
ABSTRACT

APL programming without
+ It is time for a change

P. Naeve, B. Strohmeier; P.Wolf

Fakultit fur Wirtschaftswissenschaften

Universitit Bielefeld

Germany

*email: bstrohm@erasmus.hrz.uni-bielefeld.de

To overcome the unreadability of traditional APL-code Knuth’s
idea of literate programming is adapted to APL. The APL2wEB
system ofstructured documentation isintroduced asanew way of
APL-programming. An example is given to highlight the merits of
this combination.

POINT OF VIEW

This paper is written from a statisticians viewpoint as well as from
the viewpoint of a computer scientist. In our dail y work, we are of-
ten concerned with statistical and computational questions, So, the

choice of APL as our favourite programming language is not hard
to understand, since most of the statistical packages do not fit our

wishes. One of the most valuable merits APL offers to statisticians

is its ability to transform mathematical formulas almost directly into

APL-code.

keyword formula APL -code

mean z=:~.i MEAN+ (+n) x+/X

eq-system X =A–lb X+(~A)+. xB

Xi-BBA

least squares # = (~X)-l~y BETA+- (Y+ .xX) ~(@X)+. xX

However, if one has many functions and workspaces written in
APL the need for a proper documentation of these becomes more

and more urgent for reasons every APL-er has certainly experi-
enced: After a while, one cannot read and understand the own func-

tions. Moreover, you have difficulties to decide, whether other peo-
ple’s functions work correctly or not.

The first point is annoying for your and if you are self-confident
you will be convinced that your statements do exactl y what they are
supposed to do. The second point struck us whenever we had to
debug APL -programs written by others.

We really appreciate APL and its features, but there are people

who don’t. Why? Let us look at some points which might be con-
sidered to be disadvantages of APL. Our intention is to show how

these can be overcome, so that only the benefits of APL will remain.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republlsh, requtres a fee

and/or speclflc permission.

~ 1993 ACM 0-89791 -612 -3/93 /0008 /0185 . ..$l .50

The advantajzes of.

tears

4PL, the uower of its urimitive functions. the

flexible data strictures es~ciall~ in APL2 a;d so on are well known
but there must be a reason why not everybody appreciates APL. So,

what are the drawbacks of APL’? From our view, the main items are:

●

✎

●

The power of APL’s primitive functions is not understood,
e.g. we often see unnecessary loop constructions and clumsy

data structures.

people do not get familiar with the hieroglypbs of APL.

The traditional process of writing APL-code is awkward.

The first two points are the most frequent arguments against
APL. But it can be argued that one has to learn all the features of a
language if you want to use it efficiently and as far as the hieroglypbs

are concerned, the critic-s should remember that the mathematical

language mainly consists of hieroglyph, too, and only some very
lazy people are complaining about that.

The third point is new and our goal is to describe how the pro-
cess of writing APL-programs can be improved so that our beloved

APL-language becomes even more valuable. Let us look at the tra-
ditional process of writing APL-code: Many APL-statement.s re-

sult from the trial-and-error principle: You know what you want to

get and you begin to permute primitive functions until the desired
result is reached. Nothing is wrong with that, the APL-interpreter

features this way of programming, but you should be able to explain

the final statement and you should do it to achieve two goals:

● The statement becomes clear for other human beings.

“ You get deeper insights in what you did and in most cases you
can optimize the statement.

For example take the following function which may be consid-
ered as the result of true hackerdom.

v z+l fkt ~;a;b

[1] 2+0 o a+($nl)n
[2] b+-lta

[3] z+b , z+bsz
[4] a+-l$a
[5] +(O<pa)/2

v
Who can tell what this function does? Though it is rather short it
is hard to find out. Can you read it? Then, find the idea behind the
algorithm. This function works but imagine it has a hidden bug.
What would you do then? Do you think there is any possibility to

debug it without knowing the idea behind it?
The reader might be tempted to say: “I am using the Camp in

all my programs frequently. The data structures and the function

calling syntax are perfectly clear. AfI my programs are well docu-

merited. ”

APL Quote Quad 185 Naeve et al.

Our answer to this is we do not need “traditional documentation”,
since documentation is an act which is performed after the programs

are written. First comes the program, then the documentation. Peo-
ple who document a program tend to overlook the idea behind the

code and that is why we believe that programming and documenta-

tion must be performed simultaneously.
Furthermore, the way people think is not necessarily the sequen-

tial way the APL -interpreter expects the statements. It must be pos-

sible to do the things in an arbitrary order. The example below gives
an impression.

The reader might insist: “In APL, I can debug every function
stepwise. I will type in all the staments step by step in immediate
execution mode and finally I will find out what the function does.”

Yes, he might find out what the function does but is he sure to
understand the underlying idea? Our experience shows that you can

not understand a top-down idea by using bottom-up techmques.

How can anyone be sure that a function works correctly without
being able to understand it? It is obvious that even moderately sized

projects are running into trouble if they are not well documented.
Even worse, the APL2 extensions of data structures, primitive func-
tions, and operators lead to greater difficulties in understanding the
ideas if they are not described properly.

The point we want to make is: It is necessary to write down the

ideas.

To avoid these disadvantages of APL, we have to find another
way to handle ideas than the traditional one to become more confs-
dent in our own and other people’s functions and to achieve better
programs.

IDEAS MATTER

In the last section, we listed several reasons which might cause so

many people to dislike APL. Here, we want to concentrate on the
most essential one. In doing so we will be able to offer a way out.

Most people will possibly remember Iverson’s [?] paper Nota-

tion as a Tool o~l%ought where he claimed that

APL is a notational tool!

So, APL should be classified as a notational tool capable of being
executed (interpreted) by a computer system.

Let us change the scene for a moment. Computer scientists are
deeply concerned about the state-of-the art in computer program-
ming. In spite of all efforts, there still are problems with program
documentation. One mtght even say there is nothing like a well doc-

umented program. Can the APL-community deny the truth of this
statement when changing “progmm” to “function”?

Yet one distinguished computer scientist offered something like
the magic stone to improve the situation. In 1984, Donald E. Knuth
wrote in his paper on Literate programming [?]:

Let us change our traditional attitude to the construction
of programs: Instead of imagining that our main task
is to instruct a computer what to do, let us concentrate
rather on explaining to Jlaman beings what we want a
computer to do.

The essence of this statement is a plea for a radical change in at-

titude. Programming has to be seen as a communication process
between human partners. They “talk’ about tbe computer but not
to the computer. So they can concentrate on the main task which
is problem solving, not programming. The computer is just another

but important tool for this process. This should be made explicit.
Bringing this into action calls for a change in paradigm within the
computer science community. This might be the explanation for

the fact that Knuth’s ideas were not received by the programmers
community as we would have predicted. As stated by Kuhn [?]

the scientific communities are always very reluctant to change their

paradigms.

But as we feel the urgent need for a change let us have a brief
look at the consequences of Knuth’ proposal.

+ Telling other people how we want a computer to do the job
changes “programming” to “writing works of literature”. That’s
why Knuth chose the title of his paper to be Literate Programming.

But for our purposes we need more than just our “natural” language
to express our thoughts. We must have access to the whole bunch

of (scientific) languages such as mathematics, graphics, and so on.

+ But nobody wants to do a job twice. Having told my colleague
how I want the computer to do the job should suffice. One cannot
see any reason why one has to switch to “ordinary” programming
afterwards. (Imagine the computer could listen to your conversa-
tion with your colleague. Then he should have got all he needed to

proceed without any further information.) Therefore Knuth came

Up with his WEB-System which provides exactly this feature. AII
the user has to do is to finally break down his thoughts into pieces
in such a way that they can be expressed in the programming Ian-
guage of his choice. As we will see this is supported by having the

notion of a section which consists of two parts. The “comment’’-part

where all kind of languages are feasible and a “code’’-part where a
programming language is the only language allowed.

+ As Knuth [?] put it: we understand a complicated system by un-

derstanding tts simple parts, and by understanding the simple re-

lations between those parts and their immediate neighbors. If we

express a program as a web of ideas, we can emphasize its struc-

turalproperties in a natural and satisfying way. To achieve this the

system must ZIIIOWus to break the whole into pieces in a controlled
way and to handle those pieces in an appropriate way, for instance

referencing them. Expressed in computer science terminology what
we need is support for the process of stepwise refinement. But top-
down should not be mandatory. The system must tolerate other ways

of thinking i.e. bottom-up, too.

+ Up to now, documenting a program boiled down to an ex post

documentation of the code — “K is a loop variable” is a famous
example. Now, we can get an up-to-date documentation of more

than the code. It is a documentation of all the ideas and decisions
which lead to that code. It is really striking that computer scientists

don’t see this perspective immediately.

Why don’t we melt Iverson’s and Knuth’s philosophies? A thor-

ough and far reaching notational tool such as APL combined with
a powerful system like WEB should result in an even mightier sys-

tem. We call it APL2WEB1. The rest of the paper is a demonstration

that such a system does exist. That part of our paper depends on the
work of our colleague Christoph von Basum. Luckily for us he im-

plemented more than a prototype of such a system as a by-product

of his Ph. D.-thesis [?].

But before we give an example we briefty like to stress that

APL2wEB is an appropriate answer to many problems. These other
problems will make the new attitude towards “programming” even
more appeahng. To mention just two:

+ More and more things are handled by the computer, Gone are the
days when statisticians were seen walking around with statistical ta-
bles under their arms. Now, they depend on their statistical software
which provides percentage points, P-values or what ever they need.
But in the old days almost all of them used the same kind of tables,
notably Biometrika tables for statisticians [?]. So, everybody had

the same numbers computed according to well documented formu-
las and procedures. Do you know how your statistical software does
it? Why do YOU trust your software’? Establishing confidence and

trust in a program (function) is an emerging problem.

+ Many journals nowadays publish algorithms, so does APL

QUOTEQUAD. Far too often, later a correction has to be added, so

1This name was chosen by C. V. Basum.

APL Programmmg without Tears i 86 APL93

in APL QUOTEQUAD, too. Someone simply did some mistyping
when copying (which here means retyping) the algorithm again and

again. APL2wEB will improve this situation for now we have an
unique source of informati on, the APL2WEB-document.

AN A/W2WEB EXAMPLE

We try to demonstrate by example that an APL -solution gets read-
able after translating it into APL2wEB. Moreover, we are sure that

the reader will have confidence in the resulting code afterwards,
As example, we chose the program INFDIV that was proposed

by Danial[?]. This example has two properties: It has been dis-

cussed at an APL-conference and it deals with a problem belong-
ing to the field of statistics. So, we hope it will be of interest for

APL-programmers as well as for statisticians.

The paper of Danial can be divided into three parts. The first

part discusses aspects of the statistical theory being involved, The
second one contains the definition of the function lIVFDIV and the
last shows a typical result of using INFDIV.

For there is a large gap between explanation and code — part one
and two — you have to believe in the correctness of the code or you
have to invent the function once more, So we did, and here is the

result.z

1. inf dlv - checking infinite divisibility of UGWD.

This function is similar to the function INFDIV written by Danial

(1989).

The probability function of the univariate generalized Waring

distribution (UGWD) is given by

r(a + P)r(k + p) r(a + ~]r(k + ~)
R = r(a)r(k)r(p) r(a + k + p + t)i!

i= O, l,.,,

The property of the infinite divisibility can be investigated in

terms of the series {Ki} and {n, } that are defined by the following

formulas:

Ki - pi i= 1,2
pi-l

i-1

m = ip~ -x=’; andp;=: ‘=12,’
j=l

If n, ~ O for i = 1,2, . .. the discrete distribution under considera-

tion is infinite divisible (Katti (1967)). Danial (1988) showed that a

sufficient condition for infinite divisibility is that {K, }c._,~+l, forms

a monotone increasing sequence andn, ~ O, i = 2,3,,. .,m+s, s >0,

wheres is the smallest integer for whichpl /po < p~+. /p~+,-l. For
details, see the references.

The program inf div computes K~ and ~i for i = 1,N.

References: Danial, E. J.: APL as a tool of research for the mathe-

matical scientist, APL QUOTEQUAD, vol. 19, no. 4, 1989.

Danial, E. J.: Generalization to the sufficient conditions for a ran-

dom variable to be infinite divisible, Probability and Statistics Let-

ters, vol. 6, no. 4, 1988.

Katti, S. K.: Infinite divisibility of integer-valued random variables,

Annals of Mathematical Stnti~tim, VOI. 3% no. 3,1067.

2Due to the restriction of the \twocolumn layout some lines of APL-

code were split by T@.

2. At first, let us divide the function3 into input, computation, and

output explicitly.

v infdiv 2

(read parameters to choose a UGWD distribution and the

number of values to be computed 5)

(compute the required number of K,’s and~s 9)

(c4rnstruct a nice output 4)

lnf div appears in sections 1, 4,5, and 10.

3. Before refining one of these parts we should fix names and data

structures for the most important quantities:

AP-L-variable structure meaning

a scalar parameter a of the UGWD

k scalar parameter k of the UGWD

rho scalar parameter p of the UGWD

N scalar number of n,’s and Ki’s to

compute

p.star vector, length N @!. ~~,P;)

pi vector, length N @il. c~. .pk)
K vector, length N (KI,. . . ,KN)

They are defined as local variables:

(Local Variables of infdiv(2) 3) =

a,k, rho, N,p-star, pi, K

See also section 7.

4. The Output of infdiv. It is easy to arrange the vectors pi and

K as columns of a matrix. To increase readability the first column

shows the index of the vector elements.

(construct a nice output 4) =

n.’ The COlrnMS of the following table contain:

(tN), pi, K’, [.ll’-’

(tN),pi, [l,l]K

This code is used in section 2.

5. The Input of kf div. The input module asks for the parameters

of the UGWD and the number of values that should be computed.

(read parameters to choose a UGWD distribution and the

number of values to be computed 5) =

‘ Value of parameter a of the UGWD

distribution?’ o a+n

‘ Value of paranreter k of the UGWD

distribution?’ o k+O

‘ Value of parameter rho of the UGWD

distribution?’ o rho+ll

‘HorJ rrtany terras should be contputed?’ e N+fl

This code is used in section 2.

6. Compu@tion of theKi's andni's. Byreplacing theprobabi1i-

ties we get

3Strictly speaking invdif is a defined sequence. As mentioned below

it is good style to introduce the header of a function or defined operator in a

separate section.

APL Quote Quad 187 Naeve et al.

r(a + P)r(k + p) r(a + ~r(k + t)

r(a)r(k)r(p) r(a + k + p + ~)i!
‘i = r(~ + P)r(k + p) r(a + i – l)r@ + i – 1)

r(a)r(k)r(p) r(a + k + p + i – l)(i – 1)!

Due to the recurwve property of the r-function, this can be simpli-

fied to:

~r=(a+i–l)(k+i–l)
(a+k+p+~-l)i

i=l,2, . . .

Keeping therequired indices inthe variable I the translation of

the formula Into APL is easy achieved.

7.

8.

(compute vector K - 6) =

K+(a+I-l)x(k+I- l)+(a+k+rho+I-l)xI+tN

This code is used in section 9.

We want I to be a local variable!

(Local Variables ofinfdi.v(2) 3)+=

1

For computing the n, values we need thep”’s which are derived

from K by:

nl andp~ are identical. Theother m’sares uccessivelyc omputedin

asimple]oop according tom = ip~ —~~jl TC,-,p~.The variable I
always points to the element of the vector pi that is Just processed.

(compute vector pi 8) =

pi+ltp_star+x\K

14-2

loop:pi+pi, (Ixp_star[I])-($pi)+,x(I-l)?p.star

+(N>I+I+l)/loop

This code is used in section 9.

9. Putting thelast refinements together will finish the job,

(compute therequired number of~;’sandn,’s 9) s

(compute vector K 6)

(computevectorpi 8)

This code is used in section 2.

10. Aseachsection issimple tounderstand wearesure that the

communication with the reader is successful, confidence in the func-

tion inf div is established, and that the resulting function runs with-

out error.

Theextracted— (tangled)—functi oninfdivlooks like this:

v infdiv;a;k;rho;N;p_star;pi;K;I

6! V Initially declared in WEB-file <DIVI.arirb>,

line 42; date: Mon Jan 04 17:52:58 1993

APL Programming without Tears 188

R infdiv: 2

R 3: a,k,rho,N,p_star,pi,K

n7:I

R2:, 5:

‘Value of paranreter a of the UGWD

distribution?’ v a+fl

‘Value of parameter k of the UGWD

distribution?’ v k+fl
‘Value of parameter rho of the UGWD

distribution?’ + rho+n

‘HOW tttany teruts shouldbe computed?’ o N+U

a :5, 9:, 6:

K+(a+I-l)x(k+I-l)+(a+k+rho+I-l)xI+tN

R :6, 8:

pi+ltp_star+x\K
1+2

loop:pi+pi, (Ixp-star[I])-(~pi)+.x(I-1) tp_star

+(N>I+I+l)/loop

n :8, :9, 4:

Cl+’The columns of the following table

contains: (tN), pi, K’, Call’-’
(tN),pi, [l.l]K

R :4, :2

This canomcal representation of the function should be used only

for loczzlizing errom but not for understanding the algorithm behind

it,

REFLECTIONSON THEEXAMPLE

There isnodifficulty toconstruct asimple example and to ask: “1s
there anybody who doesn’t understand it?” However, we think that

this example isnotas simple as it seems. The apparent simplicity
of the resulting function hides all the considerations done during
theengineering processor creating the function. Try to comment
on this function without the APL2WEB-paper in mind!

You see we are convinced that problem solving using the
APL2WEB-style has many advantages. The following Imts some of

them as assertions:

* The problem formulation gets more precme if you have to

writeitdown.

● Awritten solution can beapproved step by step.

● Awell-structured solution yields a better code.

● Athoroughly worked outsolution contains less errors.

● Thesaving ofdebugging time exceeds theadditional time for
writing down the ideas of the solution process.

“ Every reader will enjoy your APL2WEB-solution more than
APL-listings and this is true for you, too.

Unfortunately, an important question is still open. The
APL2WEB-system is something like atoolbuttoolsdo notexplain
how to use them properl y at all:

Howhasan APL2WEB-file to bedeslgned to reach the

aim of being understandable?

To start a discussion we now pose six rules we consider to be
important. In our opinion adopting the ideas behind those rules will
result in readable solutions. Inthelight of further experiences these
rules may remodified andnewones will have to be added.

APL93

Rule 1: Define theproblem andthepoint where thear-
gumentation starts from in a clear form.

In the first section of the example some pieces of statistical theory
and references for further information are given. So the context

is well defined especially for statisticians. It is also defined which

problem should be solved by infdiv.

Rule 2: Define layers and argument in terms of these
layers.

Sometimes it is evident how to divide a problem into parts. So
input, computation, and output are very often treated as different
modules. (See also the corresponding sectioms of lnfdiv!) How-
ever in the case of larger problems adequate levels of abstractions

have to be defined.

Rule 3: Divide as much as necessary, but not more.

The author of an AJZ2WEB-document should divide every prob-

lem in so many parts that the reader is able to understand the re-
sulting sections as single steps of the whole story. Perhaps a screen

principle is an orientation for the external appearance: A section

should not cross the screen margins of your editor!

Rule 4: Use already defined solutions.

Every program designer has libraries filled with a rich variety
programs, definitions, data structures, explanations, etc. — things

that are often used. If the content of such a file is documented well,
e.g. in APL2WEB-style, old sections will be easily activated for the
problem at hand by copying them into the new paper.

Rule 5: Define data structures explicitly.

In the age of nested arrays confusion is caused not only by com-

plicated combinations of operators and functions but also by subtle
constructions of the variables and the meaning of their components.

It seems to be very advantageous to discuss them in separate sec-
tions of the APL2WEB-paper. Although our example uses only sim-

ple objects, the summary of the variables will ease the reading.

Rule 6: The APL -code of a section has to match to the

comment text of the same section.

This rule emphasizes that code and text of a section should be in

balance. The code is the result of the considerations written down in
the same section. Vice versa it is confusing if the reader is waiting

for an announced ARL-translation in vain.

SOME RULES OF C. V. BASUM

As already mentioned the WEB-system we are working with was
designed by C. v. Basum. In his thesis [?] he discusses many aspects

of writing WEB-documents. Some of the rules and short comments
are taken from his thesis and listed below.

“ “Any APL2 function can be divided into two parts. Its first

part is the header, i e., line O of a function. The other part
consists of the statements that manipulate data. The first part
is called the declarative element of a function definition, the

secmd part is the procedural element.
The distinction between these two basic elements of program
design should be mirrored in the definition of any function.
The APL2wEB system permits the separate documentation of

function header and function body. A first rule is formulated
from this observation.”

● “The basic unit, the ‘unit of composition,’ is the section in
WEB.The relations to other parts are interlaced by WEAVEau-
tomatically and optionally, enhanced by a user’s manual index
entries.
The subject of a simple section must be comprehensible. This
implies that sections will rarely extend over more than one
page. As a rule of thumb, one should demand that no more
than, say, five lines of APL2-code appear in a section. How-

ever, five lines of code in APL2 can be far too intricate to be
still considered a unit.”

Keep a section self-contained.

● “A computer needs not to be asked whether it is willing to
perform a job, the machine must obey the command. Telling

another person what a computer is supposed to do means us-
ing the imperative as the grammatical form for the structure
of a top-level description. Consequently, such a top-level de-
scription will begin with a verb. [...] The imperative seems to

be the natural way to circumscribe a sequence of statements.”

Formulate a top-level description as an imperative.

TOTAL

To take a closer look we must wipe out the tears.

REFERENCES

[1] v. Basum C.: Making APL readable — A new direction for
design, Lit Verlag, Miinster, 1993.

[2] Biometrika tables for statisticians vol. I, Pearson E. S., Hartley
H. O. (eds.), Cambridge University Press, 1954.

[3] Danial E. J.: APL as a tool of research for the mathemati-
cal scientist, APL QUOTEQUAD, vol. 19, no. 4, pp. 113–116,

1989.

[4] Danial E. J.: Generalization to the sufficient conditions for a
random variable to be infinite divisible, Probability and Statis-
tics Letters, vol. 6, no. 4, pp. 379–382, 1988.

[5] Iverson K. E.: Notation as a tool of thought, Comm. of the
ACM, 23(8), pp. 444-465, 1980.

[6] Katti S. K.: Infinite divisibility of integer-valued random

variables, Annals of Mathematical Statistics, vol. 38, no. 3,
pp.130f-1308, 1967.

[7] Knuth D. E.: Literate Programming, Computer Journal, 27(2),
pp. 97–111, 1984.

[8] Kuhn T. S.: The structure of scientific revolution, University
of Chicago Press, 2nd cd., 1970.

Devote a single section to specify a function’s header.

APL Quote Quad 189 Naeve et al.

