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Time Series Analysis and Simulation
Peter Naeve, Berlin

1. INTRODUCTION

Since the stochastic nature of time series has become the main subject of re-
search in time series analysis simulation techniques have been among the fam-
cus tools of time series analysts. Already the now classical papers by Slutz-
ky [1937] and Yule [1926] use simulation experiments as basis for their reas-

oning.

Applying the theory of weak stationary processes to time series analysis
creates a lot of methodical problems which can be solved in part only by
simulation. Roughly one can classify the applications of simulation expe-
riments as follows. First there are problems the theoreticel background of
vhich is worked out but one has not yet been sble to deduce procedures which
can be applied in empirical studies. Secondly problems where one hopes to
find some hints by simulation experiments which relations would play & prom—

inent role in explaining the theoretical background.

In the remainder of this paper we will discuss some examples of both kinds.

2. WHAT IS THE RIGHT DIVISOR WHEN ONE ESTIMATES THE COVARIANCE FUNCTION

Llet x séand for the time series being the observations of the stochastic

process!) Xt . It is well known that

n-| 1|
e(t) = 3 téﬂ Xypr % (1)

is an estimator for the unknown covariance function?) of X, . There is
1) Unless otherwise stated by stochastic process we mean a weask stationary
stochastic process having the ergodic property.

i imatin i icients for
2) Strictly speaking we are estimating the covariance coefficlen )
T= 0.1{ 1? + 2,?-., we follow common practice to use the word covariance

function for them.
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quite a debete smong time series analysts as how to choose 4. It is easily
seen that 4 = n - [rl in eq.(1) will produce an unbiased estimator whilst
d =n comes out with a biased one. This mekes some suthors prefer the di-
viseor 4 =n - |t| .
On the other hand applying some straight forward arithmetic to
o
1 o) 4 2 v 2t 2y (2
2 - 2
Qlag,w) = 5 T (0] x w)®+ | R GAD. x; w )%}

j=0 i=1 i=1
at wvhich k 2 i+ - 1 (mod n) and [r] stands for the largest integer
equal to or less than r one gets
n-1 n-1
Qlg, u) = 2 Z e{i~j} u, u, 2 0. (3)
i=0  j=0 o
e{i-j) 1is as defined in eq.(1) with divisor 4 = n. As eq.(3) shows in that

case the estimator is a positive definite function.

If one replaces ¢(i-j) in eg.(3) by the estimator with divisor & =n - ||
it is easy tc construct a counter example showing that in this case Q4 ,u)

is not positive definite. Parzen [196%] claime positive definitness to be the
essential attribute of the covariance function for estimating spectra; there-

fore he recommends to use d = n even though accepting a biased estimator.

If one tackles the question of the right divisor via simulation experiments
one soon notices that this is & problem of minor practical importance. The

following table presents a typical section of results one gets by simulation
experiments.

Table 1

Power spectrum computed from c{(t)/c(0) using Tukey-window

frequency divisor divisor circular theoreticel
13/20 d=n d=n-| ] spectrum
=2 .593 +599 .593 .650
3 . 487 .188 .L8g .4o8
b -359 .356 +359 .333
5 .233 .228 .232 .185
6 .130 . 125 . 129 077
T .063 .059 061 017

The time series was generated by a moving average of five with equal weights
»2 over random numbers uniformly distributed over (0,1). "Circular" means
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that in computing c(t) , v 0 alweays n values were used by putting
Ttet
vas estimated up to a lag of m = 10 . The time series were n = 200 points

long.

=x, for t+t>n and t + 1 =i (mod n). The covariance function

The table shows - as further results do - that the estimated spectra based on
various methods of defining c(tr) are relative close together compared with

their deviation from the theoretical values of the power spectrum.

The results are not due to the choice of the lag window as can be seen in
table 2. There is shown a section of the results of the same simuilation ex-

periment vhich one gets using the lag window

612 m

1-;-;-(1-%1) 0<|t) B
(4)

2(1-%1-)3 Fltlzm

as proposed by Parzen.
Teble 2

Power spectrum computed from c(1)/c(0) using Parzen-window

frequency divisor divisor circular theoretical
¥j/n den dmn-| 7| spectrum
j =2 .55k .560 .55k .650
! 3 .46s L46T .65 .48
L .359 .358 .359 .333
5 .254 .251 .253 .185
6 .163 .159 162 077
T 08T .09L .096 017

In both ‘tables frequency intervals centered around very low frequencies are
omitted. The reason for this is a methodical problem vhich shell be demon-—

strated now.

3. CORRECTION FOR MEAN

i i would
If the process X, has an expectation value E{Xt] =y 40 this \ra.lu:di
be unknown in most cases prior to empirical investlgguons. For an erg . c
for u but 1t can

. - 1
process Xt one has the unbiased estimator X = °- 2 ¢

t=1 -
be shown (e.g. Jenkins et.al. |1968]) that the use of data points :'t -x
iti i — if one
which are corrected for mean produces an additional bies of order T 1

v

.
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takes an estimator for C{t) as given by eg.(1).

Estimating the power spectrum this bias will result in an underestimation of

the spectrum for low frequencies.

As can be seen from simulation studies made by Granger and Hughes [1968] and

Konig and Wolters ['_19721 this bias can be very disturbant especially for short
time series.

The following table lists some results of a simulation experiment by Kdnig et.
al.[1972]. The estimating procedure used Parzen window with a lag up to 2h.
The series was 200 data points long.

Table 3

frequency theoretical no correct. correction Fishman
nj/n spectrum for mean for mean procedure

i=0 1.768 36.43 1.129 1.240

1 1.561 24,68 1.058 1.131

2 1.156 7.b1t 0.889 0.907

3 0.810 1. 404 0.746 0.ThT

4 0.573 0.784 0.637 0.637

5 0.420 0.545 0.478 0.478

The last column presents corrected values following a proposal by Fishmen [1969] .

L. FURTHER METHODICAL DIFFICULTIES

It is evident that in practical application of spectral theory the prerequisite
that one knows the covariance function for all real Tt is never met. Moreover
the time series at hand will be so short that one cannot rely on the asymptotic
properties of the various estimators as proposed in the literature. So one has
to face questions like:

What is the proper truncation point when estimating the covariance function?
Which window should be chosen when using an indirect estimating procedure?

For which frequency intervals should one take estimates?

How varies the bias of the spectral estimators with frequency?

One looks for procedures which ensble those to get the right answver in their
concrete data situation who would apply spectral theory. It revealed that sim~
ulation experiments (Jenkine et.al.[1968], Naeve [1969], Kénig et.al.[1972])
can lead to a lot of rules as how to proceed. These rules have proved to be

appropriate in numercus simulation studies and in many investigations of
empirical time series.



Especially the book by Jenkins et:al.|1968| can be highly recommended to all

vho would apply spectral analysis.

5. THE NEED FOR A SPECTRAL SIMULATOR
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The simulation studies mentioned so far were mostly designed to work like this.

One produces a large number of simulation runs and computes spectral quantities

by taking some sort of average. In comparing these guantities with their the-

oretical values one reaches some final conclusions or rules. A typical example

was demonstrated in section 2. As has been mentioned one can get valuable pro-

cedures for practical applications going along this way.

Designing lectures on time series analysis one should meke use of simlation
techniques in quite another way. The wide spreading of computers and the in-
stallation of interactive computer languages give the opportunity to develop
program systems which could take over a large part of the students practical

training in time series analysis.

Such a system would confront the student with simlated time series. In a
first step and with the help of built in procedures the student should try
to find estimation values for covariance function, power spectra etc. which
he considers to be "goocd". In a second step he then can compare his estim-
ates with the theoretical values. Variation of the parameters for the es-
timation procedures will show him the influence of the various estimators
on the final estimation values. If he goes throughthese steps for some time
series generated by the same stochastic process he can get a feeling as how

the finiteness of the time series will influence the results.

Training the students in this way could stop the bed habit just to use the

program on time series analysis implemented at the computer center and then

interpreting the results in a mix-up of methodical effects and the charact=

eristics of the underlying process.

6. INVESTIGATION OF PHASE RELATIONS

n univariate spectral analysis haed been solved by

t is not necessary to point out that methodical
Here too simulat—-

Up to now only problems i

simlation experiments. I

problems will multiply in multiveriste spectral asalysis.

arify the situation and do help to solve some of

ion studies can help to cl

these problems.
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Vicarious the problem of estimating the phase spectrum of two stochastic pro-
cesses xt and Yt shall be demonstrated. The phase spectrum is especially
valuable in economic spplications for it reflects the temporal relations among
economic varisbles.

Take for instance the saving relation of the Harrod-Domar growth model
S, = sY . (s)

Interpreting saving St and income Yt as stochestic processes it follows
from eq.(5) that their phase spectrum is

ow) = w. (6)

Applying this theoretical concept on empirical time series one has to answer
the question if, due to the relative shortness of the time series, one would

be able to estimate the phase spectre so that relations like eq.(6) and more
complex ones can be detected.

Various similation studies [Naeve 1968, 1969| show that under certain cire-
umstances this can be done. The studies were based on pairs of time series
which were constructed to have & phase function of one of the folloving

types

¢(w) = ¢ fixed angle lag
t(w) = aw fixed time lag (1)

o(w) = 8wt a, .
Let xt be the first process of the pairs thea the second one will be de-
noted in the sequence of eq.(7) x: s xt-a , xtfa . In addition pcirs of
the form 1

+ gx°&

a
X, , aX -a (8)

t * Tt-b

vere investigated. The procedures to generate such pairs are described in
the paper by Naeve [ﬁ96§].

Two typical results will be presented here. In the phase and Argand diagram
the broken line stands for the graph of theoretical values.
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Fig. 1 Phase Spect
pectrm X, Y & .SX_ ¢ .5X
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Fig. 2 Argand Disgram Xow Yy = 5%, +. 5%,

x{w) = Cospectrum
Uw)/tle) . q(w) = Quadratspectrum
qlw)/f(w) ) f{w) = Spectrum

* = Estimates

k(u)/ff«») +
{w)/f(w) i

It seems possible to detect simple relations between time series. But even for
relations of the type &(w) = aqw + 8, it is often not easy to determine a, .
Relations as in eq.(8) are very difficult to spy. Ope has to take great care
when cne ig interpreting phase functions computed in empirical applications.
Identification of phase relations requires a great deal of experience, need-

less to stress the usefulness of training programs as pointed out in section 5.
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7. CROSS SPECTRAL ANALYSIS IN THE PRESENCE OF FEEDBACK

It can be shown [Granger 196@] that crcss spectral analysis is less appropriate
if feedback is present in the system generating the time series to be studied.
But how can one identify feedback without knowledge of the generating system?
In two papers Garbers [3970, 1971] offers a rule of thumb, I quote from his
latest paper: "Vorausgesetzt zwischen zwei Veriablen besteht iiberhaupt ein Zu-
sammenhang, s0 dominiert in dieger Beziehung dann eine Richtung, wenn die aus
den Originalwerten geschiitzten "Kohadrenzen" und "Phasen" mit den aus den 1.
Differenzen berechneten weitgehend iibereinstimmen. Diese Dominenz ist schwécher,
wenn die "Phasen" kaum, die "Kohdrenzen" jedoch weitgehend ibereinstimmen. Be-
steht diese Ahnlichkeit schlieBlich weder fiir die "Phasen" noch fiir die "Ko-

hirenzen", so existiert zwischen den Veriablen ein ausgeprigter "Feedback".” 1)

Due to theoretical considerations there is little reason to accept this rule
of thumb, for cne can show [ﬁenkins et.al.196§] that phase spectra and coher-
ence spectra remain unaltered by linear prefiltering operations, - and comput-
ing first differences is just such kind of filtering. However, there are two
aspects of practical importance which might be in favour of Garbers' sugges-
tion. His empirical series are in some sort of feedback relation, provided
the economic reasoning is valid. Also it is wellknown [Jenkins et.al 1968,
Naeve 1969] that one has to make special efforts to discover the structure

of the underlying processes if only short series are at hand, - and economic
time series must be considered to be very short according to the theory of
weak stationary random processes, Combining these two aspects, one might
suspect that they cause the difference between the spectra computed from the
original series and their first differences respectively.

Since Garbers substantiates the existance of feedback relstions between time
gseries strictly on a qualitative basis, it seems to be a natural step to

lock out for a definition of feedback that allows its measurement prior to
spectral procedures.

1) Tranglated guotation: "On the assumption that two variables are connected
with each other, one direction of this mutual influence is dominating if the
coherence and phase spectra, estimated from the original time series,
correspond extensively to those spectre computed from the first differences.
This dominance is of less weight if the phase spectra hardly correspond,
although the coherences still do fairly well. Finally, there is confirmed
feedback between the varisbles if neither the phases nor the coherences
correspond to one another."
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We will adopt the definition of feedback and causality in the book of Granger

[196&] . Granger's definition seems to fit best into spectral theory: both rest-

ing on second moment properties. So if we have two processes labelled j and
k we take C(k,j) as a measure of the strength of the feedforward relation

from process k to process j where C(k,j) is defined as
C(k'j) = 1- vj(ésk) / vj(J) . (9)

Vj(.i) is the prediction error veriance of the best linear predictor of the
process j using only past values of this process whereas _Vj(j,k) stands
for the corresponding variance if one uses the past values of both processes.
If one interchanges j and k one gets the measure ¢c(j,k} for the feed-
forvard relation from process j to k . The product c(k,3)C(j,k) will be

teken as measure for feedback between process j and process X .

The following table summarizes some results. It can be seen that there is on
the ground of the adopted definition of feedback, no evidence for Garbers'

rule of thumb. The first pair of time series shows results which are in full
agreement with his rule of thumb, but the second pair brings quite the opp-

osite results one should expect.

Table 4

difference in

Time Series 142 | 2+1 | 1<=>2 | phase | coherence

1 Auftragseingang Industrie
e ense 1955-1968 | yes | yes yes yes yes

2 Umsatz Industrie

1 Kurzfristige Kredite an Nichtban-
¢ ken 1957-1968 | no no no yes yes

2 Bankenliquiditdt 2. Grades

: tion.
j + k means feedforward from j to ki J <-> k means feedback relation

k at
Now one could rise the question vhether the proposed procedure would work &

d by theoretical considerations. A

all in practical applications &s predicte ;
art simulation experiments.

netural way to find it out would be to 8t

e by Birkenfeld [1973] prove two things.
at Garbers' rule

. First the
Simlation experiments mad

adequacy of our tools in feedback situations and secondly th

: . . : i series generated by
is wrong. Birkenfeld experimented vith simulated time

T

i
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processes with known feedback relations. In the presence of feedback his results
never revealed any considerable deviations between the coherence spectra or
phase spectra estimated from the original time series and their first differ-
ences. Beyond that, he was alvays able to redetect the feedback relations spply-
ing e procedure based on Granger's definition.

8. CONCLUSBIOR

It has been shown by various exemples that simulstion is a valusble aid in pre-
paring for empiricel studies on time geries analysis. But prior to sny sim~
ulation experiment one thing should be made distinct. If one checks on methods
all facts deduced from theory must be correct. This seems obvious but unfort-
unately one can find counter examples.

For instance Schips and Stier []973] spent quite a lot of effort to invent a
theory sbout the possibility to estimate the phase spectrum in dependence of
the type of the power spectra. They back their results by simulation studies.
Unfortunately they have overseen just one small point: their theoretical

phase function is wrong. If one tackles the problem using the correct phase
function all difficulties are gone with the wind. It was just much ado about
nothing.
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