demend theery

ongoing inflation will persist long after the initiating shocks
have disappeared and long after a reduction of demand has
climinated any excess demand-pull on the economy. Because
of this inertia in an ongoing inflation rate, reduced demand
results initially in excess capacity and high unemployment and
only gradually in reduced inflation.

The inertia of inflation, the presence of cost-push as a source
of inflation, and the variation of inflation along the short-run
Phillips curve all discredit the idea that demand-pull is always
the central source of inflation and that inflation can be
climinated efficiently simply by reducing demand to a point
where labour and product markets arc not excessively tight.
Inflation is responsive to the strength of total demand, and
avoiding levels of demand that would produce overly tight
markets will avoid setting off a demand-pull inflation.
However, in the face of either cost-push shocks or an ongoing
inflation rate of whatever origin, reducing demand will mainly
reduce output and employment in the short run, and only
gradually reduce inflation, even if the cconomy is kept
operating at rates well below the demand-pull region.

Because of these characteristics of economies, the demand
management chore confronting policy-makers is not merely
avoiding excess demand, as in the simplified Keynesian model,
but rather choosing how much to accommodate inflation and
how much to give up in output and employment in order to
suppress inflation. As a related point, the identification of
inflation with money in some models does not necessarily
identify money as causing inflation in the sense of creating
demand-pull, or ‘too much money chasing too few goods’
Money may correlate with inflation whatever its cause unless
policy-makers refuse to accommodate it at all and accept
sharply lower output and employment levels instead.

Some models of inflation developed in the 1970s and 1980s
maintain the essential features of the demand-pull inflation
model but in a modified form that takes explicit account of the
inertia in inflation. These models specify that there exists 2
natural rate of unemployment such that inflation acoclerates
when unemployment is below the natural rate and deceleratcs
with unemployment above it. In their behavioural underpin-
nings, they assume wages arc established in auction-like
markets that would clear continuously except for uncertain
expectations about inflation on the part of both firms and
workers. They thus differ from models that are rooted in the
original Keynesian insights about unemployment, which
assume firms set wages in the context of more complicated
long-run employment relations. In these models featuring
long-term attachments between firms and workers, firms
respond to reductions in demand primarily with layoffs rather
than with market-clearing wage adjustments. Wasteful levels
of unemployment can thus exist for extended periods.

The natural rate of unemployment is the analytical
counterpart of full employment in Keynesian models, and
unemployment rates below the natural rate correspond to the
demand-pull region. These natural rate models can fit the
historical data reasonably well if they make an important
allowance for cost-push events and for inertia in inflation so
that the response of inflation to economic slack is severely
damped. Empirical testing thus far has been unabie cither to
accept or reject some of the key features of the natural rate
models. But there is little objective evidence that the natural
unemployment rate that is empirically identified in these
models corresponds to an optimal utilization of real resources
in the same way that full employment represents an optimal
operating level in the simpler Keynesian models. Avoiding
excess demand, and thereby demand-pull inflation, is a clear
prescription of both types of model; but because the presence

of inflation or even its worsening need not imply the existence
of excess demand, avoiding inflation altogether while still fully
utilizing labour and capital resources remains a difficult, and
perhaps unattainable, goal for aggregate demand manage-
ment.

GEORGE L. PERRY
See also COST-PUSH INFLATION; DEMAND MANAGEMENT; INFLATION.
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deuand theory. The main purpose of demand theory is to
explain observed consumer choices of commodity bundles.
Market parameters, typically prices and income, determine
constraints on commodity bundies. Given 2 combination of
market parameters, a commodity bundle or a non-empty set of
commodity bundles, which satisfies the corresponding
constraints, is called a demand vector or & demand set. The
mapping which assigns to every admissible combination of
market parameters a unique demand vector (or a non-empty
demand set) is called a demand function (or a demand corre-
spondence). Traditional demand theory considers the demand
function (or correspondence) as the outcome of some
optimizing behaviour of the consumer. Its primary goal is to
determine the impact on observed demands for commodities of
alternative assumptions on the objectives and behavioural rules
of the consumer, and on the consiraints which he faces. The
uraditional model of the consumer takes preferences over
alternative commodity bundies to describe the objectives of the
consumer. Its behavioural rule consists in maximizing these
preferences on the set of corresponding commodity bundles
which satisfy the budget constraint imposed by the market
If there is a unique preference maximizer under
cach budget constraint, then preference maximization deter-
mines a demand function. If there is at least one preference
maximizer under easch budget constraint, then preference
maximization determines 8 demand correspondence.
Oneethemditionalvicwisadopwdﬂnoocunmof
demand correspondences cannot be avoided. Compatibility of
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observed demand, which is always unique, with some demand
correspondence is 8 minor problem in general. However, the
correspondence should be obtained through preference
maximization. The last requirement leads to the main issues of
modern demand theory: Which demand correspondences are
compatible with preference maximization? Given any condi-
tions necessary for demand correspondences to be compatible
with preference maximization, are they sufficient? Which de-
mand correspondences are compatible with a special class of
preferences? What type of preferences yields a particular class
of demand correspondences? When addressing these issucs,
modern demand theory attempts to link two concepts:
preferences and demand.

Historically, the important concept was utility rather than
preference. Before Fisher (1892) and Pareto (1896), utility was
conceived as cardinal, that is it was assumed to be a measurable
scale for the degree of satisfaction of the consumer, Fisher and
Pareto were the first to observe that an arbitrary increasing
transformation of the utility function has no effect on demand.
Edgeworth (1881) had already written utility as a general
function of quantities of all commoditics and employed
indifference curves. It is now widely accepted in demand theory
that only ordinal utility matters. A utility function is merely a
convenient device to represent a preference relation, and any
increasing transformation of the utility function will serve this
purpose as well,

The representability by utility functions imposes some
restrictions on preferences. The problem of representability of
a preference relation by a numerical function was solved by
Debreu (1954, 1959, 1964) based on work by Eilenberg (1941),
and by Rader (1963), and Bowen (1968).

While still assuming cardinal utility, Walras (1874) developed
the first ‘theory of demand”: His demand was a function of all
prices and endowment, obtained through utility maximization.
Slutsky (1915) finally assumed an ordinal utility function with
enough restrictions to yield a maximum under any budget
constraint and testable properties of the resulting demand
functions. In particular, he obtained negativity of diagonal
clements and symmetry of the ‘Slutsky matrix’.

Antonelli (1886) was the first to go the opposite way:
construct indifference curves and a utility function from the
so-called inverse demand function. Pareto (1980b) took the
same route. Katzner (1970) reports on recent results in this
direction. The construction of preference relations from de-
mand functions was achieved in two ways: (1) Samuelson (1947)
and Houthakker (1950) introduced the concept of revealed
preference into demand theory. Considerable progress in re-
lating utility and demand in terms of revealed preference was
achieved by Uzawa (1960), further refinements being due to
Richter (1966). (2) Hurwicz and Uzawa (1971) contributed to
the following so-called integrability problem: construct a twice
continuously differentiable utility representation from a
continuously differentiable demand function which satisfies
certain integrability conditions (including symmetry and
negative semidefiniteness of the Slutsky matrix). Kihistrom,
Mas-Colell and Sonnenschein (1976) unified the two ap-
proaches under (1) and (2) in that they related the axioms of
revealed preference to properties of the Slutsky matrix.

Since there exists a sizeable literature on demand S
many of the concepts and results are well established and
well known. These have become so much part of standard
knowledge in economic theory that they are included in any
microeconomic textbook today and other surveys. It would
reduce the available space for a presentation of the new results
of the last fifteen years substantially if an extended introductory
account of demand theory were to be included here as well,
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1. COMMODITIES AND PRICES

Consumers purchase or sell commodities, which can be divided
into goods and services. Each commodity is specified by its
physical quality, its location and the date of its availability. In
the case of uncertainty, the state of the nature in which the
commodity is available may be added to the specification of a
commodity. This leads to the notion of a contingent commodity
(see Arrow, 1953 and Debreu, 1959). We assume as in
traditional theory that there exists a finite number / of such
commodities. Quantities of each commodity are measured in
real numbers. A commodity bundle is an I-dimensional vector
x=(x,,...,x). The set of all I-dimensional vectors
x =(x,,...,x) is the I-dimensional Euclidean space R’ which
we interpret as the commodity space. | x, | indicates the quantity
of commodity h =1,...,I Commodities are assumed to be
perfectly divisible, so that their quantity may be expressed as
any (non-negative) real number. The standard sign convention
for consumers assigns positive numbers for commodities made
available to the consumer (inputs) and negative numbers for
commodities made available by the consumer (outputs). Hence,
any commodity bundle x € R is conceivable.

The price p, of a commodity h, A = 1,..., I, is a real number
which is the amount in units of account that has to be paid in
exchange for one unit of the commodity. For the consumer, p,
is given and has to be paid now for the delivery of commodity
h under the circumstances (location, date, state) specified for
commodity h. A price system ot price vector is a veclot
P=(p,....p) in R’ and contains the prices for all com-
modities. The value of a commodity bundle x given the price
vector pis px = I, _, p,x,. This means that commodity bundics
are linearly priced.

2. CONSUMPTION SETS AND BUDGET SETS

Typically, some commodity bundles cannot be consumed by 2
consumer for physical reasons. Those consumption bundies
which can be consumed form the consumer’s consumption sel.
This is & non-empty subset X of the commodity space R. A
consumer must choose a bundle x from his consumption set X
in order to subsist. Traditionally, inputs in consumption arc
described by positive quantities and outputs by negative quan-
tities. Soin particular, the labour components of a consumption
bundle x are all non-positive, unless labour is hired for a service.
One usually assumes that the consumption set X is closed,
convex, and bounded below. Vectors x € X are sometimes called
consumption plans. .

Given the sign convention on inputs and outputs and a pricc
vector p, the value px of a consumption plan x defines the nct
outlay of x, that is the value of all purchases (inputs) minus the
value of all sales (outputs) for the bundle x. Trading the bundle
x in a market at prices p implies payments and reccipts for that
bundle. Therefore, the value of the consumption plan should
not exceed the initial wealth (or income) of the consumer which
is a given real number w. If the consumer owns a vector of
initial resources @ € R’ and the price vector p is given, then ¥
may be determined by w = pw. The consumer may have other
sources of wealth: savings and pensions, bequests, profit sharcs,
taxes or other liabilities. Given p and w, the set of P‘{”,‘t.’lcl
consumption bundles whose value does not exceed the initia
wealth of the consumer is called the budge! set and is defined
formally by

B(p,w)={xeX|px €w}.

The ultimate decision of a consumer is to choose oonsu{!lP‘it‘l"';
plan from his budget set. Those vectors in f(p, w) Which
consumer eventually chooses form his demand set $(p,¥)-
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3. PREFERENCES AND DEMAND

The choice of the consumer depends on his tastes and desires.
These are represented by his preference relation 2 which is a
binary relation on X. For any two bundles x,yeX.x 2y
means that x is at lesst as good as y. If the consumer always
chooses 8 most preferred bundle in his budget set, then his
demand set is defined by

¢(P-*’)={X€ﬂ(P-W)|x'Eﬁ(Po”')
implies xXxx’ ormot x'Xx}

Three basic axioms are usually imposed on the preference
relation > which are taken as a definition of a rational
consumer.

Axiom | (Reflexivity). If x € X, then x 2 x, i.c. any bundle is
as good as iteelf.

Axiom 2 (Transitivity). If x,y,z€X such that x>y and
yZz then xxz

Axiom 3 (Completeness). If x,y € X, then x Xy or y Zx.

A preference relation 2 which satisfies these three axioms is
2 complete preordering on X and will be called a preference
order. Already Axioms 2 and 3 define a preference order, since
Axiom 3 implies Axiom 1. A preference relation = on X
induces two other relations on X, the relation of strict prefer-
ence, >, and the relation of indifference, ~.

Definition. Let 3 be a preference relation on the consumption
sct X. A bundle x is said to be strictly preferred to a bundie y,
ic. x >y, if and only if x > y and not y 2 x. A bundle x is said
to be indifferent to & bundle y, i.e. x ~y, if and only if x Xy
and y 2 x.

LEMMA.  Suppose > is reflexive and transitive. Then

(i) > is irreflexive, ie. ot x > x, and transitive;

(i) ~ is an equivalence relation on X, that means ~ is
reflexive, transitive, and symmetric, i.e. x ~  if and only if
y~x

ForZ c X, x € Z, x is called maximal in Z, if for all z € Z, not
2>x. x is called a best element of Z or most preferred in Z, if
for all z€2Z x>z Best clements arc maximal; maximal
clements are not necessarily best elements. If X is complete,
then best and maximal elements coincide. Obviously for any
price vector p and initial wealth w,

¢(p,w)={x€pP(p,w)|x is maximalin B(p,w)}.

Axioms 1-3 are not questioned in most consumer theory.
However, transitivity and completeness may be violated by
observed behaviour. Recent developments in the theory of
consumer demand indicate that some weaker axioms suffice to
describe and derive consistent demand behaviour (see, for
example Sonnenschein, 1971; Katzner, 1971; Shafer, 1974;
Kihistrom et al., 1976; Kim and Richter, 1986). _

In an alternative approach, one could start from a strict
preference relation as the primitive concept. This may some-
times be convenient. However, the weak relation 2 seems to be
the more natural concept. If the consumer chooses x, although
¥ was a possible choice as well, then his choice can only be
Interpreted in the sense of x >y, but not as x >y.

For the remainder of this section, let us fix a preference order
Z on X and a non-empty subset B of R'*' such that for every
3 ‘{’)E_B, there is a unique 2-best element in B(p,w); ie.
maximization of > defines a demand function f:B— X,
¢(p,w) = {f(p, w)} for all (p, w)eB.

Let x,x’ € X, x % x’. We call x revealed preferred to x’ and
write xRx’, if there is (p,w)e B such that x =f(p, w) and
px’ € px. xRx’ implies that both x and x’ are in the budget sct
p(p,w) and x is chosen. Since f is derived from
> -maximization, xRx’ implies x >x’. We call x indirectly
revealed preferred to x' and write xR*x’, if there exists a
finite sequence Xxp=x,x,...,x, =X in X such that
xyRx,,...,x,_;Rx’. Obviously, R® is transitive. Since > is
transitive, xR*x’ implies x > x’. Consequently, the following
must hold. (Otherwise x >x!)

(SARP) xR*x’=>not (x'R*x).
(SARP) implies
(WARP) xRx’=>rnot (x'Rx).

(SARP) is called the sirong axiom of revealed preference;
(WARP) is called the weak axiom. Hence =-maximization
implies the strong axiom. For the inverse implication, see
Chapters 1, 2, 3, and 5 of Chipman et al. (1971).

4. CONTINUOUS PREFERENCE ORDERS AND UTILITY FUNCTIONS

The Axioms 1-3 have intuitive appeal. This is less so with the
topological requirements of the following Axiom 4.

Axiom 4(Continuity). Forevery x € X, the sets {y € X |y Xz x}
and {ye X|xZy} are closed relative to X.

Closedness of {y € X|y 2 x} requires that for any sequence
y"neN, in X such that y" converges to y € X and "% x for
all », the limit in y also satisfies y 2> x. If 2 is a preference order,
then Axiom 4 is equivalent to:

Forevery x € X, the sets {y € X|y > x} and {y € Y|x >y} are
open in X.

Openness of {y € X|y > x} means that if y > x, then y’>x
for any y’ close enough to y.

The sets {y € X|y Z x} are called upper contour sels of the
relation 2= and the sets {y € X |x 2y} arc called lower contour
setsof . Forx e X, theset I(x): ={yeX|y ~ x} is called the
indifference class of x with respect to X or the 2 -indifference
surface through x or the X -indifference curve through x. In case
> is reflective and transitive, /(x) is the equivalence class of x
with respect to the equivalence relation ~.

There is a preference order 2 on R’ /32, which does not
satisfy Axiom 4, namely the lexicographic order defined by
(1s- s X)Z (s - -, ) if and only if there is k, 1 <k <l
such that x, =y, for j <k and X, >y, or x =y.

Few studies of the relationship between the order properties
of Axioms 1-3 and the topological property of Axiom 4 have
been made. We emphasize the following result:

HBOREM (Schmeidler, 1971).  Let 2 denote a transitive binary
relation on a connected topological space X. Assume that there
exists at least one pair %,5 € X such that X > 3. If for every
xeX, () {yeX|yzx}and{yeX|x Zy) are closed and (i)
{yeXly>x}and{yeX|x -y} are open, then % is complete.

Definition.  Let X be a set and X be a preference relation on
X. Then a function & from X into the reals R is a (utility)
representation or a utility function for x, if for any
x,y € X,u(x)> u(y) il and only if xzy.

Clearly, if u is a utility representation for % and f:R=Ris
an increasing transformation, then fou is also a representation
of . If u:X - R is any function, then Z, defined by x Z y if
and only if u(x) > u(y) for x, y € X, is a preference order on X
and u is a utility representation for 2.

Most utility functions used in consumer theory are con-
tinuous. If u is continuous and X is represented by u, then by
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pecessity 2 is a continuous preference order. In our case where
X cR’, the opposite implication also holds. If - is a continvous
preference order, then it has a continuous utility representation.

HporEM (Debreu, Eilenberg, Rader). Let X be a topological
space with a countable base of open sets (or a connected,
separable topological space) and = be a continuous preference
order on X. Then = has a continuous wiility representation.

A preference order > on X, which is not continuous, need
not have a utility representation. For instance, the lexico-
graphic order on R’ does not have a utility representation, not
even a discontinuous one. As an immediate consequence of the
representation theorem for preference relations, one obtains
one of the standard results on the non-emptiness of the demand
set $(p, w) since any continuous function attains its maximum
on a compact set (Weicrstrass’ Theorem).

COROLLARY. Let X < R be bounded below and closed, ; be a
continuous preference order on X,p € R, , (i.e.p»0),andw €R.
Then f(p,w) # & implies ¢(p,w)# 2.

5. SOME PROPERTIES OF PREFERENCES AND UTILITY FUNCTIONS

Some of the frequent assumptions on preference relations
correspond almost by definitions to analogous properties of
utility functions, while other analogies need demonstration. We
discuss the assumptions most commonly used.

MONOTONICITY

Definition. A preference order = on X < R is monotonic, if
x,y€X, x 2y, x #y implies x >y.

This property means desirability of all commodities. If a
monotonic preference order has a utility representation , then
u is an increasing function (in all arguments). Inversely, if 2 is
represented by an increasing function, then 2 is monotonic.

NON-SATIATION

Definition. Let % be the preference relation of a consumer
over consumption bundles in X and let xe X,

(i) x is a satiation point for = if x Zyforall yeX,ic xis
a best element in X.

(ii) The preference relation is locally not satiated at x, if for
every neighbourhood V of x there exists z € V' such that
2> X .

Consider a utility representation u for 2. x € X is a satiation
point if and only if « has a global maximum at x. 2 is locally
not satiated at x if and only if u does not attain a local
maximum at x. Local non-satiation excludes that u be constant
in a neighbourhood of x. If 2 is locally not satiated at all x,
then > cannot have thick indifference classes or satiation
points.

CONVEXITY
Definition. A preference relation > on X c R is called
(|) conpex, if the set {y € X|y Z x} is convex for all xe X
(ii) strictly convex, if X is convex and Ax + (1 — A)x’ > x’ for
any two bundles x, x’ € X, such that x # x’, x > x’, and
for any A, such that 0 <1 < 1;

(iii) strongly comvex, if X is convex and Ax +(1 - A)x'>x"
for any three bundles x,x’,x"eX such that
x#x',x2x",x'zx" and forany A suchthat0 < 1 < 1.

Definition. u:X —R is called

(i) quasi-concave, if u(dx + (1 - 1)y) 2 min{u(x), u(y)} for
all x,yeXand any , 0<A <,
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(ii) strictly quasi-concave, if wu{ix + (1 ~ 1)y} > min{u(x),
u(y)} forall x,yeX,x #y, and any 4, 0<i<l.

Let u be a represcntation of the preference order 2. u is
(strictly) quasi-concave if and only if X is (strictly) convex.
Quasi-concavity is preserved under increasing transformations,
i.e. it is an ordinal property. In contrast, concavity is a cardinal
property which can be lost under increasing transformations.
With respect to the difficult problem to characterize those
preference orders which have a concave representation, we refer
to Kannai (1977).

Clearly, if - is locally not satiated at all x, then 2 docs not
have a satiation point. In general, the inverse implication 1s
false. If, however, > is strictly convex and does not have a
satiation point, then > is locally not satiated at all x. Moreovet,
if 2= is strictly convex, then 2 has at most one satiation point.
An immediate implication is the following lemma.

LEMMA. Let X c R be bounded below, convex, and closed. Let
2 be a strictly comvex, continuous preference order on X,
peR’,,, andweR. Then B(p,w) # & implies that $(p,w) is
a singleton.

SEPARABILITY.  Scparable utility functions were used in classi-
cal consumer theory long before associated properties of pref-
crences had been defined. All early contributions to utility
theory assumed without much discussion an additive form of
the utility function over different commodities. It was not uatil
Edgeworth (1881) that utility was written as a general function
of a vector of commodities, The particular consequences of sepa-
rability for demand theory were discussed well after the general
nonseparable case in demand theory had been treated and
generally accepted. Among the many contributors are Sono
(1945), Leonticf (1947), Samuelson (1947), Houthakker (1960),
Debreu (1960), Koopmans (1972). We follow Katzner (1970) in
our presentation.

Let N ={N,}}_, be a partition of the st {1,...,1} and
assume that X =S, x .-+ x §,.LetJ ={1,...,k} and for any
jelyeX,y=(y,.... n)€l,,S vrite y_= (- Vv
¥j+1s -+ -» a) for the vector of components difterent from j. For
any y_,, a preference order 2 on X induoes a preference order
%, on §, which is defined by x,.x; if and only if
(_px)Z(r_px;) for x,xjeS;. In general, }he induced
ordering %, will depend on y_,. The first notion of sepa-
rability states that for any j, the preference orders Z,_{,ﬁfe
independent of y_, € 1,,,S,. The second notion of separability
states that for any proper subset I of J, the induced preference
orders > on IL,,S, are independent of 5 € [liy;S;-

~ sy

Definition. Let = be & preference order on X =T,

()& is called weakly separable with respect to N if
zy.l = z"} for eaChjEJ ﬂ.l'ld any y,l,z_lEn“]Si' 'f
(i) > s called strongly separable with respect (0 Ni
Xy = Ty, for cach IcJI# 8, 1#J and 30y
Yo 1€ Mgy S,
D'ﬁ"im"- Let u:n].ij" R uis called

(i) weakly separable with respect to N, if there exis
continuous functions B
:g:S,-»R,jeJ, and V:R*-R such that u(x)=

[v,0x)s .- . 0 (). .

(i) u is called strongly separable with respect to N, if ther®
exist continuous functions _
v:S-RjeJ, and V:R-R such that u(x)=

14 1-1”;(-"/)]-
The two important equivalence results on separability are due
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10 Debreu and Katzner. The version of Debreu’s Theorem given
here is slightly weaker than his original result.

HeOREM (Katzmer, 1970). Let 2 be a continuous, monolonic
preference order on X = 11,8, with S;= R¥j for all j & J. Then
X is weakly separable if and only if every continuous represent -
ation of it is weakly separable.

HEOREM (Debreu, 1960). Let = be a contimuous, monotomic
preference order on X =M,S, with S=R'j for all
jedmil,....k) andk 3 3. Then % is stromgly separable if and
only if every continuous representation is strongly separable.

Under thc.aaumptions of this theorem, if 2 is strongly
xpymbk ymh representation u(x) = V' [L,, ,v,(x;)]. then V" must
be increasing or decreasing. Therefore,

o) = {I,, ix) V increasing
-L,v(x) V decreasing

ll'l_lm a representation of . This is the form of separable
utility used by carly economists who thought that cach com-
modlgy h had its own intrinsic utility representable by a scalar
function u,. The overall utility was then simply obtained as the
sum of these functions, u(x) = I, 1,(x,). Such a formulation is
siven by Jevons (1871) and Walras (1874) and implicitly
contained in Gossen (1854),

For k=2, weak and strong separability of preferences
coincide. But there are separable preferences which do not
wmit a strongly separable utility representation, for
instance X = R%, N, = {j} for j=1,2, % given by u(x;, x;)

= xl + x] + ;2.
S{I;ﬂblc'ty of preferences imposes restrictions on demand

cotrespondences and on demand functions (for details see
Barten and Bohm, 1982, sections 9, 14, and 15).

6. CONTINUOUS DEMAND

Given any price-wealth pair (p, w)€ R'* ', the budget st of the
consumer was defined as B(p,w)={xeX|px<w} Let
S cR™*! denote the set of price-wealth pairs for which the
budget set is non-crapty. Then § describes a correspondence
from Sinto X, i.c. B associates to any (p, w) € § the non-cmpty
subset B(p,w) of X. There are two standard notions of
continuity of correspondences, upper hemi-continuity and
lower hemi-continuity (se¢ Hildenbrand, 1974).

Definition. A compact-valued correspondence ¥ from § into
an ar'bxtrary subset T of R is upper hemi-continuous (u.h.c.) at
2 point y €, if for all sequences (y",z")e S x T such that
y"-y and z*€ ¥ (y*) for all n, there cxist z€ P(y) and 2
subsequence z™ of z* such that z™ —z.

Definition. A correspondence ¥ from S into an arbitrary
gnbset T of R' is lower hemi-continuous (Lh.c.) at a point y €5,
‘ff‘“ any z ¢ P (y) and any sequence y* in § with y* -y there
Z)l‘]ls;:s a sequence z” in T such that z"—z and z"€ ¥ (y") for

Definition. A correspondence is continuous if it is both lower
and upper hemi-continuous.

For nngl'e~valued correspondences, the notions of lower and
upper hemi-continuity coincide with the usual notion of con-
tinuity for functions. For proofs of the following lemmas, sce
Debreu (1959) or Hildenbrand (1974).

LEMMA. Let X < R be a convex set. Then the budget correspon-
dence B:S — X has a closed graph and is lower hemi-continuous
at every point (p, w) for which w > min{px|x € X} holds.

Combining a previous Corollary on the non-emptiness of the
demand set and a fundamental theorem of Berge (1966) yields
the next result.

LEMMA. Let X SR be a convex set. If the preference relation
has a continuous utility representation, then the demand corre-
spondence is defined (i.e. non-emply valued), compact-valued,
and upper hemi-continuous at each (p,w)€ S such that B(p,w)
is compact and w > min{px|x € X}.

It follows immediately from the definitions, that
d(Ap, iw) = ¢(p, w) for any 1>0 and any price-wealth pair
(p, w), i.c. demand is homogeneous of degree zero in prices and
wealth. For convex preference orders, the demand correspon-
dence is convex-valued. For strictly convex preference orders,
the demand correspondence is single-valued, that is one obtains
a demand function. The results of this section and of section 4
are summarized ia the following lemma which uses the weakest
assumptions of traditional demand theory to generate a con-
tinuous demand function.

LeMA. Let S’ ={(p,w)eS|p(p,w) is compact and
w>min{px|x e X}}. If % denotes a strictly convex and con-
tinuous preference order, then ¢(p,w) defines a continuous
demand function ¢:S’ - X which satisfies: (i) homogeneity of
degree zero in prices and wealth and (ii) the strong axiom of
revealed preference.

7. CONTINUOUS DEMAND WITHOUT TRANSITIVITY

Transitivity is often violated in empirical studies. This excludes
utility maximization, but not necessarily preference max-
imization. However, as the next theorem indicates, existence
and continuity of demand do not depend on transitivity as
crucially as one may expect. The theorem follows from a result
by Sonnenschein (1971).

THROREM. Let S*={(p,w)eS|¢(p,w)# #}, X compact,
and > complete and with closed graph.

MY {x'eX|x'>x} is convex for all xeX, then
¢(p,w)# & whenever B(p,w) # g (ie. §*=S5)

(i) If $*=S and (p°,w°)ES such that B is continuous at
(p°,w°), then ¢ is uh.c. at (p°,w°).

The assumption that X is compact is not necessary. For casc
(i) it suffices that all budget sets B(p, w) under consideration be
compact. For case (ii) it is sufficient that there are 8 compact
subset X* of X and a neighbourhood §° of (p°, w*) such that
(S)c X

To complete this section we state a lemma on the properties
of a demand function obtained under preference maximization
without transitivity. This contrasts with the lemma at the end
of the previous section. Nontransitivity essentially implies that
the strong axiom of revealed preference need mot hold. The
Jemma follows from the theorem by Sonnenschein and from the

result by Shafer (1974).

uvmA. Let X =R, B =R'}}. Suppose continuity and strong
convexity of % (in addition to completeness). Then preference
maximization yields a continuous demand function [:B-X
which satisfies (i) homogeneity of degree zero in prices and wealth
and (ii) the weak axiom of revealed preference.

The converse statement of the lemma does not hold. For
]=2,X=R.,B=R,,thereis a C'-function f:B - X which
fulfills (i), (i), and (iii) pf(p, W) =W for all (p, w) € B, but which
cannot be obtained as the demand function for a continuous,
complete and strictly convex preference relation (John, 1984;
Kim and Richter, 1986).
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8. SMOOTH PREFERENCES AND DIFFERENTIABLE
UTILITY FUNCTIONS

Due to the representation theorem of section 5, continuity of
a utility function and continuity of the represented preference
order are identical under the perspective of demand theory.
When continuous differentiability of demand is required, con-
tinuity of the preference relation will not suffice in general. The
first rigorous attempt to study ‘differentiable preference orders’
goes back to Antonelli (1886). We follow the more direct
approach of Debreu (1972) to characterize ‘smooth preference
orders’. Smoothness of preferences is closely related to sufficient
differentiability of utility representations and the solution of the
integrability problem (see Debreu, 1972, also Debreu, 1976,
Hurwicz, 1971, and section 12 below).

For the purpose of this and subsequent sections, let P denote
the interior of R, and assume that X =P. Let 2 be a
continuous and monotonic preference order on P which we may
consider as a subset of P x P, ie. (x,y)e Zex2zy for
(x,y) € P x P. Also, the associated indifference relation ~ will
be considered as a subset of P x P. To describe a smooth
preference order, differentiability assumptions will be made on
the (graph of the) indifference relation in P x P.

For k 2 1, let C* denote the class of functions which have
continuous partial derivatives up to order k, and consider two
open sets X and Y in R*. A Dijection XY is a
C*-diffeomorphism if both h and h~! are of class C*. M < R*is
a C*-hypersurface, if for every z e M, there exist an open
neighbourhood U of z, an open subset ¥ of R”, a hyperplane
HcR and a C*diffeomorphism A:U-V such that
h(MNU)=VNH. A C*-hypersurface has locally the structure
of a hyperplane up to a C*-diffeomorphism. Considering the
indifference relation ~ as a subset of P x P, the set
T={(x,y)eP x P|x ~y} gives the ‘indifference surface’ of
the preference relation. Then 2 is called a C-preference order
(ot smooth preference order), if 'is a C*-hypersurface.

THEOREM (Debreu, 1972). Let > be a continuous and mono-
tonic preference order on P and I be its indifference surface. Then
Z isa C-preference order if and only if it has a monotonic utility
representation of class C? with no critical point.

9. PROPERTIES OF DIFFERENTIABLE UTILITY FUNCTIONS

Utility functions of class C? provide the truly classical approach
to demand theory (see, for example, Slutsky, 1915; Hicks, 1939,
Samuelson, 1947).

Let > be a monotonic, strictly convex Cpreference order
on P and u:P - R be a C-utility representation of > with no
critical point. Then u is continuous, increasing in all arguments,
and strictly quasi-concave. Moreover, all second-order partial
derivatives w;(x) = (@%/dx,0x)(x), ij=1,...,, x e P, exist,
all u, are continuous functions of x and u;=u, for
hj= i, +.+» 1. Let D% = (u,) denote the Hessian matrix of u.
Then D% is symmetnc. The first-order derivatives
u(x) = (du/dx)(x), i =1,...,!are continuous functions of x.
Assume that u(x)>0fori=1,...,/,x e P and define

u(x)
Du(x) =

u(x)

as the gradient of u at x. For many m x n-matrix M, let M’
denote the transpose of M.

™0

THBOREM. If u:P =R is a strictly quasi-concave utility function
of class C, then

’Du(x)z €0 forall xeP and ze{ieR/|7Du(x)=0}.

(For a proof, see Barten and Bohm, 1982).

It will be shown in the next section that the conclusion of this
theorem does not guarantee the existence of a differentiable
demand function. The following definition strengthens the
property of strict quasi-concavity.

Definition. u is called strongly quasi-concave if
2’Dlu(x)z <0 forall xeP, z#0
and ze{7eR|ZDu(x)=0}
Consider the bordered Hessian matrix

_[Dux) Dux)
H(")'[[Du(x)]' 0 ]

Then u is strongly quasi-concave whenever u is strictly quasi-
concave and H(x) is non-singular. (For a proof see Barten and
Bohm, 1982). '

The properties of strict and strong quasi-concavity are invar-
iant under increasing C*-transformations. For other results and
consequences of differentiable utility functions the reader may
consult Barten and Bohm (1982) and the references listed there,
or Debreu (1972), Mas-Colell (1974).

10, DIFFERENTIABLE DEMAND

Section 7 gave sufficient conditions on preferences for the
existence of a continuous demand function which is homoge-
neous of degree zero in prices and wealth and satisfies the strong
axiom of revealed preference. In this section, the implications
of smooth preferences for differentiability of demand will be
studied. )

Consider an assumption (D), consisting of the following three
parts: .

O X=P
(D2) X is a monotonic, strictly convex C2-preference grder on
X and the closure relative to R, x R, of its indifference
surface [ is contained in P x P.
(D3) The price-wealth space is B =R,
Given (D), there exists a demand function f:B—+X with
p-f(p,w)=w for all (p, w) € B. Let u be an increasing strictly
quasiconcave Cl-utility representation for 2. The following
key result on the differentiability of demand was first given by
Katzner (1968). For a detailed proof sec Barten and Bohm
(1982).

THEOREM, Let (§, W)€ B and % = f(§, ). Then the following
assertions are equivalent:

(i) fis C'in a neighbourhood of (p,W).

2.0 ’
(ii) [D u() l:)] is non-singular.

Du(F) Du®].
e 0 ]anon singular

Once the demand function f is continuously differentiable, It
is straightforward to derive all of the well-known comparati¥e
statics properties, for the proof of which we refer again ‘g
Barten and Bhm (1982). Let f=(f",..../") be a deman

(iii) H(¥) =[
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function of class C! and define
o
= ! ce ! = Brel Rt i 1)
fo= s s) (aw ™
.o .
fj——‘;j;}! l’j—li 1Is

s=fitff, =Ll
We obtain the Jacobian matrix of f with respect to prices,
J=(f}), and the Slutsky matrix § = (s}).

THEOREM.

(I)wa= 1! p" = _f’
(ii) Sp” =0,
(iii) S is symmetric,
(iv) ySy' <0, if ye R, y #ap for all 2 €R,
M rank S=1-1.

Property (iv) implies that all diagonal elements of § are strictly
negative, ie, si=f|+fLf'<0.1f £, 20, then (0x,/dp) <0,
i.e. commodity i is a normal good. f', <0, i.c. commodity i 18
an inferior good, is a necessary, but not sufficient condition that
(0x,/3p;) >0, i.e. that commodity i is a Giffen good.

11. DUALITY APPROACH TO DEMAND THEORY

With the notion of an expenditure function, an alternative
approach to demand analysis is possible which was suggested
by Samuelson (1947). For the further development and details,
we refer to Diewert (1974, 1982).

As a matter of convenience and for ease of presentation
assumption (D) will be imposed on the preference relation .
Let u denote a strictly quasi-concave increasing C’-utility
representation for > and let f:B — X be the demand function
derived from preference maximization. Let us further assume
that u(X)=R. (This requirement can always be fulfilled
by means of an increasing transformation) Define the
indirect utility function v:B—R associated with u by
v(p, w) = u(f(p, w)) for (p, w)eB.

Given a price system pe R, , and a utility level c €R, let
e(p,c)=min{p-x|x X, u(x) > c}. Since u is strictly quasi-
concave and increasing, there exists a unique minimizer h(p, ¢)
of this problem such thate(p, ¢) = ph(p, c). bR, , X R-R.,,
i8 called the Hicksian (income-compensated) demand function
and e:R!, . x R+ R, , is called the expenditure function for u.

Since assumption (D) holds, preference maximization and
expenditure minimization imply the following properties and
relationships:

(1) e =0[p,e(p, )] for all (p, c).

@) w=e[p,v(p, w)] for all (p, w).

(3) v(p,") and e(p,-) are inverse functions for any p.

@) h(p,c)=1lp, e(p, c)] for all (p,¢).

©) f(p,w) = h{p,v(p, w)] for all (p, w).

(6) e is strictly increasing and continuous in c.

(7) e is non-decreasing, positive linear homogeneous, and con-
cave in prices.

(8) v is strictly increasing in w, and continuous.

() v is non-increasing in prices and homogeneous of degree
2610 in income and prices.

Moreover, some interesting and important consequences of

these properties can be cbtained if the functions are sufficiently
differentiable.

THEOREM.

(i) e is C* if and only if v is C*~.

( k=1,2).
() If e is C", then dejp =h.

IffisC\, then
(iii) v is C*.
(@iv) f = —(0v/dp)/(0v /ow) (Roy’'s ideniity).
(v) ‘e is C' if and only if h is C"'.
(vi) his C' and e is C% and 0h/dp = S (Slutsky equation) with
0h/op evaluated at p,v(p,w)] and S at (p, w).

12. INTEGRABILITY

A review of the previous discussions and analytical results
involving the concepts of:

Z preference

u utility

h income-compensated demand

e expenditure function

v indirect utility

f (direct) demand
makes apparent their relationships which can be characterized
schematically by the following diagram:

)

o s

R

—

v
<

v
S

where g - b indicates that concept b can be derived from
concept @ under certain conditions.

The integrability problem is to establish f —+u, i.e. to recover
the utility function from the demand function f. For details sce
the separate entry of Sonnenschein.

VoLKER BOHM AND Hans HALLER

See also CHARACTERISTICS, COMPENSATED DEMAND; DUALITY; ELASTICITY;
INCOME EFFECT: INTEGRABILITY OF DEMAND; REVEALED PREFERENCE;
SEPARABILITY; SUBSTITUTES AND COMPLEMENTS.
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