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Let k be a (commutative) field, and k<X1,...,Xn> 

the free associative algebra in n (non--commutlng) 

variables. Denote by M i the ideal of k<X1,...,Xn> 

generated by all monomials of degree i For any k--algebra 

A , let A~ be the category of all A--modules which are 

finite dimensional as k--vector spaces. If I is a 

twoslded ideal of k<X1,~ , then for A = k(X1,..,Xn>/I , 

the category A~ is just the category of all (finite dimen- 

sional) vector spaces endowed with n endemorphisms which 

satisfy the relations expressed by the elements of I . 

The k--algebra A is called local, provided A = 

k-1 + rad A , where rad A is the Jaccbson radical of A . 

If A is a local k--algebra, we will consider also its 

completion A = lim A/(rad A) n . There is a canonical 

ring homomorphlsm A ~> A , and A is said to be complete 

in case this homomorphism is an isomorphism. Since ob-- 

viously every object in AN is annihilated by some power 

(rad A) n , the canonical homomorphism A --> A induces 

an isomorphism of the categories AN and ~m . Thus, 

in order to consider the behaviour of A~ for ~ local 

algebras A , we may restrict to the case where A is 

complete. 

The k--algebra A is said to be wild (or to be of 

wild representation type) provided there is a full and 
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exact subcategory of A~ which is representation 

equivalent to the category k<X,Y>~ " The reason for 

calling it wild, is that there seems to be no hope to 

expect a complete classification of the indecomposable 

objects in k<X,Y>~ ' since for any finitely generated 

k-algebra B , there is a full and exact embedding of 

B~ into k<X,Y>~ " On the other hand, the algebra A 

is said to be tame (or to be of tame representation 

type), if there exists a complete classification of the 

indecomposable objects in A~ ' and if there are not 

only finitely many indecomposables. 

In order to distinguish the complete local algebras 

according to there representation type, we have to find 

the smallest possible wild algebras (that is, wild alge- 

bras for which all proper residue algebras are tame or 

of finite representation type), and the largest possible 

tame algebras (that is, tame algebras which do not occur 

as proper residue algebras of other tame algebras). 

(1.1) We will have to consider several algebras 

which we want to introduce now. First, we mention 

(a) k<X,Y,Z>/M2, 

the local algebra of dimension 4 wlth radical square 

zero. Next, we single out certain residue algebras 

k<X,Y>/I of k<X,Y> of dimension 5 , namely those with 

I the twosided ideal generated by the elements 

(b) X 2, XY, y2X, y3 

(b ~ X 2, YX, XY 2, y3 ; 

(c) X 2, XY -- ~YX , y2X, y3 with ~ # 0 ; and 

(d) X 2 - y2 YX 



284 

Also, we are interested in another set of local algebras 

k<X,Y>/I , where the ideal I is generated by just 

two elements: 

(I) YX , XY 

(2) YX X n -- , XY , with n > 27 

(3) YX -- X n XY -- ym n > 2, m > 3; 

(4) YX - x 2 xY - ~y2 

(5) X 2- (yx)ny , y2 _ (Xy)nx 

(6) X 2 -- (yx)ny , y2 

(7) X 2 _ (yx)n , y2 _ (xy)n 

(8) X 2 - (yx)n y2 

(9) x 2 , y2 

O/~#lin k~ 

n >_ ,I~ 

n> I~ 
m 

n>2; 

n> 2; 

Let us mention first which algebras are ~nown to be 

tame or wild. 

(1.2) The a.lgebras (a), (b), (b~ (c)and ~d) 

are wild. 

For (a), (b) and (b~ this was proved by Heller 

and Reiner [7 ], for (c) this was proved by Drozd [~ ] 

and Brenner [ 2 ]. In section 3, we will deal with these 

algebras. 

(1.3) The algebras (1.) -- (4) and (7).--.(.9) are tame. 

Namely, we have the following theorem: 

Le__~t A be a local algebra, and assume there are 

elements x1' x2' YI' Y2 i_nn rad A such that rad A = 

AxI+AY I = Ax2+AY 2 an d XlX 2 = yly 2 = o, the___n A is tame. 

The case of the algebra (1) was proved by Gelfand 

and Ponomarev [ G ] and by Szekeres (unpublished, but 

see [12]). The case (9), which includes the decomposition 
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of the modular representations of the dihedral 2--groups, 

was proved in [11]. An indication of the method of tae 

proof of (1.3) will be given in the last sectlon, we 

follow quite closely the ideas devellopped by Gelfand 

and Ponomarev in the case of algebra (I). ~) 

(1.4) Let k be an algebraically closed field. 

Let A be a complete local algebra. Then 

either (i) A has a residue ping of type (a) -- (d), 

or (ii) A is a residue ring of the completion of 

one of the algebras (I) -- (9), 

o._rr (iii) char k = 2, and A is isomorphic to 

k<X,Y>/I with I the twosided ideal generated b~ 

(5') X 2 -- (YX) nY + y(YX) n+1, 

(6') X 2 -- (yx)ny + y(YX) n+1, 

with (T,6) /(o,o). 

y2 _ (xy)nx + 6(yx)n+1, or 

y2 + 8(yx)n+1, 

In section 2 we will prove this theorem. The first 

step in its proof is the classification of the local 

algebras k<X,Y>/I of dimension 5 given by Gabriel 

(unpublished). Certain partial results were obtained 

by Dade [3], Janusz [8] and MUller [1o], when they 

considered the problem to bring certain algebras (group 

algebras of 2--groups of maximal rank) into a normal 

form. Drozd [4] proved the result for commutative A . 

With respect to representation theory, the case 

(iii) in the theorem is of no real importance. Namely, 

the algebras (5') and (6') -- as well as (5) and (6) -- 

are Frobenius algebras, and modulo the socle, (5') and 

(5), as well as (6') and (6), are isomorphic (for fixed n). 
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Since the only indecomposable module which is not 

annihilated by the socle, is the algebra itself, the 

representation theory of (5') is identical to that of 

(5), and the representation theory of (6') is the same 

as that of (6). 

(1.5) It follows from the preceding paragraphs 

that the only question which remains is to determine the 

representation type of (5) and (6). It is an interesting 

fact that these are "just" the group algebras of the 

generalised quaternlon and the semi--dihedral groups. 

To be more precise: If k is an algebraically closed 

field of characteristic 2, and G is a generalised 

quaternion group, then the group algebra kG is of 

type (5'), and if G is seml--dihedral, then kG is 

of type (6'). 

It should be noted that for all other p--groups G, 

the representation type of kG is known: If char k = p 

and G is a non-cyclic p-group, then kG is wild 

except in the case of a two--generator 2--group of maximal 

rank ~Krugliak [9] and Brenner [I]), that is except in 

the case of dihedral, semi--dihedral, and generalised 

quaternion groups. Namely, in all the other cases, kG 

has a residue ring of type (a) or (c), and therefore is 

wild. 

~) At the conference in Ottawa, theorem (1.3) was 

formulated by the author only with an additional 

hypothesis: that kx1+kY I = kx2+kY 2 ~ the general 

case was conJectured.A complete proof w i l l  appear elsewhere. 
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2. The classification theorem 

We want to prove theorem (1.4). Thus, we assume that 

k is algebraically closed. Let A be a complete local 

algebra, and let J = rad A . We assume that A has no 

residue algebra of the form (a), (b), (b~ (e) or (d). 

As a consequence, dimk j/j2 ~ 2 . If dimk j/52 ~ I , then 

A is a homomorphlc image of llm k<X>/(X n) , and this 

is a homomorphic image of the completion of the algebra 

(I). Thus, we may assume dimk j/j2 = 2 . Often we will 

denote by N a (suitable) k-subspace of A with J = 

N ~ j2. 

(2.1) We may assume dlmk j2/j3 = 2. 

First, we show that for dimk j2/j3 ~ 3 , there 

is a homomorphic image of one of the forms (a) -- (d)o 

This is obvious for dimension 4 . We may assume j3 = 0, 

and let dimk j2 = 3. There is a non--trivlal relation 

~x 2 + ~xy + yyx + 8y 2 = O, 

where x, y is a basis os N . If ~ = 8 = O, then we 

use as additional relation x 2 = O , and get as residue 

algebra an algebra of the form (b), (b ~ or (c). Thus, 

we may suppose ~ = I. Using x' = x+yy instead of x, 

we have a relation of the form 

x '2 + ~'x'y + 8'y = Oo 

Adding the new relation x'y = O, we get as residue 

algebra one of the form (b) or (d). 

If dimk j2/j3 = I , let A be the completion of 

some local algebra k<X,Y>/I , where I is a twosided 

ideal. We want to construct an ideal I' ~ I such that 



288 

k<X,Y>/I' again has no residue algebra of the form 

(a) -- (d), but with dimk j,2/j,3 = 2 , where J' = 

rad k<X,Y>/I'. It is fairly easy to see that I+M 3 

contains elements x2x I and y2y I , where both x1' Yl 

as well as x2' Y2 is a basis of a fixea ~ with 

J = N �9 j2. If x~x1+f and y2Y1+g belong to I 

(with f, g in M3) , then let I' be generated by 

x2x1+f and y2Y1+g . 

(2.2) There are elements a, b in J\ j2 such 

that ab belongs to j3. 

Again, we may assume j3 = O. Now A can be written 

in the form k �9 N �9 N~N/U , where U is a subspace of 

N~N of dimension 2, and where the multiplication is 

given by the tensor product ~. Let x, y be a basis 

of N . We may assume that U intersects both N~x and 

N~y trivially, thus U is the graph of an isomorphism 

N~x > Nm~ , and therefore there is an automorphism 

~:N > N with U = {a~x + ~(a)~y I a e N} . Let a 

be an eigenvector of ~ with eigenvalue a . Then 

0 ~ a~(x+~y) belongs to U. 

(2.3) There are elements x1' x2' YI' Y2 with 

N = kx1+ky I = kx2+kY 2 and x2x I, y2Yl in J. 

Again, we may assume j3 = O. First, assume there 

is x e jkj2 with x 2 = O. Let x, y be a basis of N. 

There is another non--trivial relation 

~xy + pyx + yy2 = O. 

Now y # O, since otherwise we have one of the cases 

(b), (b ~ or (c). Thus, we may suppose T = I, and then 

(y + ~x)(y + px) = o, 
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and we take x I =,x 2 = x and Y2 = y + ~x, Yl = y + ~x. 

Next, assume x 2 ~ 0 for all x in j\j2. By (2.2), 

there is now a basis x, y of ~ with yx = O~ ~ before, 

we consider another non--trivial relation, say 

~x 2 + ~y2 + Txy = O. 

Again, T ~ O, since otherwise we are dealing with the 

algebra (d), thus assume y = I. Then 

(x + ~y)(~x + y) = o, 

which shows that we may take x 2 = y, x I = x, Y2 = x + ~x 

and Yl = ~x + y. 

(2.4) A/J 3 is residue algebra of one of the algebras 

(1) - ( 9 ) .  

Proof: Assume first, one of the elements x2' Y2' 

say x2, is linearly independent both from x I and from 

Yl . Using a suitable multiple of x I for x and of Yl 

for y, we may assume x 2 = y-x. If Y2 is also linearly 

independent both from x and y, then a multiple of Y2 

is of the form x--~y, with ~ # o,1. Thus, A/J 3 is of 

the form (4). If Y2 is a multiple of x, then we have 

case (2) with n=2, if Y2 is a multiple of y, then we 

have case (8) with n = 2. In case both x 2 and Y2 are 

linearly dependent of x I or Yl ' we get the cases (I) 

and (9). 

(2.5) It remains to be shown: If, for P ~ 3 , 

A/J p is a residue ring of one os the algebras (I)--(9), 

then the same is true for A/J p+I. Obviously, we may 

assume jp+1 = O. As a by--product of our calculations, 

we also will determine a basis of the algebras (I)--(9). 
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Case (I). There are elements X, Y in rad A with 

YX and XY in radPA . Now radPA is generated by 

X p and YP, thus there are elements a, ~, T, 8 in k 

with 

Y~X + aX p + ~YP = 0 and XY + TX p + 8Y p = O. 

If we replace X by X' = X + ~yp--1 and Y by Y' = 

Y + ~X p--T, the new relations are 

Y'X' + ~X 'p = 0 and X'Y' + 8Y 'p = O. 

We show how to get rid of ~ and 8 . If a = 8 = O, 

we are again in case (I). If ~ / O, and 8 = O, we replace 

X' by X" = P--~ X', and are in case (2). If ~ = O 

and 8 # O, then we interchange X' and Y' , and are 

in the previous situation. Finally, assume ~ # 0 # 8. 

Consider X' = Z X" and Y' = ~Y" where ~,~ are 

elements of k which we want to determine mow, in order 

to have X" and Y" satisfying the relations (3). The 

old relations become 

~Y"X" + ~Px "p = 0 and ~X"Y" + 8~PY "p = O. 

This means that we have to find ~,~ such that 

~I>-1~-1 = -1 and 8~P-I~ -1 = -1, 

in order to have 

Y~'X" -- X "p = O and X"Y" -- Y"P = O. 

Of course it is easy to write down ~ and ~ explicitly, 

and Lf X ~ and Y~ are generators of rad A , since 

X' and Y' had this property. Such a change of X' and Y' 

will be called a scalar transformation in the later part 

of the proof, and usually will be left to the reader. 
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Case (2 2 . We can assume n < p. Now the elements 

XY and YX--X n both belong to JP, therefore X n+1 = 

XYX = O, and JP is generated by the single element YP. 

Assume there is a relation 

YX -- X n + aYP = O, 

then we replace X by X' = X + ~yp--1, and get that A 

is either residue ring of an algebra of type (2) or of 

one of type (3); in the latter case we use an obvious 

scalar transformation. 

Case (3). We consider the case n ~ m = p--l, and 

we want to prove that JP = O. This then implies that the 

algebra of type (3) has dimension n+m+1. By assumption, 

there are elements X, Y in J with YX -- X n and 

XY -- ym in JP. As in case (2), JP is generated 

by YP, but 

YP = YXY = XnY = xn--IY m = xn--2Y 2m--I = O, 

since n+2m-3 ~ p+1. 

Case(4). We assume j4 = 0 and show j5 = O. 

There are equalities 

X 3 = XYX = ay2x = aYX 2 = ~X 3 and 

X2y = aXy2 = ~2y3 = ~YXY = ~X2y. 

Since a / I, the monomials X 3, XYX and X2Y are zero. 

Since a / 0, also all the other monomials vanish. 

Case (9). Assume A/J p is a r~sidue ring of the 

algebra of type (9). We distinguish two cases. First, 

let p be even, p = 2q. Then JP is generated by the 

two elements (YX) q and (XY) q, thus there are relations 



292 

X 2 + a(YX) q + ~(XY) q = O, y2 + T(yx)q + 6(xy)q. 

If we replace X by X' = X + 8(YX)q--IY and Y' = 

Y + T(xY)q-Ix, then the relations in X' and Y' (after 

some scalar transformation) have the form (7), (8) or 

(9). If p is odd, say p = 2q+I, then JP is generated 

by the elements (xY)qX and (YX)qY, and we have relations 

X2+ ~(xY)qX + ~(YX)qY : O, y2+ y(xy)qx + 6(YX)qy = O. 

This time, we replace X by X+~(XY) q and Y by Y+6(YX) q, 

and, again after some scalar transformation, the newe re- 

lations are of the form (5), (6) or (9). 

Case (8) Now, let p = 2n+I, and assume A/J p is 

generated by two elements X and Y which satisfy the 

relations X 2 -- (YX) n = 0 and y2 = 0. Now JP is 

generated by the elements (XY)nX and (yx)nT , but 

(+) (xy)nx = X ~ = X(XY) n = X2y(xY) n-1 = (XY)nY(XY) n-1 = O, 

therefore JP is generated by the single element (yx)ny. 

There are relations 

X 2 -- (YX) n + ~(yx)ny = O, y2 + ~(yx)ny = O. 

We replace X by X' = X -- ~YX ~ ~XY -- ~2yxY , and Y 

by Y' = Y + ~(YX) n. Then we get 

X '2 -- (Y'X') n = 0 and y,2 = O. 

To see the first, we note that 

X ,2 = X 2 ~ ~X2y = X 2 + ~(yx)ny , 

where the first equality stems from the fact that all 

the other summands cancel each other, and the second 

follows from the fact that X 2_ (y~)n belongs to JP. 

Thus, X' and Y' satisfy relations of the form (8). 
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Next, let p = 2n+2, and A/J p be of type (8). 

Then, as we have seen above, (xy)nx belongs to JP. 

But then JP = O, and therefore the algebra of type (8) 

has dimension 4n+2. 

Case (7). We assume p = 2n+I. We want to show 

that JP = 0 in case A/J p is residue algebra of the 

algebra (7). Using the calculation (+) of the previous 

case, we see that (XY)~X = O. Similarly, we have now 

also (yx)ny = O. This proves the assertion. As a 

consequence, we see that the algebra of type (7) has 

dimension 4n+I. 

Cases (5),(6). Finally, we have to consider the 

situation where A/J p is residue algebra of an algebra 

of type (5) or (6). We first leek at the case p = 2n+2. 

Since X 2- (yx)ny belongs to JP, it follows that 

(yx) n+1 = X 3 = (Xy) n+l . 

Thus, if JP J O, then A is a Frobenius algebra, with 

socle generated by the element (YX) n+l. This shows that 

A is of the form (5') of (6'). But if the characteristic 

of k is different of 2, then it is easy to bring (5') 

into the form (5),and (6') into the form (6). 

If p = 2m+3, we know from the previous considera- 

tion that (yx)n+I-(xY) n+l belongs to JP, and therefore 

(xy)n+Ix = (yx)n+Ix = (YX)~yx2 = (yx)ny(Yx)ny = O, 

and then also (yx)n+Iy = O. As a consequence, the algebras 

of type (5), (5'), (6), (6') all are of dimension 4n+4. 
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3. The wild algebras 

In order to show that a given algebra A is wild, 

we will use the following procedure. We will start with 

a category ~ which we know is wild, with a full sub-- 

category ~ of A~ ' and with functore 

U: ~ -- > ~ , and P: ~ > ~ , 

such that the composition PU is the identity functor 

on ~ . Then, obviously, ~ is representation equivalent 

to the full subcategory of A~ of all modules which are 

images under U . 

(3.1) The algebra A = k<X,Y,Z>/M 2 is wild. 

Following Heller and Reiner [ 7 ], we embed the category 

= k<x,y>~ into A~ " Let ~ be the full subcategory 

of Am consisting of all A M with Z--tO = ZM (that is, 

all A-modules which are free when considered as K<Z>/(Z2) - 

modules). The functor U associates with k<x,y>V the 

module A M given by the diagram 

x 
V ~ - - ~ V ,  

thus, as vectorspace, k M = V~V , and X operates on V~V 

by I~ ~ , and so on . Conversely, given A M in B , 

then P(A M) is the vector space ZM together with the 

two endomorphisms x = XZ -I and y = YZ -I . Note that, 

for example, XZ -I is well--defined, since XZ--Io = XZM = O 

according to the condition Z--tO = ZM , and that its 

image lies in ZM , using again the same condition. 
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(3.2) The algebra A = K<X,Y>/(X2,yx,xYZ,Y 3) i__ss 

wild. Again, we follow Heller--Reiner [q]. As ~ , we 

use the category 

thus, an object of ~ is given by a trs (W,V,~) 

with W a vector space, V~W a subspace, and ~ an 

endomorphism of W . Let ~ be the full subcategory 

of all A M in A~ with Xy--Io = O and y--IoqYM . 

For (W,V,~) in ~ , define A M = U(W,u by the diagram 

y X=~ 

V > W ~  ~ W , 

Y=I 

thus M = V8W8W , and X and Y operate on M as indicated. 

Conversely, for A M in ~ , let P(A M) = (y--IO,y2M, Xy--I). 

Obviously, y2M is a subspace of Y--tO, and XY -I is 

well-defined, since we assume Xy--Io = O . Also, the image 

of XY -I lies in y--tO, since YX = O. 

(3.5) The algebra A = E<X,Y>/(XR,Xy,y2x,y 3) is 

wild, since it is just the opposite algebra to the 

previously discussed one. 

(3.4) The algebra A = k<X,Y>/(X2,Xy-mYX,y2x,y 3) i_~s 

wild. We may assume a / O, and give a construction due 

to Drozd [4 ]. Again, ~ is the category ,~e~ @ 

Let ~ be the full subcategory of all A M in A~ with 

YXy--2Xy--20 = 0 and YXM Q y2M , Xy--2~ C y2M . For 

(W,V,~) in ~ , define A M = U(W,V,~) by the diagram 

inclusion= X 
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Thus, A M is the direct sum of six copies of W and 

one copy of V , and X and Y operate on it as 

indicated (where all but three maps are identity maps, 

one is given by ~ , one is multiplication by ~ and 

one is the inclusion V ~ W ). It remains to define P . 

Given A M in ~ , let P(A M) = (YXM, XY--SO YXM, YXy--2Xy--2). 

By the assumptions on B , YXy--2Xy -2 is really an endo-- 

morphism of YXM , and it is easy to check that PU is 

the identity on ~ . 

(3.5) The algebraA=k<X,Y>/(XY,X2--Y 2) is wild. 

(Note that the ideal (k~,X2-y 2) contains M 3 

We start with the category ~ with objects V given as 

Va<~--Vb ~ ~ Vc~--Vd*-~V e --*>Vf*-~Vg-*>V h 

V i 

that is, we consider the category of representations of 

the corresponding quiver such that the maps are monomorph-- 

isms or epimorphisms as indicated. This is a well--known 

wild category. The functor U: ~--> A~ maps the 

representation V onto the A-module A M given as 

~Vd ~ ~Ve~ ~Vg~ 

V~ V~-- V ~  V~- V h 

Va V - Vc Y 

where (besides two identity maps) all maps are the ones 

given by V . 

We define a functor P: A~ ~> w'= , where w'= is 

the category of all representations of the quiver 
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I 2 3 

4 5 6 7 8 

9 1o 11 

for which the square is commutative. The category w is 

(equivalent to) the full subcategory of _w_' of all 

representations for which the maps with ~ are isomorph-- 

isms, those with + are monomo~phisms, and the remaining 

ones are epimorphisms. We will use as u the full 

subcategory of all modules A M in A m with P(A M) in =w . 

In order to define P , we note that there is a chain 

of subfunctors F i (o < i < 11 ) of the forget functor 

F o from the category A m into the category of k--vector 

spaces, namely 

Fo~AM) = M , 

FI(AM) = X--IyM , 

~2(A M) -- X--Iyx--IyM , 

F3(AM) = X-1.YXM + YM + XM , 

F4(AM) = YM + XM , 

~5(A M) -- YM , 

P6(A M) = yx-IYM , 

F7(AM) = yx-Iyx--IyM , 

FS(A M) = YX--I~XM + YX~ , 

F9(AM) -- YXM + X2M , 

F o(A M) : X2 , 

F 1 1(X M) = 0 �9 

Most of the inclusions Fi_ I ~ F i are trivial, otherwise 

we use the relations XM ~ X--IyM , YM C X--Io and 

XM ~ X--IY](--Io . 
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The s P: Am--> ~' is now defined component-- 

wise by Pi = Fi/Fi--1 ' and those natural transformatlens 

Pi --> PJ which we need, are the ones induced by 

multiplication by X or Y, respectively: 

y.P2 y X /P3 y 

# NPs 
P5 P6 

y 

Again, in order to show that these maps are defined, 

we need only the relation XY = 0 . Of couzse, the 

square is commutative, since we assume X 2 = y2. 

It is easy to check that the composition PU is 

the identity functor on ~ . 
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We want to give some indications about the proof 

of theorem (1.3). In order to show that a given algebra 

A is tame, it is reasonable to de two things: first 

to write down a list of certain indecomposable modules, 

and then to prove that every object of A~ can be 

decomposed as a direct sum of copies of these modules. 

In our case, the decomposition will be achieved by 

using several functors and natural transformations. 

We will start with an index set W on which a 

function W u> ~ is defined which associates to,very 

D in ~ a natural number IDI ~ I, the"length"of D. 

To every D in W we will define either one indecom-- 

posable module M(D), or a whole set of indecomposable 

modules M(D,~) indexed by the set of (equivalence 

classes of) indecomposable automorphisms of k--vector 

spaces (thus, if k is algebraically closed, we may 

Zake as index set the set of Jordan matrices). 

Then, we will consider the forget functor A~ u> k~' 

which associates to every A--module the underlying vector 

space. For every D in W , we will construct 2-1D I 

subfunctors of it, denoted by F(D,i) + and F(D,i)-- , 

where I ~ i ~ IDI, such that F(D,i)-- ~ F(D,i) +. We 

will denote by F(D,i) the quotient functor F(D,i)+/F(D,i) -. 

Then, we will construct natural transformations 

F(D,i) --> F(D,i+I) or F(D,I) <-- F(D,I+I), 

for I ~ i < IDI, and for certain elements D in W also 

for i = IDI, calculating modulo IDI. 
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In this way, we will determine for every A M in 

Am a submodule of "type D" (that is, one which is a 

direct sum of copies either of M(D), or of some of the 

M(D,~).), such that A M is the direct sum of these 

submodules. 

Obviously, the index set ~ will depend on the 

particular algebra A . The method will be easier to 

visualise, if we use a specific example. We have chosen 

the ease of the algebra (4), that is k(X,Y~/(YX--X2,Xy--~Y 2) 

with a # o,1, since, on the one hand, the algebra is 

rather small, and, on the other hand, the behaviour of 

the remaining algebras is somewhat intermediate between 

that of the algebra (4) and of the well--known cases (I) 

and (9). 

Thus, let A = k<X,Y>/(YX--X2,Xy--~Y 2) , and ~ #o,1. 

We will denote the elements X, Y, X--~Y and X--Y by 

a,b,c,d , in order to point out that these are just four 

elements of kX+kY which are pairwise linearly independent. 

The set ~ will be the disjoint union of two subsets 

~I and ~2 " Now, ~I is the set of all finite words 

in the letters a,b--l,c,d -I (including the empty word 1), 

subject to the following rules: after c or b -1 follows 

either a or d -I, after a follows only b -I, and after 

d -I follows only c . Thus, an example is the word 

D = ab--ld--lcd -I, 

and its length is defined to be 6 (= number of letters +I). 

If D and E are words, and DE is also a word, then 

we call DE the product of D and E . Of course, D 2 
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stands for DD, and so on. We call a word D non--periodic 

provided D 2 is also a word, and D is not of the form 

D = E n for some word E and n>1. Two non-periodic words 

D and E are called equivalent, provided one is a cyclic 

permutation of the other, and ~2 will be the set of 

all equivalence classes of non--periodic words. Note that 

for elements of ~2 the length is defined different: it 

is the precise number of letters of the corresponding 

word. (The word D above does not give rise to an element 

of ~2 ' since D 2 is not an admissible word. An example 

of an element of ~2 is the set of cyclic permutations 

of ab--ld--lcd--lc .) 

Next, we show how to define for D in ~I a module 

M(D). Namely, let M(D) be a IDI--dimensional vector space 

with base vectors el,...,eiDl, such that X and Y 

operate on the base vectors according to the word D. 

Thus, for D = ab-ld--lcd -I, we have the following schema 

j e 2 ~  

e 1 e 3 e 5 

e 4 e 6 

which means that ae 2 = e I, be 2 = e 3, de 3 (= (a-b)e 3) = e 4, 

and so on. Note that in all but the terminal points e I 

and e 6 the action of a and b is uniquely defined. 

By definition this is true for e 2 . It is obvious for e5, 

since the elements c and d are linearly independent. 

Since e 3 is image under b, we must have ce 3 = 0 , 

thus also on e 3 the multiplication by two linearly 

independent elements (namely c and d) is given. Also, 
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e 4 is image both under a and b , thus we must have 

ce 4 = de 4 = 0 . For the terminal points, we make the 

following convention. If, as in our case, also cD is 

a word, then we let ce I = 0, if aD is a word, we let 

ae I = O, and if D starts with c, then we let ae I = 

he I = 0. Consequently, we define in our case also 

ae 6 = be 6 = 0. 

In a similar way, we define for a word D in ~2 

and an automorphism ~ of a vector space V , the module 

M(D,~). Namely, we take as underlying vector space the 

direct sum of IDI copies of V , and define again the 

action of X and Y according to the word D , where 

all arrows but the last are taken as the identity map 

between the corresponding copies (as induced by the 

element of kX+kY which correspond to the letter), and 

where the last letter gives just the map ~ between 

the last and the first copy of V . 

In order to define the subfunctors of the forget 

functor A~ -> k~ which are of interest to us, we 

note that the forget functor has two canonical filtra- 

tions, given by the equations da = 0 and cb = 0. 

Consider first the equation da = 0. We form finite 

and infinite words in the letters a and d -I, and 

denote by ~a the set of all finite words together 

with those infinite words which are of the form DE ~ = 

DEEE-.- , where D and E are finite words. For every 

word D in ~a ' there are two obvious functors A~ t~ 

k~ ' one defined by M ~--> D(0M), the other by 
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M ~ ~ D(M). Here, we use the definition E~(0M) =~JEn(0M ), 

and E~(M) =~En(M). It is easy to see that the set of 

all such functors is linearly ordered by inclusion, and 

we call this set the a--filtration. In a similar way, 

the equation cb = 0 gives rise to a set ~b of finite 

and infinite words in the letters b, c -I , and then to 

the b-filtration. 

If F Z ~ F I are two subfunctors of the forget 

functor, we call [~!] an intervall. The intersection 

of the two intervalls [~] and [GI] is defined to be 
G 2 

the intervall 

FInG I 

For any word D in W, the functors F(D,i) + and 

F(D,i)-- are defined by intersecting suitable intervalls 

of the a--filtration with those of the b--filtration. We 

indicate the choice of the intervalls in the case of the 

word D = ab--ld--lcd -I : 

FD, I + [FID, II__ ]__ rad--1(d--la) M ~0--I0. 
= [ad--1(d--la) 0 ] ~ [bM ] 

IF(D,2)  [ d [ l ( d - - l a )  M .c--20 . 
F(D,2)_ ] = 4~1(d..1~) O] m [c_lbMJ 

F(D,3) ] (d--la) M .be--20 
F(D,3)--~ = [ (d-- la)  0 ] m [bc--lbM J 

IF(D,4) (ad -I) M .b2c--20 

~(D,4 ) - ]  = [ ( a d - ~ ) 0  ] ~ [b2c-lbMJ 
+ 

F(D,5)_ ] = [(d_la ) O] R b2c_IbMJ 

F(D,6) (ad -I) M rbc--lb2c--20 . 

F(D,6) - ]  = [ (ad-1)  0 ] ~ Lbc--lb2c--~b~J 
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We now use the multiplication maps in order to 

define natural transformations between the quotient 

functors F(D,i). Again, we use the word D as guide 

line. In our case, for example, we want to have the 

following transformations : 

F(D,2) 
aJ 

F(D,I) F(D,3) F(D,5) 
/c 

F(D,4) 

where the letter indicates the multiplying element. 

Of course, it has to be checked that the multiplication 

maps are well~efined and act as indicated, and that 

they induce even isomorphisms of the corresponding 

component s. 

It then only remains to be shown that the 

FD,i ( ~ + intervalls [F(D,il- ] cover the forget functor (that 

means, for every M and every o / x ~ M, there is such 

an intervall with x E F(D,i)~\F(D,i)--(M).) 

An outline of the background of the proof,may be 

found in Gabriel's paper [ 5] where he discusses the 

value of functor categories in order to determine all 

indecomposable objects of a given category. 
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