ON THE CONTINUITY OF THE OPTIMAL POLICY SET FOR LINEAR PROGRAMS*

VOLKER BÖHM+

Abstract. For a linear program it is shown that the optimal policy set behaves continuously if the constraint vector changes on the set for which the program has a solution. The result implies that there exists a continuous optimal policy function for which a construction is indicated.

1. Introduction. Consider the linear program

P: Minimize $c \cdot x$

subject to

$$Ax \ge b$$
, $x \ge 0$,

where $c, x \in \mathbb{R}^l$, $b \in \mathbb{R}^m$ and A is an $m \times l$ matrix. For fixed A and c define

$$\Pi(b) = \min \{c \cdot x | Ax \ge b, x \ge 0\},$$

$$\zeta(b) = \{x \in R^l | Ax \ge b, x \ge 0, c \cdot x = \Pi(b)\}.$$

Let $B \subset R^m$ be the set of $b \in R^m$ for which P has a solution. If B is nonempty, then it is equivalent to take B as the set of $b \in R^m$ for which P is consistent, i.e., B is the set of "feasible right-hand sides". Π is a function from B to the real numbers and ζ is a set-valued mapping from B to R^l . The purpose of this note is to show a strong continuity property of ζ which implies the existence of a continuous selection function.

General continuity properties of optimal policy sets were discussed in different contexts in [3], [4] and in [5]. For the linear case, Theorem 2 of this paper supplies a stronger continuity result than the results in [4] and in [5] without requiring compactness of ζ .

2. Preliminaries. A set-valued function τ of a set $X \subset R^l$ into the set of subsets of $Y \subset R^m$, which assigns to each $x \in X$ a subset $\tau(x) \subset Y$, is called a correspondence if for every $x \in X$, $\tau(x) \neq \emptyset$. Let 2^Y denote the set of subsets of Y.

DEFINITION 1. The correspondence τ from X into 2^{τ} is called *upper hemi-continuous* (u.h.c.) at $x \in X$ if for every open neighborhood U of $\tau(x)$ there exists an open neighborhood V of x such that for every $z \in V$, $\tau(z) \subset U$.

DEFINITION 2. The correspondence τ from X into 2^Y is called *lower hemi-*continuous (l.h.c.) at $x \in X$ if for every open set M in Y such that $M \cap \tau(x) \neq \emptyset$, there exists an open neighborhood V of x such that for all $z \in V$, $M \cap \tau(z) \neq \emptyset$.

DEFINITION 3. The correspondence τ from X into 2^{γ} is called *continuous at* x if it is lower and upper hemicontinuous at x.

^{*} Received by the editors April 25, 1972, and in final revised form December 27, 1973.

[†] C.O.R.E., Université Catholique de Louvain, Belgium. This research was supported by the Deutsche Forschungsgemeinschaft while the author was at the Institut für Gesellschafts- und Wirtschaftswissenschaften, Universität Bonn, Bonn, Germany.

DEFINITION 4. The correspondence τ from X into 2^{Y} is called *lower hemicontinuous*, upper hemicontinuous, or continuous if it is lower hemicontinuous, upper hemicontinuous, or continuous respectively at every $x \in X$.

Clearly, if τ is single-valued and u.h.c. or l.h.c., then τ is a continuous function. The following propositions are stated without proofs. An extensive description of the continuity properties of correspondences can be found in W. Hildenbrand [6].

PROPOSITION 1. Let ϕ and ψ be correspondences of X into 2^{Y} and assume that $\phi(x) \cap \psi(x) \neq \emptyset$ for all $x \in X$. If ϕ has a closed graph and if ψ is u.h.c. and compact-valued, then the correspondence τ of X into 2^{Y} defined by $\tau(x) = \phi(x) \cap \psi(x)$ is u.h.c.

PROPOSITION 2. Let τ be a correspondence from $X \subset R^1$ into 2^Y . τ is l.h.c. if and only if for every sequence $(x^n)_{n=1,\dots}$ in X converging to $x \in X$ and $y \in \tau(x)$ there exists a sequence $(y^n)_{n=1,\dots}$ converging to y such that $y^n \in \tau(x^n)$ for all $n=1,\dots$

3. Main results.

THEOREM 1. $\Pi: B \to R$ is continuous.

Theorem 1 is well known and a proof will not be given (see, for example, [8]). THEOREM 2. The correspondence ζ from B into subsets of R^l has a closed graph and is lower hemicontinuous. ζ is continuous if $\zeta(b)$ is compact for some $b \in B$.

Proof. Clearly, $\zeta(b) = \{x \in R^l | \hat{A}x \ge \hat{b}, c \cdot x \le \Pi(b) \}$, where $\hat{A} = \begin{pmatrix} A \\ I \end{pmatrix}$ with I being the $l \times l$ identity matrix and

$$\hat{b} = \begin{pmatrix} b \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

 $\zeta(b)$ has a closed graph, since for every sequence (b^n, x^n) converging to (b, x), $\hat{A}x^n \ge \hat{b}^n$ and $c \cdot x^n \le \Pi(b^n)$ imply $\hat{A}x \ge \hat{b}$ and $c \cdot x \le \Pi(b)$. Hence $x \in \zeta(b)$.

Next it will be shown that ζ is u.h.c. if it is compact-valued for some b. It is well known in the theory of convex inequalities that if $\zeta(b_0)$ is compact for some $b_0 \in B$ then it is compact-valued for every $b \in B$. Let $g(b) = \max\{g_i(b)|i=1,\dots,l\}$, where $g_i(b) = \max\{x_i|\hat{A}x \ge \hat{b}, c \cdot x \le \Pi(b)\}$. The functions g_i are continuous by Theorem 1. Hence g is continuous. For each $b \in B$ define the cube

$$\psi(b) = \{x \in R^l | 0 \le x_i \le g(b), i = 1, \dots, l\}.$$

Clearly, ψ is u.h.c. and for every x which satisfies $\widehat{A}x \ge \widehat{b}$ and $c \cdot x \le \Pi(b)$, $\max\{x_1, \dots, x_l\} \le g(b)$. Therefore $\zeta(b) \cap \psi(b) = \zeta(b)$. Hence, ζ is upper hemicontinuous according to Proposition 1.

Let $(b^n)_{n=1,\dots}$ be a sequence in B converging to $b \in B$ and let $x \in \zeta(b)$. Then, by Proposition 2, for ζ to be lower hemicontinuous, it has to be shown that there exists a sequence $(x^n)_{n=1,\dots}$ converging to x such that $x^n \in \zeta(b^n)$ for all n. Let x_i , $i=1,\dots,l$, denote the ith component of a vector $x \in R^l$ and consider the following alternative linear program.

subject to

$$Ax \ge b$$
, $x \ge 0$, $c \cdot x \le \Pi(b)$.

The feasible set of this program is $\zeta(b)$ which is nonempty, closed and bounded below. Hence the program has an optimal solution. Let

$$f_1(b) = \min \left\{ x_1 | x \ge 0, Ax \ge b, c \cdot x \le \Pi(b) \right\}.$$

According to Theorem 1, $f_1: B \to R$ is a continuous function. Proceeding in the same manner define for $i = 2, \dots, l$:

$$f_i(b) = \min \{x_i | x \ge 0, Ax \ge b, c \cdot x \le \Pi(b), e_{i-k} \cdot x \le f_{i-k}(b), k = 1, \dots, i-1\},$$

where $e_i \in \mathbb{R}^l$, $i = 1, \dots, l$, is the usual basis for \mathbb{R}^l .

For each $i=2, \dots, l, f_i$ is a continuous function and the sequence $(y^n)_{n=1,\dots}$ defined by $y^n=(f_1(b^n),\dots,f_l(b^n))$ converges to $y=(f_1(b),\dots,f_l(b))$ with $y^n\in\zeta(b^n)$ for all n and $c\cdot y=\Pi(b)$. Consider the sequence $(z^n)_{n=1,\dots}$ defined by $z^n=x-y+y^n$. Clearly $z^n\to x$ and for all n, $c\cdot z^n=c\cdot y^n=\Pi(b^n)$. For each $j\in\{1,\dots,m+l\}$ it follows that for all n one and only one of the following inequalities will hold:

(1)
$$\hat{a}_i \cdot z^n = \hat{a}_i \cdot y^n$$
 if and only if $\hat{a}_i \cdot x = \hat{a}_i \cdot y$,

(2)
$$\hat{a}_i \cdot z^n > \hat{a}_i \cdot y^n$$
 if and only if $\hat{a}_j \cdot x > \hat{a}_j \cdot y$,

(3)
$$\hat{a}_i \cdot z^n < \hat{a}_i \cdot y^n$$
 if and only if $\hat{a}_i \cdot x < \hat{a}_i \cdot y$.

Let J_1 , J_2 , J_3 denote the three subsets of $\{1, \dots, m+l\}$ defined by (1)–(3) respectively. Consider a sequence $(\lambda^n)_{n=1,\dots}$, $0 \le \lambda^n \le 1$, converging to one and a sequence of vectors $(x^n)_{n=1,\dots}$ defined by $x^n = \lambda^n z^n + (1 - \lambda^n) y^n$. Clearly, for any sequence $(\lambda^n)_{n=1,\dots}$ with the above properties, $x^n \to x$, $c \cdot x^n = c \cdot y^n = \Pi(b^n)$ and for $j \in J_1 \cup J_2$, $\hat{a}_i \cdot x^n \ge \hat{a}_i \cdot y^n \ge \hat{b}_i^n$, where

$$\hat{b}^n = \begin{pmatrix} b^n \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Since $y^n \to y$, $x \in \zeta(b)$, and since for all $j \in J_3$, $\hat{a}_j \cdot x < \hat{a}_j \cdot y$, there exists an n_0 such that for all $n \ge n_0$, $\hat{a}_j \cdot y^n > \hat{b}_j^n$, $j \in J_3$.

Consider for $j \in J_3$ and $n \ge n_0$,

$$\hat{a}_j \cdot x^n - \hat{b}_j^n = \hat{a}_j \cdot (\lambda^n z^n + (1 - \lambda^n) y^n) - \hat{b}_j^n$$

= $\lambda^n \hat{a}_i \cdot x - \lambda^n \hat{a}_j \cdot y + \hat{a}_j \cdot y^n - \hat{b}_j^n$.

Hence $\hat{a}_j \cdot x^n - \hat{b}_j^n \ge 0$ if and only if

$$\frac{\hat{a}_j \cdot y^n - \hat{b}_j^n}{\hat{a}_i \cdot y - \hat{a}_i \cdot x} \ge \lambda^n, \qquad n \ge n_0, \quad j \in J_3.$$

The left-hand side is strictly positive for $n \ge n_0$ and converges to a value greater than or equal to one since $y_n \to y$, $\hat{b}^n \to \hat{b}$ and $\hat{a}_j \cdot x \ge \hat{b}_j$, $j \in J_3$.

Hence define $(\lambda^n)_{n=1,...}$ by

$$\lambda^{n} = \begin{cases} 0 & \text{for } n < n_{0}, \\ \min \left\{ \min \left\{ \frac{\hat{a}_{j} \cdot y^{n} - \hat{b}_{j}^{n}}{\hat{a}_{j} \cdot y - \hat{a}_{j} \cdot x} \middle| j \in J_{3} \right\}, 1 \right\} & \text{for } n \geq n_{0}. \end{cases}$$

Then for all $n, 0 \le \lambda^n \le 1, \lambda^n \to 1$. Moreover, $x^n \to x$ and for all $j \in \{1, \dots, m+l\}$ and all $n, \hat{a}_j \cdot x^n \ge \hat{b}_j^n$, i.e., $x^n \ge 0$, $Ax^n \ge b^n$ and $c \cdot x^n = \Pi(b^n)$. Hence $x^n \in \zeta(b^n)$. O.E.D.

The significance of the strong continuity property of the correspondence ζ stems from the fact that every closed and convex-valued lower hemicontinuous correspondence admits a continuous selection (see, e.g., Michaels [7]), i.e., there exists a continuous function $f: B \to R^l$ such that for all $b \in B$, $f(b) \in \zeta(b)$. In fact, the function f constructed in the proof has this property.

Remark. An immediate application of Theorem 2 yields a new continuity result in game theory. It is well known that the core of a side payment game in characteristic function form for a finite set of players is the optimal policy set of a certain linear program. Hence, the core viewed as a set-valued mapping from the set of characteristic functions for which the core exists to the set of payoffs is a continuous correspondence.

Acknowledgment. I am indebted to Professors G. Debreu and W. Hildenbrand for valuable comments and critical remarks, and to two referees whose criticism greatly helped to improve an earlier version of this note.

REFERENCES

- [1] C. Berge, Topological Spaces, Macmillan, New York, 1963.
- [2] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, N.J., 1963.
- [3] G. B. Dantzig, J. Folkman and N. Shapiro, On the continuity of the minimum set of a continuous function, J. Math. Anal. Appl., 17 (1967), pp. 519-548.
- [4] J. P. EVANS AND F. J. GOULD, Stability in nonlinear programming, Operations Res., 18 (1970), pp. 107-118.
- [5] H. J. GREENBERG AND W. P. PIERSKALLA, Extensions of the Evans-Gould stability theorems for mathematical programs, Ibid., 20 (1972), pp. 143-153.
- [6] W. HILDENBRAND, Core and Equilibria of a Large Economy, Princeton University Press, Princeton, N.J., to appear.
- [7] E. Michaels, Continuous selections. I, Ann. of Math., 63 (1956), pp. 361-382.
- [8] R. J. B. Wets, Programming under uncertainty: The equivalent convex program, this Journal, 14 (1966), pp. 89-105.