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The present paper provides a complete description of left balanced rings.
Recall that a ring is called left balanced if every left .R-module M is
balanced, i.e. if, for any left i2-module M, the natural homomorphism
of R to the double centralizer of M is surjective. In [4], left balanced
rings have been shown to be left artinian. Hence, by [7], a ring is left
balanced if and only if it is a finite product of full matrix rings over local
left balanced left artinian rings. Consequently, the study of left balanced
rings is reduced to that of left artinian local rings.

Throughout the rest of the paper, R denotes a local left artinian ring,
W is its radical, and Q = R/W is the residue division ring. There is a
unique simple left jR-module RQ, and E denotes its injective envelope
(so E is the only indecomposable injective left .R-module). Then the
main result of the present paper is the following:

STRUCTURE THEOREM. R is left balanced if and only if either (a) R is
uniserial or (b) W2 = 0, RW is simple, WR has length 2, and E has length 3,
or (c) W2 = 0, WR is simple, RW has length 2, and E has length 2.

Here, R is called uniserial, if all its left ideals and all its right ideals
are linearly ordered by inclusion. The rings described under (b) and (c)
will be called exceptional. As a matter of fact, it will be shown
(Theorem 2.3) that a local ring R satisfies the conditions (b) if and
only if its opposite R* satisfies the condition (c). Consequently, an
(arbitrary) ring is left balanced if and only if it is right balanced. As a
by-product of our structural investigations in [4] and the present paper,
a left artinian ring A is shown to be balanced if and only if every finitely
generated left A -module is balanced (Remark 3.7).

In this paper, we are concerned only with the necessity of the conditions.
The sufficiency of (a) is well known and the sufficiency of (b) and (c) was
essentially proved in [5].

If Q = R/W is finitely generated over its centre, then R is exceptional
if and only if W2 = 0 and dRWxdWR = 2 (Theorem 5.2). This is a
consequence of the fact that a division subring of a division ring which
is finitely generated over its centre, is of left index 2 if and only if it is
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of right index 2. The existence of non-exceptional local rings satisfying
the conditions W2 = 0 and dRW x dWR = 2 is equivalent to the existence
of a division ring with an isomorphic subring of right index 2 and left
index different from 2 (Theorem 5.3).

Finally, a categorical characterization of balanced rings is given in
Theorem 4.1: a left artinian ring A is balanced if and only if the composi-
tion factors of each indecomposable left A -module are isomorphic, if
every such A -module of length greater than 3 is uniserial, and any two
indecomposable A -modules of a given length with isomorphic composition
factors are isomorphic. In fact, a balanced ring has only finitely many
isomorphism types of indecomposable modules (Theorem 4.2).

1. Preliminaries
Throughout the paper, the terminology and notation of [4] will be

used as well as the notations R, W, Q, and E fixed already. In particular,
if A is a ring with unity, A* denotes its opposite. By an A -module we
always understand a unital A -module; the symbols AM or MA will be
used to underline the fact that M is a left or a right A -module, respec-
tively; dM will denote the length of M. I t should be noted that homo-
morphisms always act on the side opposite to that of the operators; in
particular, every left .4-module M defines a right ^-module M^, where
# is the centralizer of the A -module M.

We need three known results. In [4], we proved

THEOREM 1.1. Let R be left balanced. Then
either (i) R is left uniserial,
or (ii) W2 = 0,anddRW = 2,
or (iii) Ws = 0, dR(W/W2) = 2, and W2 is the unique minimal left ideal.

Conversely, in [5], certain local rings with W2 = 0 were shown to be
left balanced. There, Q was supposed to be commutative; however, this
was used only to calculate the indecomposable injective modules. If we
assume that E has the appropriate properties, then §§ 3, 4, and 5 of [5]
give the following two descriptions of i?-modules (as well as proving that
exceptional rings are balanced).

THEOREM 1.2. Let W2 = 0, RW be simple, WR be of length 2, and the
injective envelope E of RQ be of length 3. Then

(a) every indecomposable left module is either simple, injective or
isomorphic to RR, and every left module is a direct sum of these
indecomposable modules;

(b) R is left balanced.
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THEOREM 1.3. Let W2 = 0, WR be simple, RW be of length 2, and the
injective envelope E of RQ be of length 2. Then

(a) every indecomposable left module is monogenic and either simple,
injective, or isomorphic to RR, and every left module is a direct sum
of these indecomposable modules;

(b) Mis left balanced.

In our investigations, the following two results on balanced modules
will be required. We recall that an indecomposable jR-module is said to
have large kernels if, for every endomorphism <p of M, either Ker^ = 0
or Soc M <= Ker <p.

LEMMA 1.4. Let M be a balanced indecomposable left R-module of finite
length and m e M such that Ann(ra) = 0. Then

(i) denoting by *& the centralizer of M, m%> = M, and
(ii) if, moreover, M has large kernels, then Soc M c Rm.

Proof. Let if be the radical of # . Since M is of finite length, if
is nilpotent and Mv has a non-trivial socle Socilf^ and a non-trivial
radical Mif (see [1], Exercise 3, pp. 26-27). Now, M/{m<£ + Mif) and
SocM<# are semisimple right ^-modules. Moreover, the local ring <€ has
only one isomorphism type of simple modules, and therefore, if we show
that any ^-homomorphism T of the form

Mr -^-> M/imtf+Mif) > Soc J ^ —^> Mg

(where s is the canonical epimorphism and t the embedding) is trivial,
then we have

M =

But M is balanced, so *¥x = rx for some r e R and any x e M. I t follows
from rm = Ym = 0 and Ann(m) = 0 that r = 0; therefore \F is trivial.
The equality M = m^+MW yields

M =

and, by induction,
M =

Since if is nilpotent, M = m^. This proves (i).
Since M has large kernels, every element <p e "W satisfies (Soc RM)<p = 0,

and therefore Soc^Jf £ SocMg>. Also, m $ MW; otherwise m%> would
belong to MiT, but MiV ^ M. This implies that, for any element
x G Soc RM, we can find a 'g'-homomorphism T of the form

Mr —&-+ M/WW > Socil^ — ^ Mr,
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mapping m onto x. But T is induced by left multiplication and so there
is r e R with rm = x. The proof of Lemma 1.4 is complete.

The next result corresponds to Construction II of [4]; it implies that
modules of equal length over a local left balanced, left artinian ring are
isomorphic if they have simple socles.

LEMMA 1.5. Let Mx and M2 be two faithful left R-modules such that, for
i^j, every homomorphism <p: Mi-^- Mj satisfies (Soc JkQp = 0. Then
Mx ® Mz is not balanced.

Proof. We represent the elements of the centralizer of M by matrices

H where 9ij:Mi^Ml.
1 922/

H
922/

Take a non-zero element z of Soc^-R, and define an additive homo-
morphism T : M ->- M by

T(ml5 ra2) = (zmv 0) for (mv m2) in

Now, zmi belongs to Soc Mi; so, for i # j , we have

= (zmi)?a = 0.

This implies that T belongs to the double centralizer of M1@M2)

because

1, m2)] T 1 1 ?™\ = (zm^n, 2ml9?12) = ( z r a ^ + zm2?j21) 0)
\?X 922/

M
9?22

l.
Assuming that Y is induced by left multiplication by p e R, the equation
{zmx, 0) = (pml5 pm2) for all w^ e Mi implies p = 0, because Jf2 is faithful.
But zMx # 0, because J^ is faithful. Lemma 1.5 follows.

2. Exceptional rings
The aim of § 2 is to make a detailed study of the 'exceptional' rings

defined in the Introduction to be those R which satisfy conditions (b) or (c)
of the Structure Theorem. We assume throughout § 2 that W2 = 0.

The division ring Q = R/W operates on W both from the left and the
right and we get two vector spaces QW and WQ. If w is a non-zero element
of W, we define a subring Sw of R by

Sw = {s e R | sw e wR}.
5388.3.26 P



450 VLASTIMIL DLAB AND CLAUS MICHAEL RINGEL

Obviously, since Ww = 0, W £= Sw. Moreover, if s is a unit belonging
to Sw, then the equality sw = wr (for a suitable r E R) implies s^w = wr~x,
and thus s"1 e Sw as well. Consequently, Sw/W is a division subring of
Q = R/W. If A is a unit of R, then

8kw = {seR\sXwe XwR} = {s e R|X-^-sXw e wR} = AAS^"1

and thus, in particular,
d i m (SjW)Q = d i m (8jW)Q-

Similarly, we define the subring Tw of R:

Tw = {t E R\wt E Rw}.

Again, W ̂  Tw, Tw/W is a division subring of Q, and, for an arbitrary
unit p of i?,

dimQ{Tjw) = dimQ(Ttcplw).

PROPOSITION 2.1. Let dim^TT = 1 and dimT^ = 2. Then the following
statements are equivalent:

(ii) there exist two linearly independent elements v, w of WQ such that
W = wR + Swv;

(iii) R is exceptional.

Proof. In order to prove that (i) implies (ii), let w be a non-zero
element of W, S = Sw, and let dim ls/w)Q — 2. Thus, there exists
r e R\S such that R = S + Sr+W. Putting v = rw, one gets

W = Rw = {S + Sr+W)w = Sw + Sv = wR + Sv,

because dim Q W = 1 implies Sw = wR.
Now, to establish that (ii) implies (iii), we are going to show that

M = R{R e R)/D, where D = {{Xv, Xw) \ X e R},

is an indecomposable injective left .R-module, hence a copy of E. To
prove injectivity of M assume that a homomorphism rp\ RW -> M is
given; we are required to extend it to a homomorphism from RR to M.
Obviously, cp is determined by the image of w; and, since w<p e WM,
we can find wv w2 e W such that

w<p = (wv w2) + D.

But, w2 = Xw and thus, for some w0 e W,

{wx, w2) + D = {wx - Xv, 0) + (Xv, Xw) + D = {w0,0) + D.

Now w0 E wR + Swv, and therefore there are elements rx e R, s e Sw, and
r2E R such that

w0 = wrx + sv and sw = — wr2.
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We claim that the homomorphism

RR - ^ R(R®R) > M,

where e is the canonical epimorphism, is an extension of p. Indeed, the
element w is mapped into

w(rv r2) + D = (wo — sv> — sw) + D = (wo> 0) + D = w<p,

as required. Consequently, M is injective and, being of length 3, neces-
sarily indecomposable. So E also has length 3.

To complete the proof, let us verify that (iii) implies (i). An
indecomposable injective left i?-module M of length 3 is necessarily an
amalgam of two copies of RR over its socle. Thus,

M = R{ReR)/D with D = {(Xv,Xw)\Xe R}

for suitable v and w of W. Now, take an arbitrary x e W and consider
the homomorphism <p: RW ->• M mapping w into (x, 0) + D. Extend <p
to a homomorphism from RR to M and lift the latter to

Hence,
(wl5 wr2) - {x, 0) e D,

and thus
(^rx — #,wr2) = {Xv,Xw) for some A G i2.

Therefore, writing Sw = S,

X e S and x = ^ ^ — Xv e wR + Sv.
Thus

Bw = W = wR + Sv = Sw + Sv = (S + Sr)w

with a suitable r e R, and hence

R = S + Sr+W.

Now, r $ S; for, otherwise TF = wi2 + Srw = m2? in contradiction to
dim WQ = 2. As a consequence, dim {S/(V)Q = 2, as required. The proof of
Proposition 2.1 is complete.

PROPOSITION 2.2. Let dimQW = 2 araZ WQ = l. Then the following
statements are equivalent:

(i) dim#(rj^) = 2;
(ii) ^ere exisi i^o linearly independent elements v, w of QW such that

W = Rw + vTw;
(iii) R is exceptional.

Proof. Both statements (i) and (ii) are dual to those of Proposition 2.1,
and thus they are equivalent. In order to show that (ii) implies (iii),
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let v, w be the elements given in (ii). We are going to prove that R/Rw
is an indecomposable injective jR-module, hence a copy of E. To this end,
let <p: RW -> R/Rw be a non-zero homomorphism. Since right multiplica-
tion by elements of R is transitive on W, we can evidently assume that
Ker<j? = Rw. Thus, <p is determined by the conditions w<p = 0 and
v<p = w0 + Rw for a suitable w0 e W. In view of the relation W = Rw + vTw,
we have

wQ = rw + vt for some r e R and t e Tw.

Consequently, the homomorphism

t e
RR > RR > R/Rw

maps Rw into 0, v into w0 — rw + Rw = wo + Rw, and is thus an extension
of <p to RR. Therefore R/Rw is injective. It is clearly indecomposable,
and clearly of length 2. So E also has length 2.

Finally, we verify that (iii) implies (i). Let M be an indecomposable
injective left .R-module of length 2; hence M ~ R/Rw for some non-zero
element w G W. Let v G QW so that v and w are linearly independent.
Take an arbitrary element x e W and consider the homomorphism
9 '• BW -* M such that

v<p = x + Rw and wcp = 0.

Since M is injective, <p can be extended to a homomorphism from RR
r

to M, and therefore lifted to RR > RR. From here, it follows that
wr e Rw and thus r e Tw; moreover, x — vre Rw. Consequently,

which fact completes the proof of Proposition 2.2.

THEOREM 2.3. A ring R is exceptional if and only if its opposite R*
is exceptional.

Proof. This follows immediately from the fact that a ring satisfies the
conditions of Proposition 2.1 (i) if and only if its opposite satisfies the
conditions of Proposition 2.2 (i).

We conclude this section by remarking that the existence of exceptional
rings will be shown in §5. There we shall also consider the conditions
under which a local ring R with

W2 = 0 and dim QW x dim WQ = 2

is exceptional. It will be shown that this question is equivalent to
deciding whether certain division subrings of Q have left index equal
to right index.
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3. The structure theorem
First, we give a complete description of left balanced local rings R

with W2 = 0.

LEMMA 3.1. Let W2 = 0, dimQW = 1, and 6imWQ > 3. Let u, v, w be
linearly independent in WQ. Then

M = R{R@R®R)/D, where D = {{\u,Xv,XW)\XG R},

is an indecomposable left R-module with large kernels.

Proof. First, there is no homomorphism of M onto RR. For, assuming
the converse, we get a homomorphism

/rA
\rA: R{R®R®R)-> RR

such that D is mapped into 0. Thus urx + vr2 + wr3 = 0 and in view of
the linear independence of u, v, w in WQ, all r̂  6 W; therefore the homo-
morphism cannot be surjective.

Now, d(SocM) = 2. For, assume d(SocM) > 2, and consider the
submodule M' = R(R@R® W)/D of M. Obviously, M' is isomorphic to
R(R@R), and therefore d(SocM') = 2. By assumption, we can find an
element m e Soc M\SocM'. Since M' nRm = 0 and

d{M'®Rm) = 8{M') + 1 = 5 = d{M),

we conclude that M' is a direct summand of M. But this contradicts
the fact that M has no epimorphic image isomorphic to RR.

Since Soc i f 2 [Soc R(R ® R ® R)]/D and since d(Soc if) = 2, we get

SocM = [Soc R(R®R®R)]/D = {RadB{R®R®R)]/D = Radilf.

Moreover, there is no indecomposable submodule of M of length 3.
For, an indecomposable left ^-module N of length 3 has a simple socle,
and thus N would intersect trivially either M1 = R[(l,0,0) + D] or
M2 = R[{0,1,0)4-2)]. Assuming NnM1 = 0, we conclude, in view of
dM1 = 2 and dM = 5, that Mx is a direct summand of M. But, Mx is
obviously isomorphic to RR, and this contradicts the fact that M has
no epimorphic image isomorphic to RR. Therefore N n Mx ^ 0. Similarly
Nn M2 # 0. Therefore no such N can exist. Also, there cannot be an
indecomposable submodule of M of length 4. For, such a submodule
would have a simple socle and thus contain an indecomposable submodule
of length 3.

Finally, since M has no indecomposable epimorphic image of length 2
and no indecomposable submodules of length 3 or 4, the image of every
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proper endomorphism <p of M is semisimple and therefore (Rad M)<p = 0;
consequently, (Soc M)<p = 0 and so M is an indecomposable module with
large kernels.

LEMMA 3.2. Let R be left balanced, W2 = 0, and dimQW = 1. Then R
is uniserial or exceptional.

Proof. Assuming that R is left balanced, we want first to show that
dimp^ < 2. Otherwise, there are three linearly independent elements
u, v, w in WQ, and according to Lemma 3.1,

M = R{R®R®R)/D, where D = {{Xu,Xv,Xw)\Xe R},

is an indecomposable left i2-module with large kernels. Since, obviously,
Ann[(l, 0,0) + D] = 0, it follows from Lemma 1.4 (ii) that

Taking (0, u,0) + De Soc M, we get (ro, 0,0) + D = (0, u, 0) + D for a
suitable r0 e R, and thus (r0, — w, 0) e D. This is impossible, and therefore
dim WQ < 2.

If dimJ^ = 1, R is uniserial. Therefore, we assume that dimpfg = 2.
In order to prove that R is exceptional it is sufficient to show, in view
of Proposition 2.1, that W = wR + 8wv for two linearly independent
elements v and w of WQ. Since the .R-module

N = R{R®R)/D with D = {(Xv,Xw)\Xe R}

is indecomposable and since, obviously,

Ann[(l,0) + D] = 0, N = [(

by Lemma 1.4 (i). Therefore, taking an arbitrary r e R, there is <p e
such that

Lifting <p to

W a22

we find that (an — r, a12) e D and, in particular, a n — r e W and a12 e W.
Also, applying this homomorphism to (v, w) e D, we obtain

(v<xxx + Wa21, VQL12 + Wa22) = (vr + Woc21, Wcx22) E D.
Hence,

vr + woi21 = Xv and WOL22 = Xw for some A 6 R.

Therefore A 6 Sw and vr e wR + Swv. Consequently

W = vR + wR c Wr + Swv,
as required.
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LEMMA 3.3. Let W2 = 0, 6imQW = 2, and dimT^ ^ 2. Let u, v be
linearly independent elements in WQ. Then

M = R{R® R)/D, where D = {{Xu, Xv) \ X e R},

is an indecomposable left R-module with large kernels.

Ir \
Proof. First, let <p: M -> RR. Then, lifting <p to ( x : R(R + R) -> RR

V2/
mapping D to 0, we find that urx + vr2 = 0. In view of the linear indepen-
dence of u, v in WQ, rx and r2 belong to W and hence <p is not surjective.
As an immediate consequence, we have that d(Socif) = 3. For, assume
that S(SocM) > 3 and consider the submodule M' = R[(l,0) + D] which
is obviously isomorphic to RR. Since d(SocM') = 2, we find a submodule
M" of SocM with M'nM" = 0 and dM" = 2. But

d{M'®M") = dM' + dM" = 5 = dM
implies that M' is a direct summand of M. This contradicts the fact

that M has no epimorphic image isomorphic to RR. Since d(SocM) = 3,
Soc M = [Soc R{R®R)]/D = [Rad R{R ® R)]/D,

and therefore Soc M = Rad M.
Now, M contains no monogenic submodule of length 2. For, assume

that X is such a submodule. Again, since neither R± = R[{1, 0) + D] nor
R2 = R[(0,1) + D] is a direct summand of M, X necessarily contains the
simple submodule X' = R[(u, 0) + D] = JB[(O, -v) + D] = R1n R2. There-
fore the submodule N = X + Rx satisfies d(N/~Ra,dN) = 2 and dN = 4.
Since 8{M/N) = 1,R2^R, and

M/N = (R2 + N)/N ~ R2/(R2nN),

it follows that WR2 = R2nN c JV. Hence WRX+ WR2 c JV and

8(SocN) = 3,

so that JV is a direct sum of X and two copies of Q. This implies that
5(iV/RadiV) = 3, in contradiction to the formula 5(iV/RadJV) = 2
proved above. So no such N exists.

Also, M contains no indecomposable submodule of length 4. Assume
that 7 is a submodule of M of length 4. First, let S(Soc 7) = 3. Then
7 contains necessarily a copy of RR, so that 7 splits. Second, let
d(Soc 7) = 2. Then, since d(SocM) = 3, M is isomorphic to Y®Q, and
this is obviously incompatible with the previously established formula
Rad i f = Soc if.

Now, it follows easily that each proper endomorphism of M has
semisimple image, hence kernel containing Rad M. Since Rad M = Soc M,
M has large kernels and is indecomposable.
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LEMMA 3.4. Let R be left balanced, W2 = 0, and dimQW = 2. Then R
is exceptional.

Proof. Assume that R is left balanced. First, we shall prove that
dimT^ = 1. Assume the contrary and choose v e W, v ^ 0. Since
dim QW = 2 and dim WQ > 2, both Rv and vR are proper subgroups
of W and therefore their set-theoretical union is a proper subset of W.
It follows that there is an element w e W which is neither in Rv nor in vR.
Consider the left JR-module

M = R{R®R)/D with D = {(Xv,\w)\\e R}.

Since v and w are linearly independent in WQ, M is, according to
Lemma 3.3, an indecomposable module with large kernels. Now, since
Ann[(0, l) + D] = 0, we may apply Lemma 1.4 (ii) and find that
SociWg JR[(O, l) + D]. Therefore, taking (w, 0) + D e SocM, there is
roe R such that (w, — r0) e D. Thus, in particular, w = Xv for some
A e R, in contradiction to w $ Rv.

Now, to complete the proof, we want to show that W = Rw + vTw.
Consider the J?-module N = R/Rw; let ^ be its centralizer. Obviously,
the rings ^ and Tw/Rw are isomorphic, and thus (Rw + vTw)/Rw is a
non-zero ^-submodule of N. Since ^ is local, all simple ^-modules
are isomorphic. Thus, the fact that Rad.A^ ^ N and SociVg. is essential
in N% (see again [1]) implies that there is a non-zero ^-homomorphism
T : N -> N mapping N into (Rw + vTw)/Rw. Since N is a balanced
i2-module, T is induced by the ring multiplication:

= rn for all n e N with a suitable non-zero r e R.

Consequently,
(rR + Rw)/Rw = W(R/Rw) c (Rw + vTw)/Rw,

and therefore rR c Rw + vTw. Since dimM^ = 1, W = Rw + vTw, as
required.

REMARK. Let us point out briefly that an alternative proof of the
first part of Lemma 3.4 can run as follows: having proved that dim WQ = 1,
one can deduce from Lemma B of [2] that dimQiTjw) < 2. By
Proposition 2.2, the latter is equivalent to the fact that R is exceptional.

We are ready to complete the proof of the Structure Theorem by showing:

THEOREM 3.5. IfRis left balanced then it is either uniserial or exceptional.

Proof. Let W be the radical of R and Q = R/W. If W2 = 0, it follows
from (1.2) that d im Q F ^ 2. Therefore, by Lemmas 3.2 and 3.4, if R
is left balanced then it is uniserial or exceptional.
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Now, Theorem (3.5) would be established if we show that the only
left balanced ring R with W2 # 0 are the uniserial rings. Assume this is
not so, that R is left balanced, that W2 i=- 0, and that R is not uniserial.
Since the ring R/W2 is left balanced, non-uniserial and the square of its
radical is zero, it follows that R/W2 is exceptional. Thus, by-
Theorem (1, 1), there are two remaining possibilities to exclude:
(a) Tf3 = 0, dimQ(jr/JF2) = 2 and d i m Q F 2 = l , and (b) R is left
uniserial but dim [W/W2)Q = 2.

Case (a). Assume that W* = 0, dimQ{W/W2) = 2 and dim0TP = 1.
Thus RW is a module of length 3 with a simple socle. But RW can be
considered as a left i?/TF2-module. Since R/W2 is an exceptional ring
with dimQ(W/W2) = 2, the indecomposable injective left JS/TP-module
is of length 2. Therefore no left R/W2-module of length 3 has a simple
socle.

Case (b). Assume that R is left uniserial and that dim (W/W2)Q = 2.
We may obviously assume Wz = 0. In order to show that this case
cannot occur, we shall construct two faithful non-isomorphic J?-modules
Mx and M2 with simple socles and use Lemma 1.5 to exhibit a non-
balanced J?-module, namely Mx® M2.

First, since S = R/W2 is exceptional, also the opposite of S is
exceptional, according to Theorem 2.3. Observing that R(W/W2) is
simple, we can apply (1.3) (a) to the opposite of S and conclude that
every right ̂ -module is a direct sum of monogenic modules. In particular,
W itself can be considered as a right $-module and Soc Ws = (W2)s. This
follows from the fact that Soc Ws as an ideal of R is two-sided and cannot
be equal to Ws, because W2 ^ 0. Now, since Ws possesses a semisimple
quotient {W/W2)s of length 2, there are, in view of the above decomposi-
tion, elements x and y in W such that xR n yR = 0, with x + W2, y + W2

linearly independent in {W/W2)s. Moreover, since x and y do not belong
to W2 = SocT^j, d(xR) = 8(yR) = 2.

Now consider

Mx = R(R 0 B)/Dlt where Dx = {(Arc, Xy) \ A e R).

Obviously, dMx = 4. The left i2-module Mx has no monogenic quotient
of length 2. For, given a homomorphism 9?: Mx -> R(R/W2), we can lift

it to a homomorphism \ 1)' R{R © R) -> RR- Since Dx is mapped into
V2/

W2, xrx + yr2 belongs necessarily to W2. But x+W2 and y+W2 are
linearly independent in (W/W2)R/W and therefore both xrx and yr2 belong
to W2. Consequently, both rx and r2 lie in W and hence <p cannot be
surjective. From here it follows easily that SocM1 is simple. For,
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obviously, N' = R(R® W)/D1 ~ RR and thus d($ocN') = 1; therefore, if
d{SocM1) ^ 2, then there exists a simple submodule N" c Jfx such that
N'nN" = 0. Consequently,

d(N'®N") = dN' + l = 4 = SJf,

and thus M1 = N'@N". This contradicts the fact that there is no
monogenic quotient of length 2.

To construct M2, take a non-zero element z e yR n W2; such an element
exists because t%.R) = 2. Define the left i2-module

M2 = R{R ® R)/D2, where D2 = {(Aa>, Az) | A e £}.

Again dM2 = 4. Also Soc Jf2 is simple. For, if Soc J/2 is not simple, then
an argument similar to the one given above shows that R( W2 ® R)/D^ = RR
is a direct summand of M2. Thus M2 possesses an epimorphic image which
is a monogenic JR-module of length 3. But a homomorphism <p: M2-> RR

( r \1 1 : R(R ®R)->RR mapping D2 into 0.

Therefore, xrx + zr2 = 0. This relation shows that both rx and r2 belong
to W and thus the homomorphism <p cannot be surjective.

Now, Mx and M2 are two non-isomorphic left J?-modules of length 4.
This follows from the fact that M2 (in contrast to Mj) has a monogenic
quotient of length 2, namely R(R@R)/{R® IF2). Consequently, any
homomorphism between Mx and M2 must have a non-trivial kernel.
Since both Socil^ and SociHf2 are simple, such a homomorphism
(p\ Mi ->• Mj (with i # j) satisfies (Socil^)^ = 0. Thus, applying Lemma
1.5, we get a non-balanced left J?-module. This contradiction shows
that case (b) cannot occur.

The proof of Theorem (3.5), and therefore of the Structure Theorem, is
now complete.

Since the concepts of a uniserial ring, as well as that of an exceptional
ring, are self-dual, we have the following important result.

COROLLAEY 3.6. A ring is left balanced if and only if it is right balanced.

From now on, we refer simply to a balanced ring.

REMARK 3.7. A left artinian ring A is balanced if and only if every
finitely generated left A-module is balanced.

Proof. If every finitely generated left A -module is balanced, then A
is a finite direct sum of full matrix rings over local rings R€. Otherwise,
it follows from [9] that there are non-balanced modules of length 2.
Now, the property of being finitely generated is invariant under Morita
equivalence, and so finitely generated ^-modules are balanced (see, for
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example, [2]). Therefore it is sufficient to prove our theorem for local
rings; and for these, the theorem holds because each non-balanced module
used in the proofs in [4] and in the present paper is generated by at most
four elements.

The assumption in Remark 3.7 that the ring A be left artinian is
essential. It is well known (see [1]) that every finitely generated abelian
group is balanced, although the ring of all integers is not balanced.

4. The module category of a balanced ring
It is well known (and was used in the proof of the Structure Theorem)

that the property of being balanced is invariant under Morita equivalence.
Here, we characterize explicitly the balanced rings A in terms of the
module categories AM.

THEOREM 4.1. The left artinian ring A is balanced if and only if the
category AM of all left A-modules has the following properties:

(i) the composition factors of each indecomposable left A-module are
isomorphic,

(ii) every indecomposable left A-module with length greater than 3 is
uniserial, and

(iii) any two indecomposable left A-modules of a given length and with
isomorphic composition factors are isomorphic.

Proof. First, note that A is the direct sum of full matrix rings over
local rings R$ if and only if condition (i) is satisfied in AM. Then, AM
satisfies (ii) and (iii) if and only if, for all i, the categories j^M satisfy
these conditions. Therefore, it is sufficient to prove Theorem 4.1 for a
local left artinian ring A = R.

The necessity of the conditions follows immediately from Theorem 3.5
together with Theorems (1.2) and (1.3).

In order to prove the sufficiency, let us first assume that all
indecomposable left i2-modules are uniserial. Then R is trivially
left uniserial. Also, R is right uniserial. For otherwise R(R®R)/D,
where D = {(Xu,Xv) IA e R} + (W2 © W2) with linearly independent elements
u, v in (W/W2)Q, is a non-uniserial indecomposable left iJJ-module.

If there is a non-uniserial indecomposable J?-module X of length 3
with a simple socle, then X is necessarily injective and R (being a
monogenic indecomposable i?-module) is left uniserial. Consequently,
RR can be embedded in X and therefore W2 = 0. By Lemma 3.1,
dim WQ = 2; for, otherwise, there would exist an indecomposable non-
uniserial i?-module of length 5. Hence, R is exceptional and thus
balanced.
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If there is a non-uniserial indecomposable i2-module Y of length 3
with a non-simple socle, then Y/Rad Y is simple and thus, necessarily,
Y ~ RR. Consequently, W2 = 0, dim QW = 2 and the indecomposable
injective is uniserial (and of length 2). By Lemma 3.3, dimW^ = 1;
hence, R is again exceptional and therefore balanced.

THEOREM 4.2. A balanced ring has only finitely many isomorphism
types of indecomposable modules.

Proof. A balanced ring is left artinian, therefore the length of the
uniserial left A -modules is bounded. For any simple module 8, all
indecomposable left -4-modules with composition factors isomorphic to 8
are uniserial or of length 3, and any two of them are isomorphic, if their
lengths are equal. This follows from Theorem 4.1. Since there is only
a finite number of non-isomorphic simple A -modules, the number of
isomorphism types of indecomposable left modules is finite. By duality,
also the number of isomorphism types of indecomposable right modules
is finite.

5. The residue division ring
Recall that R denotes a local left artinian ring, W is its radical, and

Q = R/W is the residue division ring. In this section we seek conditions
under which such a ring, with

W2 = 0 and d RW x dWR = 2,

is exceptional. It will be shown that this question is equivalent to deciding
whether certain division subrings of Q have left index equal to right
index (cf. [10]).

We may restrict to the case dRW = 1. We start with the following
lemma which calculates the right index of Sw/W in Q.

LEMMA 5.1. Let W2 = 0 and dimoW = 1. Let w be a non-zero element
of W. Then 8W/W is isomorphic to Q and

tinQusJw) = dWR-

Proof. Write 8 = Sw and define a morphism a: Q -» W by

<x(r + W) = rw for r e R.

Furthermore, define a morphism j8: 8/W -> Q by

j8(s + W) = t + W for s e 8 and t e R such that sw; = wt.

Then a and jS are well-defined bijections because Ann(w;) = W and
Rw = W. Clearly, a and jS are additive and j8 is easily verified to be
multiplicative. Therefore jS is a ring isomorphism. Now, the pair
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(a, j8): Q x 8/W -> W x Q satisfies, for any r E R, s e 8, and t e R
with sw = wt,

a[(r+ TF)(s+ If)] = a(rs+ PF) = r$w = rwt = rw{t+ W)

= <x(r+W)P{8+W),

which implies the equation dimQs/w = dimT^ = dWR.
If R is a local ring with

W2 = 0, 8RW=l and dWR = 2,

then Lemma 5.1 shows that dimQsjw = 2. But R is exceptional if and
only if 6imQsjw = 2. Therefore, if Q has the property that any division
subring of right index 2, which is isomorphic to Q, has also left index 2,
then the above conditions imply that R is exceptional. In particular,
we have the following theorem generalizing the result of [6].

THEOREM 5.2. Assume that R/W is finitely generated over its centre.
Then R is balanced if and only if it is uniserial or

W2 = Q and dRWxdWR = 2.

Proof. If R/W is finite-dimensional over its centre, then a division
subring of Q = R/W has right index 2 if and only if it has left index 2
([8], p. 158). So R is exceptional if and only if W2 = 0 and 8RW x 8WR = 2.

The existence of a local ring R, with W2 = 0 and dRW x 8WR = 2, which
is not exceptional would imply that the concept of a balanced ring
involves not only the structure of the lattices of left and of right ideals,
but also the embeddings of certain subrings.

THEOREM 5.3. The following assertions are equivalent.
(i) There exists a local ring R with W2 = 0 and d RW x dWR = 2, which

is not exceptional.
(ii) There exists a division ring D with a subring D' of right index 2

and of left index ^ 2, such that D and D' are isomorphic.

Proof. In order to show that (i) implies (ii), we may assume that the
given local ring R satisfies 8RW = 1. Otherwise, we consider the dual
ring. Let D =Q, and D' = Sw/ W for some non-zero element w of W.
Then, according to Lemma 5.1, D and D' are isomorphic and
dimD^ = 2; but because R is not exceptional, dim^Z) # 2.

Conversely, let D' be a subring of the division ring D such that there
exists an isomorphism y. D -> Df. We form the ring R of all pairs (a, b)
of elements of D with component-wise addition and the following
multiplication

(a,b){a',V) = (aa',ab'
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Then the set of all elements (0, b), with b e D, is the radical W of R.
The ring R is local, W2 = 0, and 8RW = 1. Let w = (0,1). Then (a,b)
belongs to Sw if and only if aeDf. Therefore, dWR = dim DD, = 2,
according to Lemma 5.1. But dim (sJw)Q ^ 2, so R is not exceptional.

REMARK 5.4. P. M. Cohn has constructed in [3] an example of a
division ring D with a division subring D' of right index 2, but of left
index different from 2. Thus, the question is whether such a subring D'
exists which is, in addition, isomorphic to D.

The authors are indebted to the referee for valuable suggestions
concerning the final form of the manuscript.
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