to denote a demand function.

8. Demand without transitivity

Empirical studies of demand behavior have frequently indicated that consumers
do not behave in a transitive manner. This fact has been taken sometimes as
evidence against the general assumption that preference maximization subject to a
budget constraint is the appropriate framework within which demand theory
should be analyzed. Sonnenschein (1971) indicates, however, that the axiom of
transitivity is unnecessary to prove existence and continuity of demand. A related
situation without transitivity is studied by Katzner (1971) where preferences are
defined locally and thus “local” results for demand functions are obtained.

Recall that without transitivity a utility function representing the preference
relation cannot be defined. Let == denote a preference relation which is complete
but not necessarily transitive. Then the definition of demand as in Definition 3.2
can be given in the following form:

Definition 8.1

The demand correspondence ¢: S— X is defined as P(p,w)={xEB(p,w)|xZx’
for all x'€B(p,w)).

Theorem 8.1 (Sonnenschein)

Let o(p,w)# @ forall (p,w)€E S and assume that 8 is continuous at (p°,w*)eS.
If the preference relation is continuous, then the demand correspondence @ is
w.h.c. at ( p° w?).

The assumption that ¢(p,w)# @ for all (p,w)€ES is implied by some mod-
ified convexity assumption on the strict preference relation, as indicated by the
next theorem.
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Theorem 8.2 (Sonnenschein)

Let = denote a continuous preference relation on X such that the set {(x'€X|x>
x} is convex for all x€ X. Then o(p,w)# & whenever 8(p,w)# @.

Therefore, the two results by Sonnenschein indicate that continuous demand
functians will be obtained if the transitivity is replaced by the convexity of
preferences.

A further result in the theory of the non-transitive consumer was given by
Shafer (1974). This approach formulates the behavior of a consumer as one of
maximizing a continuous numerical function subject to a budget constraint. This
function, whose existence and continuity does not depend on transitivity, can be
considered as an alternative approach to represent a preference relation.

Let X=R', and let = denote a preference relation on X. Since any binary
relation uniquely defines a subset of R', XR' | and vice versa, one writes
ZCR', xR, such that (x, y) €= if and only if xZy. Define:

Z(x)={y|(y,x)EZ},
-1
Z ()={x,y)EZ),
>(x)={y|(y.x)EZ and (x,y)eZ}.
With this notation the usual properties of completeness, continuity, and strict
convexity which will be needed below are easily redefined.

Definition 8.2

The relation Z is complete if and only if (x, y)€Z or (y,x)EZ for any x
and y.

Definition 8.3
The relation Z is continuous if for all x the sets Z(x)and = l(x) are closed.
Definition 8.4

The relation Z is strictly convex if for (x, zZ)EZ(y) and 0<a<1 it follows that
ax+(l—a)z€>(y).

We can now state Shafer's representation result.

Theorem 8.3 (Shafer (1974))

Let ZCR', xR, denote a continuous, complete, and strictly convex preference
relation. Then there exists a continuous function k- R', XR', - R satisfying

() k(x.¥)>0if and only if x & >( y),

(i) k(x.»)<0if and only if y € >(x).

(i) k(x. ¥)=0if and only if x& Z(¥) and yE>(x),
(V) k(x.y)= —k(y. x).
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The assumptions of the theorem are the traditional ones except that the
transitivity axiom is excluded. If the latter were assumed then a utility function u
exists and the function k can be defined as k(x, Y)=u(x)—u(y).

As before, let 8( p,w) denote the budget set of the consumer. Then the demand
of the consumer consists of all points in the budget set which maximize k. More
precisely, the demand is defined as

e(p.w)={x€B(p,w)k(x, )20, allyeB(p,w))

or, equivalently,

o(p.w)={xEB(p,w)|(x, y)EX, allyep(p,w)).

The strict convexity assumption guarantees that there exists a unique maximal
element. The following theorem makes the maximization argument precise
and states the result of the existence of a continuous demand function by
Sonnenschein in an alternative form, which may be used to derive demand
functions for a non-transitive consumer explicitly.

Theorem 8.4 (Shafer)

Under the assumptions of Theorem 8.2 and for each strictly positive price vector
p and positive wealth w, the demand x={(p, w)={xEB(p,w)|k(x, y)=0, all
Yy EB(p,w)}, exists and the function f is continuous at (p,w).

9. Demand under separability

Separability of the preference order and the utility function, whether weak or
strong, has important consequences for the demand functions, Using the notation
and definitions of section 6.2, under separability the utility function can be
written as

u(x):V(Ul(xl)w-vvk(xk))» (9.1)

where the x, j=1,...,k, are vectors of quantities of commodities in S, and
X=§X---XS,. The v x,) are utility functions defined on S,. We will use the
vector p, for the prices of the commodities in N,

Definition 9.1
For any w, ER’, define a sub-budget set

B'(p-w)=(x €5 px,Zw, }. (92)
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We are now in a position to introduce the concept of conditional demand
functions j;f( p;»w;) describing the x ; which maximize v/(x;) over the sub-budget
set.

Definition 9.2

Conditional demand functions are given as
17(pw)={x,€ B4 gy W)l (x)) > 0,(x?), xP€ B/ 5, w)}. (93)

These conditional demand functions share all the properties of the usual
demand functions, except that their domain and range is limited to PjsWs and S;.
Given v(x;), p;, and w;, then demand x; 1s known. However, w; is not given
exogenously, but as part of the overall optimization problem. Let f( p,w) be the
J-subvector of the demand function f( p, w). Then, W, is given by

wH(p.w)=p/f(p,w). (9.4)

Note that in general the full price vector p is needed to determine w*.! When
using the w} generated by w,(p,w) in the conditional demand functions one

would expect to obtain the same demand vector as the one given by f(p,w).
Indeed, one has

Theorem 9.]

Under separability of the utility function
5o owr(pow))=fi(pow), forallj. (9.5)

Proof
Consider a particular ( p° w?). Let x} =f/(p).w*(p° w®)) for some j and x°=

N ZO, w?). Clearly, xj‘-’ € B/ p}’, wX( % w®)). Assume x* séxj‘.’. Then vj(xf)>vj(xj°)
an

V(v](x?)....,vj(xf),---»Uk(xl(c)))

>V(v,(x0),.... vj(xj(-’ | - ve(xf))=u(x°) (9.6)
because V' is monotone increasing in v,(x;). Since (xj‘l, x}) is an element of the

'Gorman (1959) has investigated under what condition one can replace the full f-vector p in (9.4) by
a k-vector of price indexes of the type P (p,). These conditions are restrictive.
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budget set S( p,w), inequality cannot hold. Equality, however, means v(x})=
v(x}) and x* =x? since x; is the unique vector maximizing v,(x;) over x; €
B/(p}-w*( p%,w?)). Therefore (9.5) holds for ( p° w°). Since ( p°,w®) is arbitrary,
it holds for all admissible ( p,w) and the theorem is proved.

The interest of Theorem 9.1 is twofold. First, it shows that the other prices
affect the demand for x  only by way of the scalar function w*( p,w), implying a
considerable restriction on the scope of the impact of ;- Second, if one can
observe the w; empirically one can concentrate on the conditional demand
functions for which only the p; are needed. An example of the latter is to consider
demand behavior for a certain period, say a year. Under the (usually implicit)
assumption of separability over different time periods one only needs to know
total expenditure for that period (w;) and the corresponding price vector ( 2,)- In
this context (9.4) may then be considered as the consumption function, relating
total consumer expenditure to total wealth and prices for all periods.

10. Expenditure functions and indirect utility functions

An alternative approach in demand analysis, using the notion of an expenditure
function, was suggested by Samuelson (1947a). It was only fully developed after
1957 [see, for example, Karlin et al. (1959) and McKenzie (1957)]. It later became
known as the duality approach in demand analysis [see also Diewert (1974) and
Diewert, Chapter 12 in Volume II of this Handbook]. In certain cases it provides
a more direct analysis of the price sensitivity of demand and enables a shorter
and more transparent exposition of some classical properties of demand func-
tions. Without going too much into the details of this approach we will describe
its basic features and results for a slightly more restrictive situation than the
general case above. These restrictions will be used in all later sections.

From now on it will be assumed that the consumption set X is equal to the
positive orthant R', and that all prices and wealth are positive. This implies that
the budget set is compact and that the minimum wealth condition is satisfied.
Therefore for any continuous utility function the demand correspondence ¢ is
upper hemi-continuous. Furthermore, the assumption of local non-satiation will
be made on preferences or on the utility function, respectively. This implies that
the consumer spends all his wealth when maximizing preferences.

Given an attainable utility level v=u(x), x € X, the expenditure function is the
minimum amount necessary to be spent to obtain a utility level at least as high as
v at given prices p. Hence, the expenditure function E: R', | X R — R is defined as

E(p.v)=min{p-x|u(x)Zv}, (10.1)

The following properties of the expenditure function are easily established.
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Lemma 10.1

If the continuous utility function satisfies local non-satiation then the expenditure
function is:

(i) strictly increasing and continuous in v for any price vector p, and

(i) non-decreasing, positive linear homogeneous, and concave in prices at each
utility level v.

Let y=E( p,v) denote the minimum level of expenditures. Since E is continu-
ous and strictly increasing in v, its inverse v=g( p, y) with respect to v expresses
the utility level as a function of expenditures and prices which is called the
indirect utility function. It is easy to see that

g(p, y)=max {u(x)| p-x=y). (10.2)
Due to the properties of the expenditure function the indirect utility function is

(1) strictly increasing in y for each price vector p, and

(1) non-increasing in prices and homogeneous of degree zero in income and
prices.

From the definitions of E and g the following relations hold identically:

v=g(p,E(p,v)) and y=E(p,g(p,y)). (10.3)

Given a price vector p and a utility level v the expenditure minimum E( p, v)
will be attained on some subset of the plane defined by E(p,v) and p. If
preferences are strictly convex there will be a unique point x €X minimizing

expenditures and we denote the function of the minimizers by x=Ah( p,v). By
definition one has therefore

E(p.v)=p-h(p,v). (10.4)

The function # is the so-called Hicksian “income-compensated” demand func-
tion. h is continuous in both of its arguments and homogeneous of degree zero in
prices.

Considering the original problem of the maximization of utility subject to the
budget constraint p-xSw, our assumptions of local non-satiation and strict
convexity imply that one obtains a continuous function of maximizers f( p,w).

This function is the so-called Marshallian “market” demand function which
satisfies the property

p-flp.w)=mw. (10.5)
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From these definitions one obtains a second pair of identities which describe the
fundamental relationship between the Hicksian and the Marshallian demand
functions:

fp.w)=h(p,g(p,w)), forall(p,w),

(10.6)
h(p,o)=f(p,E(p,v)), forall(p,v).

One important property of the Hicksian demand function can be obtained
immediately. For a fixed utility level v, consider two price vectors, p and p’, and
the associated demand vectors, x=h( p, v) and x’=h( p’,v). Using the property
that x and x’ are expenditure minimizers, one obtains

(p—p)(x—x")=0. (10.7)

For the change Ap, =p, —pj, of the price of a single commodity k£ with all other
prices held constant, i.e. Ap, =0, h#k, (10.7) implies

Ap, Ax, Z0. (10.8)

In other words, a separate price increase of one particular commodity will never
result in a larger demand for this commodity. The Hicksian demand function of
any commodity is therefore never upward sloping in its own price. This property
is commonly known as the negativity (non-positivity) of the own substitution effect.
A detailed discussion in the differentiable context can be found in Section 13.

11.  Properties of differentiable utility functions

The following sections treat utility and demand in the context of differentiability
which is the truly classical approach to the theory of consumer demand [see, for
example, Slutsky (1915), Hicks (1939), and Samuelson (1947a)).

Let u: X—R be a C? utility function with no critical point representing a
complete and continuous preference order of class C2 on X characterized by
monotonicity and strict convexity. Then this function is (i) continuous, (ii)
increasing, i.e. u(x)>u(y) for x>y and x#y, and (iii) strictly quasi-concave, i.e.
u(ax+(1—a)y)>u(y) for a€(0,1) and u(x)Zu(y). It is twice continuously
differentiable with respect to x, i.e. all its second-order partial derivatives exist
and are continuous functions of x. It will be assumed that all first-order
derivatives, namely du/dx, =u,, i=1,...,, are positive. They are called marginal
utilities. In the following the symbol u,_ will be used to denote the f-vector of
marginal utilities. Since the second-order derivatives are continuous functions of
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their arguments, applying Young’s theorem yields the symmetry property

3u du 3}
u.= = =y..
Yoooxdx;  Oxdx,

Let U,, be the X! Hessian matrix of the utility function, i.e. the matrix of the
second paruial derivatives of u with typical element u, ;- The symmetry property
means that U, is a symmetric matrix, i.e. U, =U., (where the prime denotes
transposition).

The property of strict quasi-concavity of the utility function implies some

further restrictions on the first- and second-order partial derivatives of the utility
function.

Theorem 11.1

Under strict quasi-concavity of the utility function
z’U,z=0 for every element of {z€ R'u},z=0),

where the derivatives are evaluated at the same but arbitrarily selected bundles
xe X.

Proof

Take an arbitrary bundle x € X. Select another bundle ¥ # x such that u( y)= u(x).
For scalar real a consider the bundle m= ay +(1— a)x =az+x withz=y—x.
For fixed x and y and varying a, define the function f(a)=u(m), which is a
differentiable and strictly quasi-concave function, such that fla)> f(0)= f(1),
a€(0,1) and f(0)>0, f(1)<0. Thus, there exists a value a€(0,1) such that
f(&)=0 corresponding to a maximum of f(a) implying f”’(&)=0. This maximum
iIs unique since f is strictly quasi-concave, Now

iy du dm,
./(a)_ " ami—g';_uxz“07

dm,. 92y dm,

L <
da dm;dm; da U220,

fe)=33

i

with the derivatives evaluated at w=az+x. Since y can be chosen arbitrarily close
to x, the property holds also when the derivatives are evaluated at bundles in a
small neighborhood of x and by virtue of continuity at x itself.

The property of strict quasi-concavity of the utility function is not strong
enough to obtain everywhere differentiable demand functions. As a regularity
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condition the weak inequality of the theorem above is changed into a strong one.
The result is known as strong quasi-concavity.

Definition 11.1

A strictly quasi-concave utility function is said to be strongly quasi-concave if

2'U,,z<0 for every element of {zE€R"|u}z=0,z70]}.

This additional condition is equivalent to non-singularity of the so-called
bordered Hessian matrix

H:[U’“‘ u"]. (11.1)

Theorem 11.2

The bordered Hessian matrix H associated with a strictly quasi-concave mono-
tone increasing utility function is non-singular if and only if the utility function is
strongly quasi-concave.

Proof ?

(1) Sufficiency. Assume that H is singular. Then there exist an f-vector z and a
scalar r such that simultaneously

U,z+ur=0;, u.z=0; (z/,r)#0. (11.2)

The case of z=0, r#0 can be ruled out because then u, r=0, which implies
u, =0, contradicting the monotonicity of the utility function. The case of z50
can also be ruled out, since premultiplying (11.2) by z’ would result in z'U,_ z=0,
u, z=0, z#0, contradicting the property of strong quasi-concavity. Consequently,
no non-zero vector (z', r) exists such that (z', r)H =0 and thus H is non-singular.

(i1) Necessity. We will proceed in three steps. First it will be shown that if H is
non-singular there exist real numbers a<<a* such that the matrix 4(a)=U_, +
au, u’ is non-singular, where the typical element of A(a) is u;; +au,u,. Secondly,
we will show that under strict quasi-concavity there exist real numbers g< g*
such that A(8) is a negative semi-definite matrix. The third step will combine the
first two steps.

Step 1. Non-singularity means that for all f-vectors ¢, such that u'c, =0,
A(a)c, #0, for all a. Consider next all vectors ¢, such that w/c,#0, and

2See also Debreu (1952), Dhrymes (1967), and Barten et al. (1969).
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normalize ¢, such that uic,=1. A(&)c,=0 means &= —cU,c,. Let a*=
min { —c3U,,c,|c5u, =1}. For a<a*, A(a)c, #0 and A(ea) 1s non-singular.

Step 2. 1f A(B) is negative semi-definite, i.e. ¢’A(B)c<0, then clearly for all 8,
z'U,,2<0 for all z such that u/,z=0. Furthermore, if z'U,,z=<0 for all z such that
u,z=0, then also z’A(B8)z<0 for all B. Consider next all vectors ¢ such that
u,c#0 and normalize these such that u,e=1. c’A(B)c=<0 requires B< —c'U, .
Let p*=min {—c'U, c|c’'u, =1}. Therefore, A(B) is negative semi-definite if

B=<B*.

Step 3. There exist real numbers Y<B*=a* such that A(y) is both non-singular
and negative semi-definite, A negative semi-definite matrix which is non-singular
is a negative definite matrix. Therefore, 2’A(y)z=2'U,,2<0 for all u/z=0, z#0,
i.e. u is strongly quasi-concave. Q.E.D.

What has been said about the property of the derivatives of u is also true for
any differentiable increasing transformation of x. This is evident in the case of the
positive sign of the marginal utilities and the consequences of strict quasi-concavity
which are based directly on properties of the preference ordering, i.e. on mono-
tonicity and convexity, respectively. Still, it is useful to write down explicitly the
consequences of such transformations for the derivatives. Let F be a twice
continuously differentiable increasing transformation F: R —» R,ie. FF>0and F”

continuous. Define v( x)=F(u(x)). The following relations hold between the
first- and second-order partial derivatives of v(x) and u(x):

dv/3x, =F'3u/dx, or o, =Fu,,

0%v/dx,0x; =F'3%u/dx,0x, +F"(3u/dx;)(8u/dx;),
or

Vix=F U, +F'uu’.

Since F” is positive, v, has the same sign as u,. The elements of V., do not
necessarily have the same sign as those of U,«- However, z’U, z<0 for every
element of {z € RY\u,,z=0) implies 'V, ,z<0 for every element of {zERYv,z=
0}. Indeed, vz=F'u’2=0 and thus 2V2=F2'U 2+ F'(2'u )* =F7z'U,, 2z <0.
Note that this is not a new result, but simply another demonstration of the fact
that strict and strong quasi-concavity reflect properties of the preference ordering.

Since the marginal utilities 9y /0x; are not invariant under monotone increasing
transformations, one sometimes reasons in terms of ratios of a pair of marginal
utilities, for instance (du/3x,)/(du /3x ;) which is clearly invariant. Keeping the
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level of utility constant and varying x; and x ; alone, one has, locally,
(8u/8x,)dx;"+(8u/8.xj)dxj’?‘=0 (11.3)
or

du/dx, dxy
i = 4 s (11.4)
! du/dx; dx}

where R, ; 18 the marginal rate of substitution (MRS) between commodities 7 and ;.
It represents the amount of commodity j to be sacrificed in exchange for an
increase in commodity i, keeping utility constant.

R;; is assumed to be a decreasing function of x,, ie. at the same level of utility
less of x, has to be sacrificed to keep utility constant when x, is large than when x,
is small. This assumption of diminishing marginal rate of substitution for any pair
(i, j) follows from strong quasi-concavity of the utility function.

Decreasing MRS means that

R, . R,

ax, uax, O (11.5)
which yields

%(u”uf~2u,.uju,-j+ujjuf)<0.

Y
The term in parentheses is equal to z'U,, z for z, =0, k+i, Jand z;=—u, and

z;=u;. Since ;>0 and u}z=0, strong quasi-concavity implies the negativity of
(11.5). The reverse implication holds under some additional assumptions which
are discussed by Arrow and Enthoven (1961).

Traditionally the concept of MRS has been used in connection with weak and
strong separability. Before turning to this issue it is useful to investigate the
consequences of the differentiability of w(x) in the case of (weak) separability.
Given that under separability

u(x)=V(vi(x,),..., v,(x,)), (11.6)
differentiability implies that for i EN,

du dV avj
— =" 11.7
dx; dvu; dx, (11.7)
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exists and hence 3 /dv; and dv, /dx; exist. Since v;(x;) has all the properties of a
utility function, hence v, /0x,>0; also aV/dv, is positive because du/dx, >0.
Next for i, kEN,

%u v Bzvj 32y dv; dvy;

= — 11.8
dx,0x, dv; dx, dx, 30} dx; dx,’ (11.8)
and for iEN}, kENg,j;ég
2 2 dv, dv
a u _ a V Uj z (11-9)

ax;0x, dv;0v, dx, Ox,

Therefore, the existence and symmetry of U, , implies the existence and symmetry
of the Hessian matrix V.

In the case of strong separability 0V/dv,=V", i.e. equal for all j. Then

d dv,(x.
1)y 8ulx) (11.10)

i

while the Hessian matrix ¥, has all elements equal.

Separability and properties of the MRS are related to each other by the
following two theorems.

Theorem 11.3

The MRS between two commodities and k within the same element Nj of the

partition is independent of consumption levels outside of N, if and only if the
utility function is weakly separable.

This means that for all €N, the du/dx, consist of the product of a common
factor a,(x) and a specific factor B, x;) which is a function of x ; only, ie.

du(x)/ox, :“j(-x )Bji(xj)-

This corresponds to (11.7) for a,(x)=aV/3v; and Bi(x;)=dv, /0x,.
Theorem 11.4

The MRS between a commodity €N, and another commodity f EN,, g#J/. in
different elements of the partition, can be written as the ratio of two functions

B.(x,) and B /(x,). respectively, if and only if the utility function is strongly
separable.
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In the literature, for example Goldman and Uzawa (1964), strong separability
is identified with independence of the MRS between and f, i EN,fEN,, g#j, of
the consumption levels of commodities in other groups. This definition requires a
partition into at least three groups, which is unsatisfactory since strong separabil-
ity can exist also for two groups. The present theorem covers also the case of a
partition into two groups and is inspired by Samuelson ( 1947a). Note that in
general weak separability into two groups does not imply strong separability,

12. Differentiable demand

In Lemma 7.3 conditions are given for the existence of continuous demand
functions f( p,w), which are moreover homogeneous of degree zero in prices and
wealth. This section will focus on the consequences of the assumption of differen-
tiability of the utility function for the demand functions. In particular, the
differentiability of the demand functions will be studied.

We will confine ourselves to the case where the consumption set X is the open
positive cone P of R'. To obtain demand bundles in P we will further assume that
preferences are monotonic, of class C 2, and that the closures of the indifference
hypersurfaces are contained in P. Then, under positive prices and positive wealth
the demand function is well defined and it maps into the positive cone of R’
Moreover, the consumer will spend all his wealth maximizing preferences. There-
fore his choice can be considered as being limited to all bundles x P which
satisfy p'x=w.

If u(x) is twice continuously differentiable then demand x = f(p.w), as defined
in (3.2) or in (7.1), can be determined as the solution of a classical maximization
problem: maximize u(x) with respect to x subject to p'’x=w. One forms the
Lagrangean

L(x, X, p,w)=u(x)—A(p'x—w), (12.1)

where A is a Lagrange multiplier. First-order conditions for a stationary value of
u(x) are

dL/dx=u_—Ap=0, (12.2a)
0L/IA=w—p'x=0. (12.2b)

As in the previous section it will be assumed that u,>0,1=1,...,n. Then. with u_
and p both strictly positive, the first condition implies a positive value of A. A
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necessary second-order condition for a relative maximum is that
z’L, z<0 forevery z €R"such that p’z=0, (12.3)

where L, =9%L/9x0dx’, evaluated at a solution of ( 12.2). Under strict quasi-
concavity of the utility function (see Theorem 11.1) this condition is satisfied
since L., = U, and p’z=0 implies u/,z=0 in view of (12.2a) and positive A.

System (12.2) is a system of {+ 1 equations in 2({+ 1) variables: the f-vectors x
and p and the scalars A and w. For our purpose p and w are taken as given, and x
and A are the “unknown” variables. Lemma 7.3 guarantees the existence of a
unique solution for x=f( p,w). Then there also exists a unique solution for A,
namely 6( p, w)=ul'f( p,w)/w, with 42 evaluated at x =f( p, w).

It can easily be verified that the solution of ( 12.2) for x is invariant under
monotone increasing transformations of u(x) but the one for A is not. For such a
transformation F the first-order conditions (12.2) are changed into F'u  —A*p=0,
w—p'x=0. The first one becomes (12.2a) again after division by F’>0, with
A=A*/F". The solution for x is thus invariant, while A*=F’\ is the solution for
the Lagrange multiplier for the transformed problem,

We now turn to the matter of differentiability of f( p,w) and 8(p,w). To
prepare the ground we start by writing down the differential form of system (12.2)
at (x%, A% p,w) with x° =f(p.w)and X’ =0( p, w):

Uddx—Xd p—pdA=0, (12.4a)
dw—p'dx—x%dp=0, (12.4b)

where U is U, evaluated at x°. After some rearrangement of terms one obtains
the Fundamental Matrix Equation of Consumer Demand:

vl opll dx _| A1 olldp (12.5)
PO —dA| | —x* 1{|dw] '
where / is the X[ identity matrix. One may write formally
dx=X,dp+ x, dw; dA=NX,dp+ A, dw (12.6)
or
dx B X, x, |ldp
ST il BV | PN E (12.7)

It is clear that f( p.w) and 6( p.w) are continuously differentiable if and only if
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the matrix on the right-hand side of (12.7) is the unique matrix of derivatives.
Combining (12.5) and (12.7) one obtains

Ul p
p 0

X, X, 1o
A |7 o (12.8)

p — X

for arbitrary (dp,dw). We can now state the result on the differentiability of
demand, first given by Katzner (1968), who also gives an informative counterex-
ample.

Theorem 12.1 (Differentiability of Demand)

The system of demand functions f(p,w) is continuously differentiable with
respect to ( p,w) if and only if the matrix

[ng P (12.9)

’

p 0

is non-singular at x®=£( p, w).
Proof

(1)  Sufficiency. Applying the Implicit Function Theorem to the system (12.2)
requires the non-singularity of the Jacobian matrix with respect to (x, A),
which is equal to the matrix (12.9).

(i)  Necessity. 1f f( p,w) is differentiable, the chain rule implies that O(p.w)is
differentiable and that the matrix on the right-hand side of ( 12.7) is the
matrix of derivatives. The (f + )X (f + 1) matrix on the right-hand side of
(12.8) is of full rank. Thus, the two (f + 1)X(f + 1) matrices in the product
on the left-hand side of (12.8) are of full rank. Therefore (12.9) is non-
singular.

Lemma 12.2

The matrix (12.9) is non-singular if and only if the matrix

is non-singular.

We have now established that differentiability of the demand functions derived
from strictly quasi-concave monotone increasing differentiable utility functions is
equivalent to non-singularity of H. This latter condition is implied by strong
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quasi-concavity of these utility functions (Theorem 11.2), which, in turn, is
equivalent to the assumption of diminishing marginal rate of substitution. As far
as these two latter properties exclude singular points, the four properties men-
tioned here are equivalent and interchangeable.

Thus far we have studied the relationship between differentiability of the
(direct) utility function and the Marshallian demand functions f(p,w). The next
theorems establish differentiability properties of the indirect utility function

(10.2), the expenditure function (10.1), and the Hicksian demand function h( p,v)
in (10.4).

Theorem 12.3 (Differentiability of the Indirect Utility Function)

Assume that the direct utility function u(x) is twice continuously differentiable

and that the demand function f( p,w) is continuously differentiable. Then, the
indirect utility function

g(p,w)=max{u(x)| p'x=w)

is twice continuously differentiable with respect to ( p, w).

Proof
From the differentiability properties of u and f and from the identity
g(p.w)=u(f(p,w)) (12.10)
and from p’f( p,w)=w one obtains
o = A = 8w (o), (12.11)
since
of

p'FF:‘f(p,W)ﬁ

Similarly, differentiation with respect to w yields

9 _ ., f _, 3
3w Y3, =AP 3_{v =0(p,w), (12.12)

since

ku\
gl
il
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Since 8( p,w) and f(p,w) are both continuously differentiable with respect to
( p,w) the indirect utility function is twice continuously differentiable.

Two comments can be made. Note that A, the Lagrange multiplier associated
with the budget constraint, is the derivative of the indirect utility function with
respect to wealth: the margingl utility of wealth (income, money), i.e.

A= 0 _ du(f(p,w))
ow Iw '
Next, one has a result due to Roy (1942):
Corollary 12.4 (Roy’s Identity)

1
dg/ow

flp,w)=— dg/op. (12.13)

Proof
Combine (12.11) and (12.12).

According to (10.3) the expenditure function E(p,v) is the solution of
v = g( p,w) with respect to w.

Theorem 12.5 (Differentiability of the Expenditure Function)

The expenditure function is continuously differentiable if and only if the indirect
utility function is continuously differentiable.

Proof

g(p,w) is the inverse of E( p, v) with respect to v, i.e.

E(p,v)=g '(p,v), (12.14)
gp,w)=E~'(p,w). (12.15)

Differentiation of E( p, E ~'(p,w))=w then yields

BE 1 SE'_ dg
9E __8ET'_ % 12.16
ap E/0 . op (12.16)
and
-1
L__9%E % (12.17)

9E/d0  ow  ow’
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Since 3E /dv>0, differentiability of E implies differentiability of g. Conversely,
differentiation of g( p, g ~'( p. v))=v yields

9% I _ 3g '  3E (12.18)
dp dg/ow dp dp
and
-1
| __9 ' _3E (12.19)
dg/dw  dv Qv

Since dg/dw>0, differentiability of g( p,w) implies differentiability of E( p,v).
Q.E.D.

Theorem 12.6 (Differentiability of the Hicksian Demand Function)

If the expenditure function E( p, v) is differentiable then
JE
3p (P 0)=h(p,v). (12.20)

Consequently, if E( p, v) is twice continuously differentiable then

d(dE/dp)  oh
p’Ip

, (12.21)

which implies that 3k /dp’ is a symmetric matrix.
Proof

One only has to establish (12.20).

Consider an arbitrary commodity & and let 1, denote the f-vector with >0 in
the kth position and zero elsewhere. Then

Epri, o) E(po) o LU AL e 105)) S

zhk(p+tk’v)'

On the other hand,

E(p—t,,0)—E(p,v 1hlp=t,,0)—h(p,
(p—1 ——)t (p ):P[ (p t—t) h(p U)] +h(p—1,.0)

§hk(p"_tk,v).
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Taking the limit for 1— 0 yields

JdE
a——(p,v)th(p,v). Q.E.D.
Pk

13.  Properties of first-order derivatives of demand functions

Since u( x) is twice continuously differentiable, the Hessian matrix U, , 1s symmet-
ric. Then also matrix (12.9) is symmetric, and the same is true for its inverse. Let
Z be an (X{ matrix, z be an fvector, and { a scalar defined by

Z :
2 ¢
Note that Z=2’, i.e. matrix Z is symmetric. Premultiply both sides of (12.8) by
this inverse to obtain

X, X, _
=N, —A,

P

= (13.1)

14

p O

U, p]“'

AZ—zx' 2

A+ (13.2)

where zx’ denotes the matrix (z;x;). Clearly z=x,, and {=—A\,. Furthermore,
writing K=AZ one has

X, =K—x,x, (13.3a)

with x,,x” denoting the matrix [(9f, /dw)x;] and x=f(p,w). In scalar form this
equation, sometimes named the Slutsky equation, can be written as

aif.(p,w) _ if(p.,w)
—E)T“kij(p’w)—Tﬁ(p’w)' (13.3b)

The matrix K=(k;;( p,w)) is known as the Sluzsky matrix. Its properties are of
considerable interest.

Before proceeding to derive a set of properties for x,, X, »» and K, it is useful to
give the following implications of (13.1) and (13.2):

UL Z+px!, =1, (13.4a)
Upx, =\, p, (13.4b)
p'Z=0, (13.4¢)

o (13.4d)
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Theorem 3.1

Let f( p,w) denote the set of f differentiable demand functions resulting from
maximizing the utility function u(x) subject to p’x = w. Let af/dw=x_, df/dp
= X,,and K = X, + x,x’. Then one has the following properties:

(i)  Adding up p'x,, =1 (Engel aggregation),
P’ X, = —x" (Cournot aggregation),
p'’K=0.

(1) Homogeneity X,p+x,w=0or Kp=0.

(i) Symmetry K=K

(iv) Negativity  y’Ky<0, for {yER'|y+#ap).

(v) Rank r(K)=t-1.

Proof

(1) Adding-up. Follows from (13.4d), K =AZ, (13.4¢), and (13.3).

(i)  Homogeneity. Apply Euler’s theorem to f(p,w) which is homogeneous of
degree zero in prices and wealth. Use (13.3) and p’x=w.

(i) Symmetry. K=\Zis symmetric since Z is symmetric.

(iv) Negativity. Since K=AZ and A>0, the negativity condition for K is
equivalent to the negativity condition for Z, Premultiplication of (13.4a) by
Z gives ZU,, Z=Z. Consider the quadratic form y'ZUP Zy=y’Zy for some
bvector y#0. Let g=2Zy. Note that p’g=0 or for u,=Ap, u.q=0. The
property of strong quasi-concavity (Definition 11.1) thus implies

Y'Zy=q'U%q<0, for q#0.

The case of g=0 occurs when y=ap. Hence Z and K are negative
semi-definite matrices. Moreover, all diagonal elements of K are negative,
since ¢/Ke; =K, <0, where e, #ap denotes the ith unit vector in R'.

(v)  Rank. Since Kp=0, matrix K cannot have full rank, i.e. r(K)<(—1. It

follows from (13.4a) that UixZ=1—px,, a matrix of rank ¢{—1. Thus,
r(Z)=r(K)=t—1. Therefore r(K)=(—1.

The Slutsky matrix K deserves some further discussion. It is invariant under
monotone increasing transformations of the utility function. This follows from
the fact that f( p,w) is invariant and so are its derivatives X, and x,. Conse-
quently, K =Xp +x,x’ is invariant, too.

Next it can be shown that X is the matrix of price derivatives of the Hicksian
demand function. Differentiation of (10.6) vields
of 3E

S _3f L3
p” dp’"  Iw ap’ -
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Then (12.20) and (13.3) imply

oh _ .
‘87 -Xp+xu.x =K.

Therefore, for small price changes d p, Kd p describes the changes in the composi-
tion of the demand bundle in response to price changes, if utility is kept constant.
Since Hicks (1934) and Allen (1934) this is known as the substitution effect.

The remaining part of the price effect, namely —x_x'dp, is known as the
income effect. Its effect is similar to that of a change in w (wealth, income). This
effect can be neutralized by an appropriate change in w equal to x’d p- Obviously,
the level of utility is then kept constant. For this reason the substitution effect is
also called the income compensated price effect.

Finally, using (12.20) again, it is easily seen that

32E
dpdp’’

(13.6)

ie. K is the Hessian matrix of the expenditure function when v is kept constant.
According to Lemma 10.1 E is concave in prices. Then, its Hessian matrix K is
negative semi-definite. This result may suffice to indicate that the properties of
the matrix K, derived in the context of Marshallian demand functions, can also
be obtained in the context of expenditure functions and Hicksian demand
functions.

Concluding this section, it should be pointed out that only very weak properties
of a consumer’s market demand function have been established. In particular,
without any further assumptions on preferences no general statement can be
made about the direction of change of the demand of a particular commodity
when its price changes. From Theorem 13.1 one only has

dx; ax;
i | it} 13.7
ap, tx, ow <0. (13.7)

If 9x, /0w is positive (the case of a superior good) the own-price effect is
obviously negative. If commodity i is an inferior good, i.e. when dx, /9w is
negative, then the own-price effect may be positive. Commodities which display a
positive own-price effect are known as Giffen goods — see Marshall (1895) and
Stigler (1947). It all depends on the sign of the derivative with respect to w. On
the basis of the adding-up condition one knows that at least one dx, /dw has to be
positive. Therefore, all theory has to offer is that for at least one commodity the
own-price effect is negative.
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14. Separability and the Slutsky matrix

Separability of the utility function implies restrictions on the Slutsky matrix K
because of the structured impact of p, on demand for commodities in other
elements of the partition than the one to which j belongs. Let N, and N,
be two elements of the partition N,,...,N,, and let K be partmoned into k2
blocks of the type K. From (13.3) one has

K, 2%-1-%):’ (14.1)
& 9p; " w8 :

where, as before, x; =f(p,w) is the vector of Marshallian demand functions for
the commodities in N,. Symmetry of K yields

K,=K.,. (14.2)
For any jeJ={(1,..., k}, let x/ =f/( P;»w;) as defined above in (9.3).
Theorem 14.1

Under weak separability of the utility function
dx/ 0x8&
K,=y (p,w 'a?j'aTg (14.3)
J b4
where y, (p,w)=y, (p,w).
Proof
Differentiate both sides of (9.5) with respect to w to obtain
dx/ dw* _ Ox

J

ow, dw  ow’ (14.4)

Next, differentiate both sides of (9.5) with respect to the vector p;. Using (14.1)
and (14.4) yields

J J w* J Jw*
ij B axj awj B axj awj ,

apé_ dw, dp; fs—%m; dw 3

Therefore,

o =32, (14.5)
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where z;_ is the row vector between square brackets. One also has

axg
=z
g
8J awg J
Since K ¢ — K, it follows that

0x¥
ng(p,W):‘l}jg(p7w)5w_g

which, when inserted into (14.5), gives (14.3). The equality of ¥,(p,w) and
¥, (p,w) follows directly from the symmetry of the matrix K.

One sometimes finds in the literature the derivation of a property similar to
(14.3), namely:

Corollary 14.2

Under weak separability of the utility function and for dwr*/dw #0,
Iwg/ow #0,

dx, 0x’

where

dw* Jw*
ojf(p,w):ﬂgj(P’W):‘[’jg(p’w)/( 8‘2) a\j )

Proof
Use (14.4) in (14.3).

The additional conditions of this corollary are of an empirical and not of a
theoretical nature. If the conditions are not both true, 0,,(p,w) is not defined.
Theorem 14.1 remains valid, however.

Before turning to the structure of the diagonal blocks of K, i.e. the K 1L is
useful to note that also for the case of conditional demand equations one has a
Slutsky matrix, K/, say, which is formally analogous to the matrix K of the full set

of the unconditional demand function. This K/, defined by

ox/  ax.
Kf:_fi+_ﬁxf, (14.7)
dp,  Ow,

has all the properties given earlier for K in Theorem 13.1.
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The first matrix on the right-hand side of (14.7) does not represent the
complete effect of a change in p; on x;, because w; is taken to be fixed. For the_full
impact, one also has to take into account the ‘effect which p; has on x; via a
change in w*( p,w). From (9.4) it follows that

aw* dx .
] — ) 4 14.8
Bpj’- X; +pj apj' ( )

Thus, for the complete effect one has, using (14.7), (14.8), and (9.5),

dx/ ox’/ Ox,
L =K/t Ly (14.9)
o7 aw, P 3p;

J
In view of (9.5) and (14.4) this has to be equal to

) *
axj e axj Bwj ,

y ‘ 10
p; 7 3w, dw e (14.10)

This prepares the ground for
Theorem 14.3

Under weak separability of the utility function

_ ox/ 9x/
KJ’J‘:KJ'N’JJ(P’W);)_“: a»: , (14.11)

7 J

where y,;( p,w) is a scalar function.

Proof

Equating the right-hand sides of (14.9) and (14.10) gives
J

— FJ axj
ij——K +—avj

J '

pj*ép—;+—57xj .

0x . 8»1/1-* ]

Symmetry pf K, implies that the term in square brackets is proportional to
dx//8w,, with the scalar factor of proportionality being a function of ( p,w).

Corollary 14.4

¥ (Pow)=— T 4 p.w). (14.12)

8*J
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Proof
First note that for all g

as a consequence of the adding-up condition for the conditional demand func-
tions. Furthermore, K fp =0. It then follows from (14.3) and (14.11) that for all j
and g

PiK Py =4,(p.w).

Since Kp =0,
2 18Py =

and thus

k
2 Y p.w)=0.
g=1

Therefore, (14.12) follows immediately.

Result (14.11) deserves some further discussion. One can also write it as

_ ax/ dx/
Kj— .-‘lb_u(p’w)aw aw 4 (14‘13)

where now K, is a negative definite matrix. The Slutsky matrix of the conditional
demand equemons for x; can be decomposed into a negative definite matrix and
into the outer vector product of the derivatives with respect to w; multiplied by a
scalar. A similar decomposition was derived by Houthakker (1960) for the Slutsky
matrix K of the full unconditional system, namely

dx 8x

K=0(p,w)U_'+a(p, ) (14.14)

with

o(p,w):—l/alnaa(‘f w)
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The first matrix on the right-hand side of (14.14) is called the specific substitution
matrix and the second the general substitution matrix. Unlike (14.13), decomposi-
tion (14.14) is not invariant under monotone increasing transformations of the
utility function, because neither o( p,w) nor 8(p,w)U_" are invariant. If one
considers a “full unconditional system” as a conditional component of a still
wider system, decomposition (14.13) is the appropriate one, where one may
employ the same interpretation of the two components as in the case of (14.14).
Both decompositions do not seem particularly restrictive. Indeed, further restric-
tions on K in (14.13) or on 8(p,w)U.." in (14.14) are needed to give the
decomposition operational significance. Note that if any symmetric pair of
non-diagonal elements of U_' in (14.14) are set equal to zero, the arbitrariness
(and cardinal nature) of the decomposition is removed.

As one expects intuitively, strong separability is more restrictive than weak
separability. Indeed, one has the following theorem.

Theorem 14.5

If the utility function is strongly separable with respect to a partition N,,..., N,
and if the Hessian matrix of its form w(x)=2 ;esY(x,) is non-singular, then, for
any pair j, geJ,

— 0x; dx; .
Kjg*U(P,W)W‘é;, J#8, (14.15)

i.e. the 0;.( p,w) of Corollary 14.2 is not specific for the pair j, g.
Proof

The Hessian matrix U, _ is block diagonal and so is its inverse. For this matrix
(14.14) applies. The j, g-th off-diagonal block is given by (14.15).

Some remarks are in order. First, since K and 9f /0w are ordinal concepts,
o( p.w) is invariant under monotone increasing transformations of the utility
function. Second, the condition of a non-singular block diagonal U., is perhaps
special, because r(U. )=1—1 is also acceptable, as can be seen from (13.4a).
However, a singular block diagonal Hessian matrix has rather unrealistic implica-
tions, for example, that for all except one element of the partition, w*( p,w), the
amount to be spent on the partition does not depend on w. This will not be
investigated further. Third, under strong separability the marginal budget shares
dw* /8w are either all positive or all but one negative, the positive one being

?arger than unity. This property will be derived for the case of strong separability
in elementary commodities,



Ch 9: Consumer Theory 423

15. Additive utility and demand

Consider the case that the utility function is separable in elementary commodities.
This 1s clearly a limiting situation. It is known as additive utility and has very
restrictive implications. In spite of this, it is not only of historical interest but also
frequently used in empirical applications. Therefore, some attention will be paid
to the consequences of additive utility for demand, although we will limit
ourselves to the case of non-singular Hessian matrices.

Strong separability in elementary commodities clearly means that for all
off-diagonal elements of the Slutsky matrix, Theorem 14.5 applies and thus, for
any pair i, jE€{1,...,0},i#

ax,- xj
k,-j——o(p,w W'a—;v" (15.])

There is no specific substitution effect for any pair of goods. From (14.14) one
can derive that

Ix. \2
ky=0(p.w)/u, +o(p.w) | 5t |- (152)
Since 2 k,; p; =0, it follows that
1 dx,
ku—_o(.paw);:b—“_;!zibj(l”w)
1
=—o(p,w)=b(p.w)[1-b,(p,w)] (15.3)

i

where b( p,w)=p,;0x, /0w is the marginal propensity to spend on commodity
(the marginal budget share for i). Note that

2b(p.w)=1 (15.4)

and that combining (15.1) and (15.2) results in

bi(PaW)zfpfz/um (15.5)

where {= —6 /0.
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The own-price derivative of demand is thus seen to be

ax, dx,
5:0':_/(“ B;XA

Z—I)%b,[—o(l—b,)—p,x,]. (15.6)

In terms of price elasticities e, =31n x,/3In p, and wealth (or income) elasticities
n,=dlnx /dlnw

i =n[—o*(1-b)~a], (15.7)

where 6*=0/w and q, =p.x,/w, the average budget share.
It is argued by Deaton (1974) that, for large f, a, and b, will be very small on
the average. Then one has Pigou’s Law €,~—o*7, ie. the own-price elasticities

are virtually proportional to the wealth (or income) elasticities. This is empirically
a rather restrictive implication.

Another consequence is given in

Theorem 15.1

If the utility function is strongly separable in elementary commodities then the
marginal budget shares b,( p,w) are either (i) all positive and smaller than one, or
(i) all but one negative, the only positive one being larger than unity.

Proof

According to the negativity condition, ki;<0. Then also pZk, <0 or
—0(p.W)b,(p,w)[1-b,(p,w)]<0. Consider first the case o( p,w)>0. Then,
b{p,w)1=b,(p,w)]>0 or b(p,w)>b(p,w)>. Hence, 0<b(p,w)<l. Next
consider the case a( p,w)<0. Then b,(p,w)1—b,(p,w))<0. This means that
either b,(p,w)<0 or b(p,w)>1. In view of (15.4) not all b(p,w) can be
negative; nor can all be larger than one. Thus, some b,( p,w) are negative while
others are positive. Since 8 is positive, { in (15.5) is also positive. Therefore, the
sign of u,; is equal to the sign of b,( p,w). For the type of utility function under
discussion, the strong quasi-concavity condition specializes to 2, 2 f u,; <0, ) RIS
=0. This implies that at most one of the y ,; €an be positive, and all others have to

be negative. Thus, one and not more than one b,( p,w) is positive and hence
larger than unity. All others are negative,

For practical purposes one can take the b, to be all positive, The other
alternative is clearly pathological. The theorem is of importance because it is one
of the few statements of a qualitative nature that can be made in demand
analysis. Under additive utility inferior commodities (b, <0) are ruled out as
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exceptions. Actually, inferiority of a commodity occurs usually only when close
substitutes, of a superior nature, are available. Strong separability of the utility
function does not allow for the existence of such close substitutes. Another
consequence of a qualitative nature is given by

Corollary 15.2

If the utility function is strongly separable in the elementary commodities, the
cross-substitutions k, , i#j, are either (i) all positive or (ii) negative when / and J
are inferior commodities and positive when i or j is the only superior commodity.

Proof
Use (15.1) and the proof of Theorem 15.1.

A discussion of the Linear Expenditure System (L.E.S.) may serve to illustrate
some of the issues mentioned in this section. Assume that the preference ordering
can be adequately represented by the Stone-Geary utility function

u:EBilog(xi_Yj) (15.8)

1

which was first proposed in Geary (1949) and used in Stone (1954). In this utility
function B, and v, are constants - at least they do not depend on the quantities of
commodities. The existence of a real-valued utility function requires that y,<x,.
To be differentiable with respect to the x,, y,=x, has to be ruled out. For the
utility function to be increasing the B, have to be positive. Without loss of
generality one may assume that 2,8, =1 and thus 8, 1.

Utility is maximized under the budget condition 2, p,x, =w if and only if the X;
satisfy

=Ap;, (15.9)

where A=6( p, w) is a positive factor of proportionality. Solving (15.9) for x; and
eliminating A to take the budget condition into account, ohe finds

xi=v,»+%(w—2p,v,-) (15.10)
i J

as the typical demand equation. It is usually presented as

Pr‘xizpin'*'Bi(W_EPﬂj), (15.11)
J
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where the left-hand side is the expenditure on commodity i. This expenditure
depends linearly on the prices and w. This explains its name — linear expenditure
function — which is attributed to Klein and Rubin (1947). Note that it is not
linear in the 8°s and y's.

As is clear from (15.11) the marginal budget share, b,(p,w)=p,, i.e. is constant
and positive. Apply (13.3) to obtain

1—-8.)8
k”:—o(p’w)—(w—-ﬁzlﬁ’ (15]23)
and for i#j
B:B
k. =o(p.w)—, 15.12b
’ (r )prj ( )
where

0(p,W)=(W*E_p,Y,)>0.

J

Si'nqe. B; /p,- =dx, /0w, implication (15.1) is verified by (15.12b), i.e. there is no
specificity in the relationship among the demands for various goods. The own-price
elasticity (15.7) can be expressed as

g
&= —(=B)B——5—=—8,
(1=8)8 pYitBo A
__p PYito
B’prJ+Bio (15.13)
indi.cgting that the own-price elasticity is, in absolute value, larger than B,. For
sufficiently small y,, e, ~ — 1. The implied income elasticity is given by

=52
vy (15.14)
Consequently,
~-__PYto
€“ nz " .

For sufficiently small Y,. Pigou’s Law is clearly satisfied.
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An interesting interpretation of (15.11) is due to Samuelson (1947b). Let v, be
the a priori decided amount of commodity i to be acquired anyway. It is the
committed quantity of /. The committed quantities require ; P, of the budget.
What remains, i.e. w— 2, PV, 1s supernumerary income 1o be allocated according
to the constant fractions 8. This interpretation suggests that the Y, are positive,
which is theoretically not a necessary condition,

In applying the L.E.S. or any other demand system to actual data on an
aggregated level one should realize that the theory outlined here is a comparative
static one referring to the individual consumer deciding on quantities of elemen-
tary commodities. This theory may suggest certain properties and interpretations
of demand systems, extremely useful for their empirical application. The addi-
tional requirements for the empirical validity of these systems are of considerable
importance and fall outside the scope of this chapter. Consequently, a further
discussion of demand systems, which are first of all tools of empirical analysis, 1s
not undertaken here.*
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