PROGRAMMING LANGUAGES AND OPPORTUNITIS THEY OFFER TO THE

STATISTICAL COMMUNITY

Naeve, Peter

University of Bielefeld

At first I would like to modify the title of my paper to "program-
ing languages and opportunities they should offer to the statistical
community". By adding this one word "should"” I want to express two
things:

- Firstly a somewhat critical review of the field of accessible
programming languages (in contrast to the unnumbered body of
proposals for programming languages burried in the literature).

- Secondly a plea for a shift in attitude of the so called user
from a supply oriented to a demand oriented point of view.

The term programming languages stands for what computer scientists
call high level languages or general purpose languages (e.g. FORTRAN,
PASCAL), but I will let it include for the moment dedicated problem
oriented languages (like GLIM}.

It is claimed that high level languages free the user from the bur-
den of machine dependencies, bit and byte manipulations etc. and
allow him to concentrate on the formulation of the solution to his
problem. Valuable tools are provided to ease the users task. High
level programming languages usually incorporate facilities to support

= structured programming

- user supplied data types (and structures)

- recursion.

But unfortunately it turns out that the effort to avoid machine
orientation resulted in a kind of splendid isolation for the high

level languages. They usually do not provide reasonable interfaces to

- other high level languages

- new hardware features such as graphics devices and array processors

- the operating system.
This is an especially sad finding with respect to graphics. Either

779

oV

you leave it or dig deep into escape sequences and this kind of stuff.
Some may consider this a little bit unjustified but I think for most
users it comes close to the true description of their situation.

To proceed with our theme let us investigate who makes up the sta-
tistical community. In alphabetic order there is the consultant, re-
searcher and the teacher. The computer influences the work of all
of them.

When looked at in detail we may conclude that although with differ-
ent weights statisticians use mathematics, logic and deal with data
which usually have their uniqgue kind of structure. The language of
statisticians resembles these different roots. Turning to a computer
the statistician has to use a programming language to convey his ideas

and thoughts. What are the requirements a programming language should

fulfil to suit the statistician's needs?

1. It should allow him both:

= not to bother about the computer (i.g. he does not want to be a

computer specialist)

= to bring as much special knowledge about computers and computer

programming he has into action (i.e. with respect to the computer

the language should be open).

2. It must be as close to mathematics as possible - at least to the

'useful and essential' part of mathematics. Consider the well

known formula from the field of linear models

ss = B'c(c'ae) ™t o'B .
Would it not be nice to have a programming language which allows
to evaluate this formula with the statement

S5« B +.x (B () +.x G +.x 0) +.x (B <« (8C) +.x B,

3. It should allow to deal with logic in a condensed form. For in-

stance: to speak about the non-negative values in a data vector X
should be as easy as
(X20) /X or x[x=zo0].
4. It should contain statistical concepts, i.e. mean, variance etc.,

for instance in the form mean X, var X .

5. It should allow to deal with data objects in an easy way of name,

attribute(s), value(s). To give an example

/181

res + reg(y,X) result of regression of y on X
plot res$resid plot of the residuals

regsum res summary of regression statistics
plot y, resSresid plot of residuals versus y
regprt res print report of regression

where the result res of the regression of y on X is a structure
with components such as residuals, which are accessed in an ob-
vious way. The structure may be processed in various ways (i.e.
regprt, regsum).

6. It should not only allow to speak about analysis of data but also

about the form one wants the result to be presented.

7. It should support the interactive style of work a statistician

is used to. This calls for a kind of protocol feature.

8. It should fit to the user's way of thinking and working and not

vice versa.

9. It should support the statistician in using as much of the hard-

ware and other software available at his site.

Think for a moment how your favourite programming language fulfils
these requirements.

Here are some statements to back your findings:

"We learned several things from this experiment, one of the earliest
in the Computational Probability Project. The programming for com-
puting the functions mentioned was easy, but still took a good deal
of time to do, debugging and running a program in batch mode is not
very efficient in term of the user's time. It was more time consuming
to program the CALCOMP and, more important, it was psychologically
unattractive to run the plotter off-line." Grenander (5, p. 14).

"It is quite common that when writing a research report containing
numerical tables the output from the computer cannot be used as such,
but the results have to be retyped manually. This may happen even if
the computer output is well designed, since the needs of the user may
change during the reporting phase." Mustonen (9, p. 337).

Perhaps you will sympathize with the following two quotes from a
panel discussion on "programming languages issues for the 1980's"(10)

"On the whole programming languages are overrated. ... What's
really important in the programming game is not the language but the .

tools you have to work with." "...there's an intermediated sort of ¥

[- T T D S R I UV

thing which profession oriented language 1s the buzzword for ..."

In 1984 a software catalog (13) listed 252 statistical software
packages. Many of these packages claim to offer a kind of statistical
language for ease of use too. Do these packages fulfil our scheme of
requirements? My answer is no. They suffer from the same kind of iso-
lation as do programming languages. They are rather fixed in scope
too.

There is still another reason to be a bit reluctant with respect to
statistical packages. There are some doubts regarding their standards.

The paper by J.L. Longley: An appreisal of least square programs
for the user (8) dates 19 years back but its message is not yet ob-
solate. The same is true with TYespect to the subject dealt with in
papers by Ling (7) or Wilkinson and Dallal (14) on sample moments
calculation to mention just two. To give some evidence to this claim
I will present some citations form "Statistical Computing Software
Reviews" found in the last two volumes of The American Statistician.

1. "Results of the analyses cannot be stored for analysis. For ex-
ample one cannot store means and standard deviations to plot in
checking for possible variance-stabilizing transformations. Sim-
ilary, residuals from regressions can be printed but not stored
to plot, for example against predicted values." (12, p. 165)

2. "When the median of an odd sample size was programmed incorrect-
ly, one wonders about computations for more complicated proce-
dures." (12, p, 166)

3. "The variance function in the command FUN, however, failed the
"Anscombe test" dismally; Anscombe (1967, p. 3) discussed what
could go wrong in the computation of the three readings 9,000,
9,001, and 9,003. The function VAR in FUN produced 1.33 for the
variance of these values (should be 2.33) and a negative vari-
ance for 9,997, 9,998, ang 9,999, suggesting the inappropriate
use of the "desk calculator" formula." (11, p. 218f.)

I intendently did not mention the name of the packages reviewed.

I do not want to turn those packages down, for I strongly believe
that the packages not Yet reviewed are not free of bugs too.

What should be learned from these citations is that packages may

suffer from everything Starting with numerical inaccuracy and going

783

to inflexible and inconsistent management of statistical analysis.

To make explizit that we are locking for more let us coin a new
name for it. I think statistical environment would be the right name.
By this I mean a computing environment made up through an integrated
collection of tools for exploiting as much of the hardware and soft-
ware at hand (not calling for special devices) in an easy and natural
way. This should be embedded in an concise consistent concept of a
language well suited to the needs of statisticians. The language
should have a syntax strongly influenced by mathematics and logic,
with basic statistical terms such as mean, median etc., but also - and
this is essential - it must contain tools to enlarge the language for
personal or common usage.

At the moment I just see two such systems which are more than ex-
perimental prototypes. I speak of the S-system and APL.

Let them introduce themselves.

"S is an interactive environment for data analysis and graphics
with two components: a language and a support system. The S language
is a very high-level language for specifying computations. S is also
a system in that it provides a total environment for the user, in-
cluding data management, documentation, and graphics.

The primary goal of the S environment is GOOD DATA ANALYSIS. The
facilities in S are directed toward this goal. S encourages the iter-
ative, interactive style of data analysis which leads to unterstanding.
In this way, S is quite unlike most statistical 'packages'.

S provides the user with interactive computation, both simple and
complex, graphical displays on a wide vairety of graphics devices,
data management and structuring." (2, p. i)

The S-system was developed at the Bell Telephone Laboratories by
Becker and others. It runs on UNIX machines (for instance I made my
experiences with S on a HP 9000). The book by Becker and Chambers:

S An interactive environment for data analysis and graphics describes
the system - it is the reference manual. The quote given was from
this book.

Turning to APL let me quote Dr. Iverson {(the father of APL) "Nearly
all programming languages are rooted in mathematical notation, em-

ploying such fundamental notions as functions, variables, and the

784

decimal {(or other radix) representation of numbers ... APL has, in
its development, remained much closer to mathematical notation, ..."
(4, p. 39)

"The primitive objects of the language are arrays. ... The syntax
is simple: there are only three statement types (name assignment,
branch, or neither), there is no function precedence hierarchy, func-
tions and defined functions ... are treated alike.

The semantic rules are few: the definition of primitive functions
are independent of the representations of data to which they apply,
all scalar functions are extended to other arrays in the same way
(that is item - by - item) ...

The utility of the primitive functions is vastly enhanced by opera-
tors which modify their behavior in a systematic manner. ...

External communication is established by means of variables which
are shared between APL and other systems. These shared variables are
treated both syntactically and semantically like other variables. A
subclass of shared variables, called system variables, provides con-
venient communication between APL programs and their environment."
(5, p. 40f)

APL was first developed by Iverson, Falkoff and others within IBM.
But it began to spread out into other companies and universities. As
a result we have different implementations of APL grouped around a
core of the language which is standardized.

It is impossible to give a complete review of both systems within
this short paper. Nor do I intended to rank one against the other.

As I consider them both to be advanced prototypes of a statistical
environment we should look for I will present certain of their fea-
tures in a number of small examples to exemplify some essential points.

Just two further remarks before I start:

i} all "lines of code" presented so far were written down either
in 8 or APL.

ii) Although being unique S and APL have some things in common.
Both are interpretative languages - so interactive work is
eased. Both have a concept of workspace, allowing the user to
tailor his own special environment without loosing contact to

the overall system or other users if he wishes to cooperate.

Example 1: Closeness to mathematical notation
APL offers matrices as primitive objects and a set of primitive
functions and operators to deal with them. Talking about reguirements

we presented the formula

ss = Breerae) L

c'B.
and its transformation into an APL expression

S5+« CB +.x (H(Q) +.x G +.x () +.x (B « (Q) +.x B,
This is almost a one-to-one mapping of our well acquainted mathemati-
cal notation. For instance "®" mirrors matrix transpose, "+.x" tells
exactly what a scalar product of vectors is. If you learn that "«"
stands for assignment and become acquainted with the (at first some-
what peculiar) right to left anti-hierachic style of formula evalua-
tion unique in APL you will read and unterstand such expressions as
easy as you do with normal mathematical notation.

Probably somecne knows Conway's game of life. Let a rectangular
grid divide the plane into cells. A cell can be dead or alive. A liv-
ing cell will survive, if its neighbourhood is neither overcroweded
(i.e. 4 or more living cells) nor it is isolated (i.e. 0 or 1 living
cell) otherwise it dies. A cell will be born if exactly 3 cells in
its neigbourhood are alive.

A simple APL solution - exploiting direct function definition is
shown below. The plane is mapped on a bit-matrix, where 1 stands for
a living cell.

GENER : HH v H RULE2 BH « (H « NB w) RULE1l w
RULEY @+ w A o€ 2 3

RULE? : (Cw) A 3 = ¢

NB : (HOR H) + (VERT H) + DIAG H « BORD w

BORD : 0 ,[11(0 , w , 0) ,[1] 0

DIAG : (72 2 4 w)+(2 =2 ¢ w)+(72 =2 + w}+2 2 { o
VERT : (=2 1 + H) + 21 +H <+ 071+ w

HOR t (1 T2y H)+12yH«T104V w .

Besides easily identified logical notation the main features of APL
applied in this solution are the "take" and "drop™ function. L+R &
pull L items from one end or corner of R, L+R & wipe L items from
one end or corner of R, Note that you may specify which dimensions of
your objects are envolved such as in L, [1Ir& join values of L and R

together into a larger array by catenating along L's or R's I-th

coordinate.

786

Example 2: Extensibility of the lanquage

Look at those two stem and leaf display done with the S function

stem.

The only difference should be the difference in leaf size, i.e. 1 or 2
digits. But more has happened. Some items changed their stem. The rea-
son for this is, that the stem function rounds the data. There was no
way to avoid it. So I decided to extend the abilities of the S-func-

tion. The next lines show what has to be done. The subroutine stemw

> stew {ncome, depth=l]

N = 50 Medfan = £55,665%

Quartiies = 287,77, 1413.93

Decimal points is 3 places tr rhe right «f the colon
19 19 0 @ 111222222233333 ieir

11 G 1 566RTTTHRKSG

20 3 1 @ 134

17 6 1 : 557789

11 5 2 122

6 32 : 556

3 2 3.0

1 0 il

1 1 4 :0

> stem income, depth=T, twodig=T

N = 50 Median = 695.665

Quartiles = 287.77, 1813,93

Decimal points fs 3 places to the right of the colon

260 20 0 :09,12,14,15,19,23,22,23,24,25,25,28,29, ..
16 G : 57,58,60,65,66,73,77,77,8],47

20 4 1 : 14,26,39,49

16 5 1 :51,68,74,81,90

11 6 2 : 11,21,23,33,45,46

5 3 2 :50,63,98

2 1 3 : 3

1 o 3

1 1 4 ; 00

as delivered by Bell reads as follows.

ROUTINE(stemw, produce stem and leaf portion for stem)
subroutine stemw(a,n,fc,kkl,kku,ksl,nl,wd,twodig,depth)
real a(n)

integer n,fc,kkl,kku,ksl,nl,width,wd

if (twodig) {#... ditto above, but for 2 digit leaves.
t = sxa(k)+0.0499
if (a(k)<0.0) t = t-10.1

else {#...adjusts round-off
t = gka(k)+0.499
1f (a(k) <0.0) t = t-11.0

787

This has to be changed to

ROUTINE(stemw,produce stem and leaf portion for stem)
subroutine stemw{a,n,fc,kkl,kku,ksl,nl,wd,twodig,depth,ritup)
real a(n)

integer n,fc,kk]l,kku,ksl,nl,widt,wd,ritup

if (twodig) {#...ditto above, but for 2 digit leaves,
t = skal(k)+(0.0699%ritup)
if (a(k)<0.0) t = t-10.0-(0,leritup)

}

else {# ...adjusts round-off
t = sxa(k)+(0.499xritup)
if (a{k)<0.0) t = t-10,0-(1,0%ritup)

.
.

.

The essential calculations are done by function stem.

The old version

FUNCTION stem(
x/REAL ,NAOK/
n1/INT,1,0/
scale/INT,1,1000/
twodig/LGL,1,FALSE/
fence/REAL,L,2./
head/LGL,1,TRUE/
depth/LGLG,1,FALSE/

)

INCLUDE(opticen,io)
1£(n1!0&n1 1=2&n11=5&n11=10)
FATAL(number of leaves per stem is not 0 2 5 or 10)
n=LENGTH(x)
NAOUT("x') # remove NAs
1f(n!=LENGTH(x) && head)
FPRINT{OUTFC,"Contained",I(n-LENGTH(x}),"NAs")
call stems(x,LENGTH(x),0UTFC,0,lwidth,nl,2.,FALSE,
twodig, !head,scale,fence,FALSE,,depth)
END

has to be changed to

FUNCTION STEM(
x/REAL ,NAOK/
n1/INT,1,0/
scale/INT,1,1000/
twodig/LGL,1,FALSE/
fence/REAL,1,2,/ f
head/LGL,1,TRUE/ i
depth/LGL,1,FALSE/ i
round/LGL,1,FALSE/
) j
INCLUDE(option,io) ;

788

if(nl1!1=06n1'=28n1!=5n1!=10)
FATAL(number of leaves per stem is not 0 2 5 or 10)
n=LENGTH(x)
NAOUT(*x') # remove NAs
1f(n!=LENGTH(x) &% head)
FPRINT(OUTFC,"Contained",I(n-LENGTH(x)),"NAs")
if(round)
iritup=1
else
iritup=0
call stems(x,LENGTH(x),0UTFC,0,1width,nl,2, ,FALSE,
twodig, !head,scale,fence,FALSE,depth, iritup)
END

I do not present the compilation - and binding steps necessary to
include the new version in S. Your are well supported by the S-system
(and the operating system UNIX without which S would not be so power=

ful) in going through this procedures. Py

Example 3: It is easy to make a plot
Imagine you want to build a plot function for histogramms. Here

are some ideas how the result should look like.

—

m\\\\\>\/\\W
SN

777

N\R

figqure 1: Some ideas for histogram plots

789

In the APL implementation APL*PLUS you are provided with a set of
system functions which give you contrcl over your plotting device.
Some system functions for graphics in APL*PLUS:

OGINIT initializes the graphics display for the
particular adapter in use

UGVIEW selects the rectangular area on the screen
onto which graphics displays are projected

OGLINE plots individual points, draws straight line
segments, and fills rectangular bars

GCIRCLE creates displays of entire circles or
ellipses, or arcs from them, or pie-shaped
wedges formed by such arcs and two radii

OWRITE writes text on the graphics screen

One thing more you have to learn is that different people (or graphics

devices) have different coordinate systems to structure a picture.

'DEVICE' COORDINATE SYSTEM

1023
-t %
A 1024 x 1024 grid points
1-0) 4L Y . 0
WORLD COORDINATE SYSTEM
0.5 » X
0 4 + » -+ 1023
0 0.5 1.0]

NOMALIZED DEVICE COORDINATE SYSTEM

figure 2: Different coocrdinate systems

o W . e e

TR ORI < ek TR 1 W

790

Taking this into account the simple plot function is easyly coded.

V HIST XY
OFLX<{JALX<' <« END ¢ (DM
0 0 p0 OGINIT 'IBMCOLOR
XY+<NORM XY

A NEXT LINE FOR SOLID BARS AND BOXES ONLY
A XY<("1 0 ¥XY),(14X¥[;11),01.5]80714XY[;2]
n SOLID BARS
o 1 (GLINE XY
a BOXES
a1 OGLINE((14pXY), 5 2)pX¥Y[; 1 2143 4321 2]
a HORIZONTAL LINES
p 1 OGLINE(("1+14pXY),2 2)p(71 04XY),(14X¥[;11),01.57714XY(;2]
a SKY LINE
a 1 OGLINEC(T1+140XY),3 2)p(™1 O4XY),(14XY(;171),(71+X¥[;21),1 OvXY
a JGLINE 1 2 2 pXY¥[1;],X¥Y(1;13,714XY[;2]
0 0 plUINKEY
END: 0 0 p3 UINT 16
v

If you are willing to put somewhat more effort intothe plotting busi-
ness you may produce a result like that shown in the following figure 3.
I want to demonstrate hy this example that is rather easy to create
a plot function for the essential part of a picture. But it is always
this essential part that matters if you try to use the graphical mode
to express your ideas. So if a graphical output is just for your sake
why spent a lot of time in making it look nice or in making the plot

function foolproof? [

0.3

L&

8.1

figure 3: One nice histogram plot

791

1 hope this set of examples has made the vision of a computing en=
vironment for statistician a little bit more concrete. As I said I
do not want to rank those two candidates. At the moment you may
praise yourself if you can lay your hand on either of them. But I
think it is fair to confess that I myself still are biased towards
APL.

And it is also fair to report that both systems are not free of
bugs. The three APL systems are all implemented on the same computer

(an IBM compatible PC with a 8088 and 8087 processor).

'‘Inconsistencies' in the implementation of the Gamma function and the Binomial co-
efficient in APL on an IBM PC

LIMITS for X

' X SHARP £ 56,5452 1 ! X GSHARP : < 3,602 E 16
APL*PLUS £ 170.6243 APL*PLUS : £ 255
IBM 1.0 £ 170,6243 IBM 1.0 :< 1,796 E 308
0 ! X SHARP : €£3.602FE 16 X ! X SHARP : £ 3,602 E 16
APL*PLUS £ 255 APL*PLUS : £ 1.796 E 308
IBM 1.0 £ 1.796 E 308 IBM 1.0 :< 1,796 E 308

Ironically enough when we had implemented S on our HP 9000 we got
a run time error when calling the gamma function with argument 6,
i.e. the result should be 120. The reason was an inconsistent han=-
dling of the machine dependent number ranges.

To bring this paper to an end let me summarize. Not what a com-
puter language offers but what a computer language should offer
should be the point of concern. One might put it in one sentence.
The computer language must fit to the statistician's way of thinking
and working. In some detail this plea was worked out in requirements
1 - 9 and examples 1 - 3, The history of APL reveals that user's
demands can be fruitfully incorporated into the development of a
language. So do not be a devote beggar grasping what will be given
to you by the computer scientists. It is you who has the real prob-

lems to solve not they. And S and APL show that it can be done.

[Fr—

b

792

References

1. Becker, R.A. Chambers, J.M. (1984). Design of the S System for
data analysis, Communications of the ACM, vol 27.

2. Becker, R.A,, Chambers, J.M. (1984). S§ an interactive environ-
ment for data analysis and graphics. Wadsworth Inc., Belmont.

3. Becker, R.A., Chambers, J.M., (1985). Extending the $ System.
Wadsworth Inc., Belmont.

4, Falkoff, A.D., Iverson, K.E. (1978). The evolution of APL.
APL Quote Quad, vol 9, no 1.

5. Falkoff, A.D., Iverson, K.E. (1978). APL language.
APL Quote Quad, vol 9, no 1.

6. Grenander, U. (1982). Mathematical experiments on the computer.
Academic Press, New York.

7. Ling, R.F. (1974). Comparison of several algorithmus for com-
puting sample means and variances. Journal of the American
Statistical Association, vol 69,

8. Longley, J.W. (1967). An appraisal of least squares programs for
the electronic computer from the point of view of the user.
Journal of the American Statistical Association, vol 62,

9. Mustonen, S.(1981). Statistical computing with text editor. In:
Computational Statistics, Naeve, P., Blning, H. (Ed.).
de Gruyter, Berlin.

10. Programming languages issuess for the 1980‘'s (1984).
SIGPLAN-notices, vol 19, no 8,

1l. The American Statistician (1985}, vol 39, no 3.
12. The American Statistician (1986), vol 40, no 2.

13. The Software Catalog (1984). Science and Engineering.
Elsevier, New York.

14. Wilkinsen, L., Dallal, G.E. (1977). Accuracy of sample moment
calculations among widely used statistical programs.
The American Statistician, vol 31.

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12
	Seite 13
	Seite 14

