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1. Introduction

What are pathological modules?

(i) an indecomposable module whose minimal generating sets are large (say of
cardinal greater than or equal to c, where c is any fixed cardinal less than X,,
the first strongly inaccessible cardinal)

(ii) a module whose minimal generating sets are arbitrarily large and which
cannot be written as an infinite direct sum of non-zero submodules

(iii) a module without non-zero indecomposable direct summands

(iv) a module which, for every integer q ^ 2, can be written as the direct sum of
q indecomposable submodules, but not as the direct sum of infinitely many
submodules

(v) indecomposable modules Mo, Mu M2 with

M0@M1^M0® M2 but Mi £ M2

(vi) a module M such that

©„ M ~ ®m M if and only if n = m (mod q),

where q ^ 2 is a fixed integer.
All such pathological modules exist for the free associative algebra k(x,y) in

two (non-commuting) variables over a field k. They therefore occur also for any
^-algebra A for which there exists a full embedding of the module category k(X> yjS)\
into the module category A9)l. Indeed, in order to ensure the existence of pathological
^-modules we need only require that a full subcategory of X9ft is representation
equivalent to k<Xt y^Jl, i.e. that A is "wild", or of wild representation type. At the other
extreme, if A is a finite-dimensional A>algebra which has only finitely many indecom-
posable modules, then every indecomposable module is finite-dimensional and every
module is a direct sum of indecomposable ones. Thus, for such A, there are no
pathological modules at all.

In this paper we consider the remaining case of an algebra of tame representation
type—that is, the case of an algebra A which has no full subcategory representation
equivalent to ft<x> y> 9JZ, but which has infinitely many indecomposable representations.
An example of a tame algebra is k[t], the polynomial ring in one variable over the field k.
For all known finite-dimensional tame algebras there is a full subcategory of
y4-modules which is representation equivalent to kW9Jt. Now the question is: what
kinds of pathological modules does a tame algebra A have? We shall show that,
even for A = k[t], the answer is: all types of pathological modules. From this result
for /c|7]-modules it follows that all known finite-dimensional tame algebras also
have all types of pathological modules.

Received 24 July, 1975.

[J. LONDON MATH. SOC. (2), 14 (1976), 207-215]



208 SHEILA BRENNER AND CLAUS MICHAEL RINGEL

We follow closely Corner's answer [3] to the corresponding question for abelian
groups, that is Z-modules. Thus we consider the case of a principal ideal domain R,
generalising Corner's result {R = Z), and take particular interest in the case
R = k[t]. From now on R will denote a (commutative) principal ideal ring. We
assume further that .R is neither a field nor a complete valuation ring, since the
results are vacuous in these cases.

Corner shows that any ring with suitable additive structure can be realised as the
endomorphism ring of an abelian group. We generalise this to give a realisation of a
prescribed JR-algebra A with suitable R-module structure as the endomorphism ring
of an .R-module. The construction may be regarded as giving a " realisation " in the
category of R-modules of the full subcategory of Jffl with one object AA. It can be
generalised easily to give a " realisation " of a larger category ^ as a category of
R-modules.

What kind of categories # can be realised? We start with a nearly arbitrary
R-algebra A, the main restriction being that A can be centrally generated (see §2)
over R by less than X, elements. Then % is the full subcategory of all ^4-modules
which, when regarded as .R-modules, belong to a suitable class of .R-modules—one
which is " Szekeres incomplete ". (This imposes a further, and last, condition on A.)

Definition. A class 91 of R-modules is called Szekeres incomplete if each R-module
in 91 is torsion-free, and there exists a set & of prime elements of R such that

(i) each .R-module M in 91 is ^-Hausdorff (that means f | p 6 ^ n e M p " M = 0),

(ii) for each p e &>, Qp has transcendence degree at least 1 over Sp(9t), where
Qp is the completion of the quotient field Q of R with respect to the p-adic
topology, and Sp(9t) is the pth Szekeres field of 9t. (As will be seen from the
proof of Theorem 1, we require, in fact, only the existence of three elements
of Qp which are quadratically independent over Sp(9l).)

The Szekeres field Sp(9t) of 91 measures how many elements of Qp are necessary
to generate all modules M of 91 when using (^-independent elements of M. For the
precise definition the reader is referred to §2. We note here two examples: (i) If
91 = SF is the class of all free R-modules, then Sp(91) = Q for all primes p. Thus
& is Szekeres incomplete provided that there exists a prime p for which Q s Qp has
transcendence degree at least 1. (ii) If 91 contains only countably many .R-modules
and each of them is countably generated, then Q £ Sp(91) is a countable field exten-
sion. Hence for R = k[t], both the class #" of all free R-modules and any countable
set 91 of countably generated torsion-free, Hausdorff R-modules are Szekeres incom-
plete classes.

THEOREM 1. Let R be a principal ideal domain, 91 a Szekeres incomplete class of
R-modules, and let A be an R-algebra centrally generated over R by c < K, elements.
Denote by # = #(91, A) the full subcategory of all A-modules AX such that the corres-
ponding R-module RX belongs to 91. Then there exists a full exact embedding T of <&
into R9Jt such that, if Me^ has R-rank m, then T(M) has rank cm.

Here, exact embedding means that sequences of vl-modules in <&, which are exact
in A$)l, are mapped to exact sequences in R$yi. To repeat what we said earlier, this
theorem says that we can realise certain categories # as full subcategories of R$)l.

Note that the requirement that 91 is Szekeres incomplete imposes a condition
on the R-algebras A for which #(91, A) is non-trivial.
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Special cases of Theorem 1 have been obtained by other authors. They include

(i) (Corner [3]). A is torsion-free, reduced and countably generated as an
.R-module and Sft is a class of countably generated /^-modules.

(ii) (Warfield [12]). R is a discrete valuation ring whose completion R has
uncountable transcendence degree over R, A is countably generated, torsion-
free and reduced as an .R-module and 91 is a class of countably generated
.R-modules.

Theorem 1 will be deduced from the special case A = R(x, y}, the free
.R-algebra on two generators x and y, by using the following result:

THEOREM 2. Let B be a commutative ring and A a B-algebra centrally generated
over B by c < N, elements. Then there exists a full exact embedding F of the category
Ay)l into the category B^Xt j,>9ft such that, for each M in A^)l, the underlying B-module
structure of F(AM) is the direct sum of c+2 copies of BM.

This theorem is an easy corollary of Corner's five submodule theorem [6]. A proof
of it, applicable to the case when B is not necessarily commutative, will be sketched
in §4.

2. Preliminaries

(a) Topological ideas.

Let R be a principal ideal domain and p be a prime in R. We denote by Rp the
ring of fractions with denominators prime to p and by Rp its completion in the p-adic
topology. We write Qp for the ring of fractions of Rp, and Q for the ring of fractions
ofi?.

The natural topology on R is the topology in which {qR : 0 ^ q e R} is a basis of
neighbourhoods of zero. We write R for the completion of R in this topology. It is
possible to represent A in the form A = FJ &p> where the product is taken over all
primes p in R. p

If M is a torsion-free .R-module, Hausdorff in (the topology induced by) the natural
topology on R (so that M has no divisible submodules, i.e. M is reduced), then the
completion of M in this topology is denoted ifr and is naturally an it-module.

For any .R-module M, let Jlp denote the submodule of elements of infinites-height
in Rp ® M. Then Mp = Rp® M\Mp is reduced, and we denote by np the natural
projection. We write ]Qlp for the p-adic completion of Mp.

If M is Hausdorff in the natural topology, then JV? can be represented in the form
$ = I I ffip ai*d the map M -> $, m\-> (np m) is an injection.

(b) Purity.

Let M be a torsion-free Hausdorff .R-module. The sub-module N of M is said to
be pure in M if qM r\N = qN for all qeR.

If N is pure in M then the natural topology on N coincides with the topology
induced by the natural topology on M, i.e. JV is a topological submodule.

For any M, M is pure in JVfr and, if JV is a pure submodule of iW" and M £ N,
then iV = fit.

The corresponding concept for i?p-modules is called p-purity.
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(c) The Szekeres field. .

Let 9t be a category of torsion-free R modules and p be a prime in R. For each
M e 9 t let {x,M},epf (where iAf is an index set) be a set of generators for Mp as an
J?p-module. Choose JM £ /M so that {XjM}JeJM is maximal with respect to indepen-
dence (in j#p) over Rp. Then in Q 0 filp we have, for all i G I M ,

xiM = Z tty */f> where 7r,v G <2P and almost all nu = 0.

Let Sp(9l) be the field generated over Q by Rp and {TTIV : i eIM, j e JM, M e 91}. Then
Sp(9t) depends only on 9t and is called the Szekeres field [10] of 9t for the prime p.

(d) Centralising generators.

Definition. Let B be a ring. The ring A is said to be (left) centrally generated over B
by a subset F £ .4 if

(i) there is a ring homomorphism B -* A, so that A can be regarded as a left
(or right) B-module, and

(ii) {9 G End BA : Oy = yO for all y G F} = ARt the ring of right translations of A
by elements of itself (so that AR is isomorphic to A). The subset F is called
a set of (left) centralising generators.

Notice that, even when B is commutative, a set F of centralising generators of A
is not necessarily a set of generators in the usual sense (though the converse is true).
For example, if k is a field, the field k(t) of rational functions of t is centrally generated
over k by {t}. This concept turns out to be exactly what is required in the following
sections.

3. Proof of Theorem 1

It follows from Theorem 2 that it is sufficient to consider the case c = 2. (The last
part of the statement of Theorem 1 in the case when m and c are both finite is
obtained by an easy modification of the proof.) The argument follows very closely
Orsatti's proof of Corner's theorem [8].

Throughout this section we use the notation introduced in §2.
We prove first the local case of Theorem 1 (for the case c = 2) in the form

PROPOSITION 1. Let 91p be a Szekeres incomplete class of Rp-modules and Ap be an
Rp-algebra centrally generated over Rp by { p̂, vp}. Let # p be the full subcategory of
Ap-modules which, as R-modules, belong to 9tp. Then there exists a full exact embedding
Tp of<£p into RJSH such that, ifMe^p has Rp-rank m, then Tp(M) has rank 2m.

Proof. Since 9tp is Szekeres incomplete, Qp has transcendence degree at least
1 over Sp = SpiVlp). Hence, there exist elements a[p)eRp, (i = 1, 2, 3), which are
quadratically independent over Sp, i.e. if

X+ £ Ai«/P)+ Z XiJa[p)alP) = 0

with X, Xh Xu (1 < j < i < 3) elements of Spt then

A = A; = Aij. = 0 (1 < j < i < 3 ) .
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Write at
(p) = 1^ , a2

(p) = \ip, a3
(p) = vp and, for each M e # p , define

/ 3 \

M' = Z «/ p ) a / p ) m : / « G M .

Then M' is an i?p-submodule of the p-adic completion M of M. Let Tp(M) be the
p-pure submodule of M generated by M and M'.

It is easily verified that Tp : ^p -* R 9JZ has the required properties.
We now return to the global case. Since A and Metf are /^-modules, we may

define M, Ap, Mp, Mp and np as in §2 for any prime peR. If Rp ® A is divisible, i.e.
if p <£&, then ^4p = 0 and Mp = 0. Thus, we may write M = Yl Mp.

For each p e ^ 1 we write a/p ) = l^p, a2
(p) = 7rpjU, a3

(p) = 7rpv, where jti and v are
p p p

centralising generators of A over R, and choose a^p)ekp, (i = 1, 2, 3), quadratically
independent over Sp.

For MeW, define

: m

Then M' is an K-submodule of A .̂ Let T(M) be the pure submodule of J# generated
by M and M'. Then it is easily verified that T : # -»• ̂ 9J? is a full exact embedding.

4. Proo/ o/ Theorem 2

Let 5 be a ring. Denote by A6(B) the ring generated over B by 11 elements
^OOJ eoi> eii (1 ^ i < 5) which commute with elements of B and satisfy the matrix
identities euekl = 5jken. Then the category As(B)^ °f A6(B)-modules is naturally
equivalent to the category of J5-module diagrams over the diagram-scheme:

-0

1 2 3 4 5

The category A of 5-modules with five distinguished submodules is the subcategory
of diagrams in which all the diagram morphisms are injective. We may thus regard A
as embedded (fully and exactly) in A6(B)^-

The proof of Theorem 2 consists in showing the existence of full, exact embeddings
of j$fl into A6(B)^ (Proposition 2) and of A6(B)^ into B<Xt J,>50?, which follows from
Lemma 1.

LEMMA 1. Let A be a ring centrally generated over B by a finite set of n elements.
Then there is full exact embedding F of the category ŜDJ of A-modules into the category
ofB(x, y}-modules such that, if Me A$)l is generated over B by m elements, then F(M)
is generated over B by (n + 2)m elements. (If B is an integral domain and the rank of
BM is m', the rank of BF(M) is (n+2)m').



212 SHEILA BRENNER AND CLAUS MICHAEL RINGEL

This is proved in [2] for the case when B is a field. As in that case the proof is
straightforward once one has constructed F(M) as the direct sum of (« +2) copies
of M with x and y acting, respectively, as

(0(0
0

0 0 0
0 0 0

0

and

1
0
0
1
u->

0 .
0 .
0 .
I

. . 0

. . 0

. . 0

. . 0

0
0
0
0

0
0
0
0

0 0 0 fin 0

where filt..., fin are the endomorphisms of M induced by the centralising generators of
A, and 1 = \M.

This establishes Theorem 2 for the case when c is finite. The case of c infinite
follows immediately from this and

PROPOSITION 2. Let B be a ring, c < X, an infinite cardinal and A a ring centrally
generated over B by a set F of generators with |F| ^ c. Then there exists a free abelian
group V of rank c and a full exact embedding L : X9ft -> A6(B$N such that, ifMeAWl,
then

This is essentially Theorem 2.3 of Corner's paper [6]. The proof sketched in the
remainder of this section derives entirely from that paper. We quote special cases of
results from it, sometimes with minor modifications, and sketch proofs only when a
construction used is helpful in clarifying our argument.

LEMMA 2. Let B, c, A, T be as in Proposition 2, and T be a free abelian group of
rank c. Then there exists a free direct summand T' of T and a functor P : A^)l -» BSDt
which assigns to Me flR a B-submodule P(M) £ M ® T such that

P(M) 0 (M ® T) = M (g) T in B9Jl
and, for M,Ne AWl

Horn,, (M, N) = {(f>e HomB (M, N) : (</> <g> 1T) P(M) s P(N)}.

(This is a slight modification of Theorem 4.2 of [6]).

Proof. Since c is infinite, c = 2c and, if/ is an index set with \1\ = c, we can find
free generators sh tt (leJ) of T. Let T' be the subgroup generated by {tt: i e / } .
Since |F| < c we can find a subset J £ / with \J\ = \T\ and use J to index elements of
T so that T = {jj: je J}. We define also yt = 1 for ieI\J.

For any M e AWi we define P(M) to be the additive subgroup of M ® T generated
by

{x ® st + ytx ® tt: x eM,ie I}.

It is easy to verify that P(M) is a B-submodule of M ® T with the required properties.

LEMMA 3 [6; Lemma 3.1]. Let S be a free abelian group of rank 3. Then there
exists a set Sf of four direct summands ofS such that for any abelian group X,

Horn ((S; ̂ ) , (X ® S; X ® Sf)) = X ® ls.
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(Here, and elsewhere, if % = {(7f: 1 ^ i ^ n} is a set of submodules of a module
U and Y = {Vi: 1 < i < n) is a set of submodules of K, then

X ® ^ = {X ® £/,-: 1 ^ i ^ n}
and

Horn (([/; ^ ) , (K; ̂ ) ) = {<£ e Horn ((/, K): 017, <= y., l ^ / ^ „}.)

LEMMA 4 [6; Theorem 6.3]. Let S be a free abelian group of rank 3 and c < K,
a/2 infinite cardinal Then there exists a free abelian group F of rank c and free direct
summands U and U' of F ® S with U ^U' and U'/U free of rank c, such that for
every abelian group X,

{0eHom(F, X ® F): (0 ® 15)U c X ® U'} = X ® l f .

We now proceed to the proof of Proposition 2. Choose S, F, U, U' as in Lemma 4.
Let T be a direct complement of U in U' and use this group to define the functor P
as in Lemma 2. Define also

W(M) = (M®U)@ P(M) c M ® [/'.

Then, exactly as in the proof of Theorem 6.4 of [6], we obtain, for M,Ne A^i,

Honu (M, N) ® l f = {4> e HomB (M ® F,N ® F) : ($ ® ls)W(M) £

Now write F = F ® S and let ^ be as in Lemma 3 so that, if M e A

is a set of five submodules of M ® F. It then follows, as in the proof of Theorem 2.4
of [6] that, if M, NeJJl, then

HomB (M ® V; ir(M)\ (N ® V; if(N)) = Hom^ (M, N) ® lv.

To complete the proof we define, for each MeA^SH, L(M) to be the A6(B) module
identified with the five submodule system (M ® V ; W{M)).

5. Construction of pathological modules

Let R be a principal ideal domain which is not a field nor a complete valuation
ring, 4̂ an .R-algebra centrally generated over R by c < K, elements and such that
tft = {RA} is a Szekeres incomplete class. Then Theorem I asserts that there is an
K-module T(A) with rank T(A) - crank RA such that

so that T(A) has the same decomposition properties as AA.
The problem of constructing a pathological .R-module is thus reduced to the

problem of finding a suitable .R-algebra A. Modules with pathologies (i) and
(iii)-(vi) of §l may be constructed in this manner.

For (i) we choose A = R and regard it as an algebra with c generators. Suitable
algebras for the cases (iii)-(vi) have been constructed by Corner [4, 5], Corner and
Crawley [7] and Osofsky [9]. (The algebras required for (iii)-(v) are collected together
in [1], where it is shown that the constructions can be made over almost any ring
without proper idempotents.)
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A similar method is used by Warfield [12] to construct other pathologies.
The proof of (ii) for the case of a commutative Noetherian ring R which is not

an Artinian principal ideal ring is given by Warfield [11]. For R = k[t], a module
with the required property is n^[l/]]> where I is an arbitrary index set.

Another application of Theorem 1 to the construction of modules with the
pathology (i) is the following:

Let D be a division ring containing k in its centre and centrally generated over k by
less than X, elements. Then there exists an indecomposable k[t]-module with local
endomorphism ring E satisfying £/rad E = D.

Proof. Let A and B be the localisations at <f> of D[t] and k[t], respectively.
Then BA is a free 5-module and so {^A} is Szekeres incomplete. Thus there is a
k[t]-module with endomorphism ring A.

This result contrasts with the following well-known lemma which asserts that
there are severe restrictions on the possible local endomorphism rings of &[/]-modules
if we require also a nil radical.

LEMMA 5. Let R be a principal ideal ring and X an R-module with End^X local
with nil radical. Then either End^X is R/pn R, for some prime p of R and some integer
77, or it is the quotient field of R.

Proof. First suppose there is a prime p e R such that the corresponding multi-
plication p- belongs to the radical of End^X. Then p- is nilpotent and so pmX = 0
for some integer m. Thus X is a torsion module of finite length and, since X must be
indecomposable, we have RX = R/p" R for some n.

If there is no prime p for which p- belongs to the radical of EndRX, then all
multiplications are isomorphisms and X is a vector space over the quotient field
Q of R. But then dimQX = 1, since otherwise EndKX = EndGX is not local.
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