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Summary. During the 1977 and 1979 reproductive periods of the 
Galfipagos fur seals a census taken in the mornings and evenings 
at Cabo Hammond,  Fernandina, showed a marked, synodic lunar 
rhythm in numbers of animals ashore. About  twice as many fur 
seals were ashore at full moon than at new moon. By use of  
two independent Fourier analysis methods, the curve of  the morn- 
ing counts is shown to lag 15~ ~ of  the lunar month behind 
the curve of  the evening counts. The lunar effect is demonstrated 
for males, females, and immatures. The rhythm is also seen is 
demonstrated for males, females, and immatures. The rhythm is 
also seen in attendance data from 13 individually marked females, 
all but one nursing young. Reproductive events show the lunar 
rhythm much less markedly than do numbers ashore. This and 
the clear rhythm in immature numbers make it very likely that 
the rhythm is a year-round phenomenon, independent of reproduc- 
tion. 

There is no reason to assume that fur seals stay on land during 
moonli t  nights especially for social interaction. It is then hypothe- 
sized that fur seals avoid moonlight at sea. If so, the peak of 
numbers ashore at full moon and the negative phase angle differ- 
ence of  the evening curve against the morning curve can be ex- 
plained with the shift, and the varying duration and brightness, 
of the moonli t  part of  the night over the lunar cycle. Two hypothe- 
ses which might account for this moonlight avoidance are dis- 
cussed: (1) predator (shark) avoidance and (2) varying feeding 
efficiency of  the fur seals due to the influence of moonlight on 
the vertical distribution of prey. 

Introduction 

Via tidal rhythms and direct light effects, the lunar cycle profound- 
ly influences the ecology and reproductive cycles of many marine 
invertebrates (Alldredge and King in press; Enright 1975; Hauen- 
schild 1960; Palmer 1974; Neumann and Heimbach 1979). Lunar 
effects have also been described for some fish (review in Gibson 
1978) and terrestrial vertebrates (e.g., Fitzgerald and Bider 1974; 
Gwinner 1967; Morrison 1978; Pearson 1960a and b). 

No lunar influence on marine mammals has as yet been conclu- 
sively shown, which is especially surprising with regard to the 
coast-living pinnipeds. There is a faint suggestion of  such an influ- 
ence, shown by the patterning of  dentin deposition in the teeth 
of  Otaria byronia (Laws 1962), and perhaps an influence, deduced 
from whaling data, on the grouping tendency in sperm whales 
(Holm and Johnsg~rd 1959). At  their hauling-out sites and breed- 

ing grounds pinnipeds are constantly exposed to the tides, and 
their prey may also be influenced in following the vertical migra- 
tion of  plankton, for example, by the rhythm of lunar light intensi- 
ty. 

During a study of the reproductive behavior of the Galfipagos 
fur seal (Arctocephalus galapagoensis, Heller 1904) a strong period- 
icity in numbers of fur seals ashore was found to be synchronized 
with the synodic lunar month. This paper describes this effect 
and may help in formulating hypotheses about the behavior and 
ecology of pinnipeds in their marine environment, in which direct 
studies are extremely difficult. The results are also of practical 
consequence for the evaluation of census data. 

Materials and Methods 

SIudy area 

The study was done at Cabo Hammond (91 ~ 37' W, 0 ~ 28' S), Fernandina, 
the southwest corner of the westernmost island of the Galfipagos archi- 
pelago. Fernandina Island is the most active volcano of the Galfipagos 
islands (Hall 1977) and is totally uninhabited and fiee of introduced 
higher plants and animals. The whole coastline of the study area consists 
of lava, some parts being recent lava flows and others large boulders 
smoothed by wave action. 

Counts 

Fur seal counts were made during the reproductive season which lasts 
from about August to November (Trillmich 1979). The number of pups 
steadily increases during this time, accounting for about one-third of 
the animals ashore at. the end of the season. To adjust for this trend, 
the total number of animals ashore is always given without pups. Fur 
seals were assigned to one of the following age/sex categories: (1) territo- 
rial male; (2) nonterritorial male; (3) adult female; (4) immature (of 
unknown sex up to about three years of age); (5) pup (young of the 
year, not yet moulted) (6) adult (of unknown sex). Most animals could 
easily be assigned to one of the first five categories. Animals in category 
6 averaged only 1%-2% of the totals. 

All counts were made by one person (F.T.) to eliminate possible 
variance through different walking speeds, search efforts, or experience. 
Little tunnels and caves abound along the coastline, but most animals 
stayed in the open early in the morning and late in the evening when 
the counts were made. The animals were counted in the course of a 
slow walk along a 670 m (1977) or 530 m (1979) section of coastline 
at Cabo Hammond and the total width of the coastline used by the 
fur seals (up to about 20 m) was censused. Animals can usually be 
approached to within a few meters without being obviously disturbed. 
A count lasted 1-1.5 hours, depending on the number of animals ashore. 
In 1977- counts were made every 5 days between August 20 and No- 
vember 13 (Fig. 1). In 1979 only one lunar cycle (August 22 to Sep- 
tember 21) was covered and counts were unevenly spaced, taking place 
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daily only around full moon (Fig. 2). In both years morning and evening 
counts were made. Morning counts began as soon as there was light 
enough to identify the animals (about 5 : 30 A.M.). Evening counts began 
between 4:30 P.M. and 5:00 P.M., ending at or shortly after sunset. 

Female Attendance Data 

In 1979 the presence or absence of 12 females with pups or one- or 
two-year-old immatures and one adult female without young were noted 
1-5 times daily. From these data the duration of their stays ashore 
was calculated, on the assumption that a female seen at or after 6 : 00 P.M. 
and at or before 6:00 A.g. of the following day had been ashore all 
night. If her presence at either of these times could not be confirmed, 
a question mark was put down for that night. If she was observed 
at neither of these times it was assumed that she had spent the night 
at sea. 

Distribution of Births 

In 1979 pups were counted at least every 4 days, but generally daily, 
and all newborn pups were marked by clipping a bit of fur on their 
backs. From these data a very accurate curve of the distribution of 
births over the reproductive season was obtained. 

Fourier Analysis of the Lunar Cycle 

Data on lunar phases were taken from nautical tables (Instituto 
Oceanographico, Guayaquil, Ecuador). To analyze the periodicity in the 
census data the interval between two new moon phases was set at 360 ~ 
and the times of the counts were converted to degrees accordingly. To 
obtain an objective description of the features of the morning and 
evening counts, a Fourier analysis was performed first with an ansatz 
symmetric about some central phase (P0: 

N 

y = ~ a,. cos (n. (rp- Cpo)). (1) 
n = 0  

The central phase ~o o and the coefficients a, were iteratively optimized 
using a least-squares criterion (Marquardt 1963). For a detailed state-of- 
the-art discussion see Chambers (1973). 

The order of harmonic approximation was restricted to 3 (N=3) 
which proved sufficient for the data distribution. The rounded coef- 
ficients obtained are summarized in Table 1. The dimension of the phase 
is degrees, that of the coefficients number of animals. One can tell from 
Table 1 that a 3 is comparable to its error, which supports our argument 
of N = 3 being sufficient. The central phase and the coefficients are well 
defined. The resynthesis of the approximants is shown in Fig. 3a and b. 

One might argue now that the symmetric ansatz (1) leads to 
artificial extra phase-shifts, since the 1979 data seem to be asymmetric 
around the central phase (Fig. 2). We therefore secondly represented the 
data by an unrestricted Fourieransatz: 

y=  a, .cosn.q~+ ~ b,.sinn-~o. (2) 
n=O n = l  

Least squares estimates of the parameters a i and b~ may be obtained 
using standard linear analysis algorithms. We chose N =  3 and resynthe- 
sized the approximants (Fig. 4a, b). 

Table 1. Parameters of the Fourier analysis method (1) and estimated 
standard deviations calculated according to the method of Marquardt 
(1963). Initial values chosen were (Po = 160 ~ a o = 200, al = 80, a 2 = a~ = 40. 
Parameters were optimized by iteration, leading to convergence in ten 
steps 

Censuses (,o o a o al a 2 a 3 

1977 Morning 174,+6 273_+12 83+17 49,+18 46-t-34 
1977 Evening 151_+9 225_+12 59+18 46+17 6+14 
1979 Morning 195_+5 274_+12 88_+17 64_+16 54_+17 
1979 Evening 180_+6 256_+12 59,+19 60+17 33_+19 

Now we may determine the phase-angle difference (Aq~) between the 
curves of the morning and evening counts by cross-correlation. Let f l  (~o) 
approximate the morning census andf2(~o ) the evening census. Define: 
The mean: 

2~ 

~= ~ f~(~o)dq,. 
o 

The product moments: 

2~ 

s~j(~e)= ~ (f,(e+Ap)-$)~(e)-~)de. 
o 

The cross-correlation (C): 

s12(Ae) 
C(A~) 

i/s~(O)s~(O) 

The cross-correlation as a function of phase-angle difference A~0 is 
drawn above in Fig. 4a and b. Its maximum yields the most likely 
phaseangle difference between the two functions. 

Results 

In 1977 and  1979 the numbers  of fur seals ashore in the Cabo 
H a m m o n d  study area showed marked  peaks a round  full moon  
and  clear minima near new moon  (Figs. 1, 2), with about  twice 
as many animals ashore at  full moon. Morn ing  and  evening cen- 
suses bo th  show the lunar  rhy thm with the evening census a lmost  
always producing lower totals than  the morning census (Figs. 1 
and  2). This is explained through the t ransi t ion of  numbers  ashore 
from morning to evening. Regular  counts  during daytime show 
a slight increase in numbers  ashore until  about  8: 00 or 9 : 00 A.M., 
depending on the weather;  thereafter,  numbers  drop slightly to- 
ward noon  as some animals  hide in caves or spend the hours  
a round  noon  resting in the water in front  of  the colony. In the 
late af ternoon (4:00 to 5:00P.M.) another  weak maximum is 
reached, followed by a rapid drop in numbers  in the evening 
when many individuals leave the rookery to forage at sea. 

At  the time of  increasing hal f  moon,  numbers  ashore augment  
more rapidly in the evenings than  in the mornings,  sometimes 
even becoming larger in the evenings. With  decreasing full moon  
numbers  fall far more rapidly in the evenings than  in the mornings. 
This leads one to suspect a phase angle difference between the 
curves of  morning and  evening counts. We estimated the value 
of the phase angle difference using Fourier  analysis methods (1) 
and (2). A comparison of the data  and their Fourier  synthesis 
according to method (1) is given in Fig. 3a  and b for 1977 and 
1979, respectively. The error of the representat ion may thus be 
judged by close visual inspection. Fo r  the phase angle difference 
(Acp) between morn ing  and evening censuses, we obtained with 
this method : 

A q0 = q)0, rnoming-- q00, evening= 23~ + 11 ~ (1977) 
A ( p = q ) 0 ,  m o r n i n g - - q ) 0 ,  e v e n i n g =  15~ 7 ~ (1979) 

Thus there is a clear phase angle difference between morning 
and  evening censuses that,  taking into account  the error bounds  

estimated f rom the s tandard deviations of  the parameters  given 
in Table 1 - i s  indist inguishable between 1977 and 1979. The Four-  
ier synthesis using ansatz (2) is shown in Fig. 4a  and  b for the 
1977 and  1979 data, respectively. Compar ison  of  Figs. 3 and  4 
shows that  there is no marked  difference between the representa- 
t ion of the data by (1) and  (2). With  method (2) the maximum 
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Fig. 2. Morning and evening census data from 1979 (530 m coastline). 
Total of animals ashore excluding pups. Note the rapid drop in the 
numbers of fur seals ashore in the evenings after full moon in comparison 
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of the cross-correlation funct ion yields the mos t  likely phase angle 
difference between the morning  and  evening counts�9 One obtains:  

Aq~=17 ~ (1977) 
Aq~=15 ~ (1979)�9 

The previously calculated phase angle differences are confirmed 
and  the agreement  between the phase shifts in the 1977 and  1979 
data  is even better. Taking the results of the two methods  together,  
one obtains a phase angle difference between morning and evening 
censuses in bo th  1977 and 1979 of between I5 ~ and  20 ~ of the 
synodic lunar  month ,  or 30 to 40 hours  (see Figs. 3 and  4). 

The doubling of numbers  ashore a round  full moon and  the 
negative phase angle difference of the evening curve against the 
morning  curve are our main  arguments  for interpreting the lunar  
rhy thm in numbers  ashore as a moonl ight-avoidance response 
(see Discussion). 

Numbers  of  males, females, and immatures  ashore follow the 
same rhythm, proving that  all animals are influenced in a similar 
manner  by the underlying factor(s) (Fig. 5a, b). Males, a l though 
lowest in numbers ,  show the lunar  cycle quite markedly. It is 
at present unclear if the total  male popula t ion  is smaller than 
the female populat ion,  i.e., if the tertiary sex-ratio is strongly 
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Fig. 7. Attendance of females with young during daytime over the lunar 
cycle. Each point gives the percentage of females present during the 
day at the given phase angle of the lunar cycle. Observations were 
made over about 20 lunar cycles (of 13 females). Thus each point is 
calculated from, on average, 20_+ 1.2 observations 

skewed, or if males tend to forage at sea for longer intervals, 
thus reducing the proportion of males on land. These data were 
obtained during the reproductive period when almost the whole 
coastline is claimed by territorial bulls, and nonterritorial males 
cannot move freely in the colony. They tend to hide in lava tunnels 
and crevices, still further reducing the number of males available 
to be counted. Repeated observations of a few tagged males in 
the main study area show that the lunar rhythm does not influence 
the detectability of  males, i.e., that the rhythm of male numbers 
ashore is not caused by differing hiding behavior. 

The immature category is composed of three age classes ; one-, 
two-, and a few three-year-olds. One-year-old immatures of  the 
Galfipagos fur seal get a large fraction of their alimentation from 
mothers '  milk (unpublished data), rarely foraging for themselves 
at sea; at all times a large majority of  them are found ashore. 
The two- and three-year-olds, normally foraging for themselves, 
leave the colony much more frequently, and it is predominantly 
these that produce the lunar periodicity in immature numbers 
ashore. 

The female curve exhibits the greatest amplitude. This appears 
logical, since no females are excluded from the colony (as the 
nonterritorial males are) and all of them have to forage at sea 
for themselves and many for their pups or immatures as well. 
Females with young return every few days to the colony to nurse 
their young. Consequently, at any given time, a large proportion 
of the total female population is found ashore. 

It is assumed that animals not seen ashore in the study area 
do not go ashore elsewhere. This is almost certainly valid for 
females nursing a pup or an immature. Also the few marked 
males, some subadults, and a few ousted terr i torM males were 
regularly observed to return to the same sites wit]~in the study 
area, which suggests that they behave similarly. Given this assump- 
tion, theoretically the greatly varying numbers ashore can come 
about through one of the following types of  behavior :(1) fur seals 
may stay at sea for longer intervals around new moon than around 
full moon;  (2) they may go out for equal periods but more fre- 
quently around new moon than full moon;  (3) a combination 
of  (1) and (2) might be responsible for the observed rhythmical 
changes in numbers ashore. 

The observed attendance of 12 females who nursed a pup or 
immature agrees best with possibility (3) (Fig. 6). Most females 
were almost continuously present around full moon and tended 
to be absent longest around waning half moon. This latter observa- 
tion corresponds with the minimal numbers of  animals ashore 
at waning half moore in the population censuses (Fig. 5a, b). 
Presumably the fur seals are especially hungry after their long 
stay on land around full moon and tend to make up for their 
weight loss through longer foraging sojourns immediately after- 
ward. Compared with the mothers, one marked female without 
young remained at sea for unusually long periods (Fig. 6, lowest 
line). It is at present unknown if this is typical for females without 
young. 

The summation of about 20 such lunar cycles observed in 
13 different females produces a lunar rhythm of numbers ashore 
roughly similar to the population censuses (compare Figs. 1, 2, 
7). Of the females with young, 95% were seen ashore on days 
around full moon (Fig. 7). Presumably the same is true for the 
full moon nights, but data are insufficient to verify this at present. 

The curve of  pup births in 1979 has one single pronounced 
peak in early October (Fig. 8). This curve, spanning three months, 
may perhaps be modulated with the frequency of the lunar cycle, 
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causing weak local minima at new moon and maxima near full 
moon. Pup births mark periods of sexual activity, since females 
copulate on average 7-10 days postpartum. But the influence of 
the lunar cycle is shown much less clearly in reproductive activity 
than in the number of animals ashore. That immatures show 
the lunar cycle so markedly highlights its independence of repro- 
ductive events. Although our measurements took place during 
breeding time, we believe periodicity in animal numbers ashore 
is unrelated to reproduction and a consequence of the synodic 
lunar cycle. Therefore, it is expected to be a year-round phenome- 
non. 

Discussion 

The census work on the Galfipagos fur seal at Cabo Hammond, 
Fernandina, revealed a lunar influence on the numbers of animals 
ashore. This effect has the following attributes: (1) it can be dem- 
onstrated for all sex and age classes investigated; (2) it shows 
a phase angle difference between morning and evening census 
of 15 ~ 20~ (3) it is assumed to be a year-round phenomenon. 

One plausible hypothesis for this lunar rhythm would appear 
to be that the animals are better able to interact on land in the 
moonlight than during dark nights. If so, during full moon nights 
one would expect more interactions per animal than during new 
moon nights. As even in daylight intensive interactions between 
fur seals are almost always accompanied by loud vocalizations, 
increased activity should be reflected in more calls per animal. 
This does not happen. Call counts (10 rain for every hour of 
the night, see Fig. 9) on one new moon and one full moon night 
showed roughly a doubling of the total number of calls heard 
in all 10-rain intervals taken together during the full moon night 
(571 versus 329 calls in the new moon night), which is what one 
would expect if about twice as many animals were on shore 
on full moon nights. Furthermore, the activity pattern is the same 
on both nights, with minimum activity around midnight when 
the full moon is brightest, and this further weakens the idea of 
any special social activity during the full moon night. Fights be- 
tween males and copulation were observed on both moonless and 
moonlit nights. Moreover, the animals reacted to a moving human 
even on new moon nights, which indicated that they were able 
to see movement under starlight conditions. Thus the hypothesis 
that fur seals stay on land during moonlit nights especially for 
social interactions is rather unlikely. 

We must then turn to the fur seal's life at sea for an explanation 
of the lunar influence on numbers ashore. The census curves 
(Figs. 1, 2) could be explained most easily if we assume that fur 
seals avoid moonlight at sea. Gal~tpagos fur seals normally stay 
on land in the daytime and leave the colony at dusk to feed 
at sea during the night (Trillmich 1979), although the animals 
show clear signs of thermal stress during the day. The shift of 
the moonlit part of the night over the lunar cycle could explain 
the pattern and the phase angle difference of the morning and 
evening curves (Figs. 1 and 2). With a waxing moon the first 
half of the night is moonlit. If the animals were trying to avoid 
moonlight at sea, they should stay on land longer in the evening, 
which would then, given the same foraging time, delay their return 
to the colony next morning. Consequently, evening counts would 
tend to be higher than the corresponding morning counts. This 
should become more and more pronounced as the moon becomes 
brighter and full moon approaches. Around full moon only very 
few animals forage at all (Fig. 7). After full moon the first half 
of the night becomes dark, whereas the second part is brightly 
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Fig. 9. Calling activity in the fur seal colony during one full moon 
and one new moon night. The incoming tide (arrows) leads to a peak 
of calling activity in both nights 

lit. According to the hypothesis of moonlight avoidance at sea, 
animals should leave the colony in the afternoon and return during 
the night, certainly before the morning census. This would account 
for the observed rapid decrease in numbers ashore in the evenings 
after full moon, and the plateau in the morning numbers (Fig. 2). 
So far, these events have been discussed as if the animals went 
out for one night only. As we know from the female attendance 
data, this is certainly not the case; but longer sojourns at sea 
would produce the same rhythm of numbers ashore, if the proba- 
bility of their initiation and completion followed the rules outlined 
above. Thus moonlight avoidance at sea appears to be a plausible 
proximate cause for the observed changes in numbers. 

What ultimate causation might underlie this behavior? Two 
factors, discussed here singly but more likely to occur in combina- 
tion, may account for the observed behavior of the fur seals: 

1) Predator avoidance 

Sharks,which abound in Gal/tpagos waters, attack fur seals. Quite 
regularly adults and immatures were seen with healed shark bite 
marks in their fur or on their flippers, and recently wounded 
animals were also observed occasionally. From telemetry observa- 
tions on free-living Blue sharks (Prionace glauca) it is evident 
that they hunt mainly at night (Siarotta 1974; cited in Nelson 
1974). Myrberg (1969) also noted that the activity of Sharpnose 
sharks (Rhizoprionodon sp.) increased when turbidity increased 
or ambient light levels decreased. A fur seal surfacing and diving 
during his nightly feeding at sea, and perhaps every now and 
then splashing about on the surface and thrashing a wounded 
fish or squid, is open to auditory and perhaps also olfactory 
detection by sharks. Splashing noises have been shown by Myrberg 
(1970, 1971) to be highly effective in attracting sharks from consid- 
erable distances. From observations and experiments on the feed- 
ing behavior of sharks (Hobson 1963; Gilbert 1963) we know 
that sharks direct the final attack on a prey object visually. If 
a fur seal is brightly silhouetted against the moonlit surface of 
the sea, he will be very vulnerable to attacks from below, especially 
as he cannot see down into the depths from which the shark 
attack might come. Fur seals can afford to stay at sea during 
the day because under daylight conditions it is much easier to 
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see a shark approaching from below. Thus predation pressure 
through sharks could explain the avoidance of  moonlight by fur 
seals as a strategy to decrease the risk of fatal attack. 

One might object that on moonlit  nights fur seals should be 
able to feed more efficiently because they should find it easier 
to spot their prey against the moonlit  surface, just as the sharks 
presumably do. Their avoidance of the sea during moonlit  nights 
would then be a cost/benefit compromise between preying and 
being preyed upon : the chance of the fur seal to catch prey prob- 
ably decreases with decreasing light (but see below), but so does 
the chance of being fed upon by sharks. If the fur seal can get 
enough calories during moonless nights, then there would be no 
good reason to go out during dangerous moonlit  nights as well. 
In other words, the enemy dominates the behavior: as ambient 
light levels increase, the cost of  staying at sea increases much 
faster than the benefit. 

Moonlight avoidance has also been found in terrestrial animals, 
which reduce their activities during the moonlit  parts of  the night 
(Anderson 1966 ; Doucet and Bider 1969; Erkert 1974, 1977; Fitz- 
gerald and Bider 1974; Jahoda 1973; Lockard and Owings 1974; 
Morrison 1978; O'Farrell  1974; Pearson 1960b; Stutz 1973; 
Turner 1975; Usman etal .  1980). Some of these authors have 
also interpreted this moonlight avoidance as predator (e.g., owl) 
avoidance. The problem with the predator-avoidance hypothesis 
is that it is very difficult to prove without measurement of mortali- 
ty under moonlight and moonless conditions. 

2) Varying Feeding Efficiency due to Moonlight 
Influences on the Vertical Distribution of Prey 

Galfipagos fur seals feed on squid (Clarke and Trillmich 1980) 
and small fish (Sardinops sp., Scombridae; unpublished data). 
It has been shown that light influences the behavior and vertical 
migration of squid (Young and Mencher 1980; Boden and Kampa 
1967) and that the vertical migration of some demersal plankton 
species is influenced by lunar light (Alldredge and King in press). 
In both cases the animals tend to rise toward the surface with 
a drop in light intensity, and to move downward with increasing 
light intensity. If this were true for the food species of the fur 
seals, they would have to dive deeper on moonli t  than on new 
moon nights to obtain their prey (assuming that their prey species 
follow the vertical migration pattern of  larger zooplankters). Their 
prey may actually stay too deep during the day as well as on 
moonlit  nights to be within diving reach. Kooyman et al. (1976) 
measured a maximum diving depth for the Northern fur seal 
(Callorhinus ursinus) of 190 m, but 91% of all dives (2,957) were 
to depths shallower than 51 m. But squid may be far deeper than 
this (Boden and Kampa 1967). Consequently, the fur seal's feeding 
efficiency might be much higher on dark nights. 

No data on the vertical migration of the food species concerned 
are available, so we cannot even be sure that some food organisms 
do not actually migrate toward the surface on moonlit  nights, 
as suggested by the success of light fishing (Blaxter and Currie 
1967). To test this hypothesis it is planned to measure the rates 
of weight gain of  animals feeding at different times of  the lunar 
month to estimate their feeding efficiency. 

Implications for the Evaluation of Census Data 

It is obvious that such a marked and predictable fluctuation in 
numbers ashore must be taken into account for the evaluation 
of  population census. The best census time is the early morning. 
Population counts not made at full moon will have to be corrected 

by an appropriate factor to allow an estimate of population size 
at full moon. As a first approximation, one may assume that 
near full moon 95% 100% of the animals are ashore (compare 
Fig 7). This would provide a minimum estimate of population 

size. 
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