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ABSTRACT 

This paper gives a complete classification of real linear transformations between 

two complex vector spaces in terms of matrices. 

INTRODUCTION 

In this paper, we shall consider the set of all real 2m X2n matrices 
(m,n=l, 2, . ..). A real 2m X2n matrix will be called form&y complex if 
every (k, I)-block (1 < k < m, 1 Q 1 < n) of its partition into 2 X 2 blocks has 
the form 

Two real 2m X2n matrices A, A’ are said to be C-similar if there exist 
formally complex regular square (2mX2m and 2n X2n) matrices P, Q such 
that 

PAQ= A’. 

The following theorem provides a complete classification of the C-similarity 
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classes; the symbols E, (a E R), E, and Eab (a, b E R) denote the 2 x 2 
matrices 

respectively. 
By the direct product of two matrices A and B, we shall understaud the 

matrix 

A 0 
( 1 0 B’ 

If B is a 2m’ X 2n’ zero matrix (allowing m’ = 0 or n’ = 0), we call the product 
a zero-augmentation of A. A 2m X 2n matrix is said to be C-indecomposable 
if it is not C-similar to a direct product of two matrices with even number of 
rows and columns. 

THEOREM . Every (non-zero) real 2m X2n matrix is C-similar to a 
zero-augmented product of matrices of the following types: 

(i) 2(pi-l)X2p matrices (p=1,2, . ..) 

Em 
Eo EC9 0 

Eo EC0 

(ii) the corresponding transposed 2p X 2( p + 1) m&rices ( p = 1,2, . . . ) 

Em Eo 
Em Eo 0 

E, *. 

0 . &I 

EC.2 Eo 
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(iii) square 2p X 2p matrices with 1~1 < 1 ( p = 1,2, . . .) 

I ELI EC3 
47 Ecu 0 

109 

and 
(iv) square 4p X 4p matrices with either b > 0 or b = 0 and a < 0 ( p = 

1,2, . ..) 

i 
E, Eab 0 E, 
E-, El 0 0 

El 4b 0 
E -1 El 0 

0 

EGO 
0 

El Eah 
E-1 El 

0 

0 

0 

El 
E-1 

% 
0 

Eab 
El 

These matrices are C-indecomposable and, in the decomposition 
2m X 2n matrix, they are determined (up to their oro!.er) uniquely. 

of a real 

REMARK. Note that, in contrast to the fact that there are so many 

different C-similarity classes of indecomposable matrices, there is only a 

single C-similarity class of formally complex indecomposable matrices, 

namely that represented by E,. 

This result provides a typical illustration of some new general methods 

which can be used in problems in the classification of linear transformations 

of vector spaces. These methods were initiated by I. M. Gelfand and V. A. 

Ponomarev [5], who present in the same paper a conceptual proof of the 

Kronecker theorem on the classification of pairs of matrices [6]. Later, the 

functorial approach was systematically explored by I. N. Bernstein, I. M. 
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Gelfand and V. A. Ponomarev in [2]. Our proofs are based on results and 
methods developed in [4] and [7]. 

Throughout the paper, I? and C stand for the fields of real and complex 
numbers, respectively. 

1. PRELIMINARY RESULTS 

Let us point out again that we always consider real matrices with even 
number of rows and columns. Each such 2mX 2n matrix A describes an 
R-linear transformation q of an n-dimensional C-vector space W with 
respect to the bases {vl,vri,vZ,vsi,. . .,v,,, v,i} and {wi,wii, wz,wzi, 

‘**,wmr wmi}, where {vr,vs,. . . ,v,,} and {wr, w,, . . . , w,_} are C-bases of V 
and W, respectively. Moreover, a 2m X 2n matrix A’ is C-similar to A if and 
only if it describes ‘p with respect to some other C-bases of V and W. In this 
way, the classification of C-similarity classes of matrices is interpreted as the 
classification of real linear transformations between two complex vector 
spaces. 

In this section, we collect some information about the C-similarity classes 
of C-indecomposable matrices which will be used in the next section to 
prove the classification theorem. The proof of these statements will be given 
in Sec. 3 using a natural translation of our problem into the more general 
language of the representations of graphs. In particular, it will become 
apparent that the statements of this section which may seem to be rather 
technical become, in the frame-work of the representation theory, concept- 
ual. 

In what follows, R = C[z; -1 will always denote the skew polynomial 
ring over C in one variable .z with respect to complex conjugation: thus, 
elements of R are (formal) sums ~~=ezicj (cj EC) with componentwise 
addition and distributive multiplication subject to the rule cz = Zc. 

The first statement deals with non-square C-indecomposable matrices. 

LEMMA A. Up to C-similarity, there are precisely one C-indecompos- 
able 2( p + 1) X 2p and one C-indecomposable 2p X 2( p + 1) matrix for each 
p=1,2 , . . . . All other C-indecomposable matrices are square matrices. 

The following assertion furnishes a reduction of square C-indecompos- 
able matrices to C-irreducible ones. Here, a non-zero square 2m X 2n matrix 
is called C-irreducible if it is not C-similar to a matrix of the form 

A B 
( 1 0 c’ 

where A is a square 2n X 2n matrix. 
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LEMMA B. (a) Every C-indecomposable square matrix is C-similar to a 

matrix of the form 

S T 
S T 0 

. . 
. . 

0 ’ S’ T 
S 

(*) 

where S is a C-irreducible square matrix and the matrix 

S T 
( 1 0 s (**) 

is C-indecomposable. Conversely, if S is a C-irreducible matrix and (**) is 

C-indecomposable, then also (*) is C-indecomposable. 

(b) If (**) is not C-indecomposable, then there are formally complex 

matrices A and B such that T= -(AS + SB) and therefore 

where I denotes the (formally complex) identity matrix. Moreover, we may 

assume that one diagonal entry in B, in a prescribed position, is zero. Also, if 

S and S’ are C-irreducible matrices, then two C-indecomposable matrices 

S T S’ T’ 
S T 0 S’ T’ 0 

. . . . 
. . and . . 

0 * S’ T 0 * S” T’ 

i S, S’, 

are C-similar if and only if S and S’ are C-similar and the matrices have the 
same size. 

Now, we formulate a description of C-irreducible matrices in terms of 

simple R-modules. 

LEMMA C. Let MR be a simple R-module with a C-basis 
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{ IQ, u2, . . , ud}, and let qz = IX:= luk(akl + ibkl) with a,,, bkI E R. Then 

cll+El Cl2 *** Cl, 
c 21 Cz2+El -** c,, 

C dl C d2 -‘* cdd+4 

is a C-irreducible matrix; two such matrices derived from the R-modules MR 
and MA, respectively, are C-similar if and only if MR and M; are isomor- 
phic. In this way, we obtain representatives of all C-similarity classes of 
irreducible square matrices with the exception of one class represented by 
the matrix 

E-1=( :, _;)a 

We conclude this introductory section with a description of the simple 
R-modules. 

LEMMA D. The R-modules 

R/(z- r)R withreal r>O 

and 

R/(2- c)R with complex c = a + ib, 

where b > 0 or b = 0 and a < 0, are simple and pairwise non-isomorphic. Any 
simple R-module is isomorphic to one of them. 

2. PROOF OF THE THEOREM 

Here, we establish our Theorem assuming Lemmas A, B, C and D. 

PROPOSITION 1. With respect to C-similarity, the matrices of the type 
(i) and (ii) &scribed in the Theorem are indecomposable. 
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Proof. We shall prove that the matrices A, ( p = 1,2, . . . ) of the type (i) 
described in the Theorem are indecomposable; the other part of Proposition 
1 follows by duality. 

Now, 4 describes an R-linear transformation cp of a p-dimensional 
C-vector space V into a ( p + 1)-dimensional C-vector space W with respect 
to bases (vl,vii,vz,vzi,. . . , v,,v,i} and (~~,~~~,~~,~z~,...,~p+l, ~~+~i}, 
where {vr, va, . . . , vp} and {wi, w2,. . . , wp+ i} are C-bases of V and W, respec- 
tively. 

In order to prove indecomposability of A,, we have to show that there is 
no non-trivial decomposition of the C-vector spaces V, = Vb@ V& and 
WC = W&CB W{ such that cp decomposes into cp’ : V’-+ W’ and 9” : V”+ W”. 
This is trivial for p = 1; for, without loss of generality, V’ = V and the 
C-closure q( V) of v(V) [ i.e., the least C-vector subspace of W containing 
q(V)] equals W. 

We proceed by induction; let p > 1. The C-interior W”= ‘p( V) of cp( V) 

[i.e., the largest C-vector subspace contained in cp( V)] is the ( p - l)- 

dimensional C-subspace generated by (wa,. . . , wp). The R-subspace of V 
generated by (vl,vz,vzi,. . . ,~~_~,v~_~i,v~i) [if p =2, by (vr,vai)] is cp-‘( W’). 
Thus V” = rp - ’ ( W” ) is the ( p - 2)-dimensional C-subspace generated by 

(vs, * * * , vp_ J (if p = 2, by the empty sequence). The R-linear transformation 
cp” from V” to W” induced by ‘p is C-indecomposable. For p=2 this is so 
because of the C-dimensions of V” and W”. For p >2 it follows by induction 
because the matrix of the transformation relative to the corresponding 
R-bases is Ap_s. Since q(V)=q(V’)+p(V”), QZJ(V’)~ W’ and q(V”)c W”, 
we have cp ( V) = [ rp ( V) n W’] CB [ rp ( V) n W “1. This implies readily that W” = 
(Won W’)@(WOn W”) (see [3], p. 312). Since W’n W”=O and q is 
injective, we get cp-l(Wo)=[g,-‘(Wo)n V’]@[cp-‘(W”)n V”]. As above, 
this implies V ’ = Van V’)@( Van V”). Since the decomposition of cp” must ( 
be trivial, we may assume that (say) W”= Won W’, W” C W’. Since cp is 

injective, q-l(Wo)CV’. Consequently V=rp-l(Wo)cV’, W=q(V)cW’, 
i.e., V- V’, W= W’. n 

PROPOSITION 2. Up to C-similarity, 

ELI with Jai <1 

and 

(EiTl 2) witheither b>O or b=Oanda<O 

are precisely all the square C-irreducible matrices. 
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Pmof The proof follows immediately from Lemmas D and C. First, let 
{u}, where u=l+(z-r)R, be a C-basis of R/(2-r)R with a real T>O. 
Then uz = UT, and hence 

1+r 0 
0 l--T 

is C-irreducible; this matrix can be normalized to 

( ; (&rr) ’ 1 

i.e. to E, with - 1 < a < 1. Since E_ 1 is C-irreducible 
the first part of Proposition 2. 

by Lemma C, we get 

Second, let {ur, us}, where ur = 1 + (z2 - c)R and u2 = z + (z2 - c)R, be a 
C-basis of R/(z2 - c)R, c = a + ib. Then urz= u2 and u2z=u1c. Hence, 

according to Lemma C, 
(:r :$ 

with the appropriate conditions, is 

C-irreducible. 
Finally, Lemma C asserts that, in this way, we obtain all C-irreducible 

matrices. n 

PROPOSITION 3. The matrices 

A= with Ial < 1 

and 

E, Eab 0 Em 
E E, 0 0 

B= -I 

0 0 E, % 

0 0 E-, E,, 

with either b > 0 

are C-indecomposable. 

Proof. The matrix A defines an R-linear mapping from V=v,C+v2C to 
another two-dimensional C-vector space We; the elements of V will be 
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written as column vectors 
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with respect to the R-basis {vl,vii,va,vzi} of V. Observe that multiplication 
by the complex number i yields r .i = ( - rs, ri, - r4, ra)r. In view of Lemma B, 
it is sufficient to show that there is no vector x= (x1,x,, 1,O)r of V such that 
both Ax = (xi, ax,, 1,O)r and A (x*i) = ( - x2, uxi + IO, a)’ belong to a one- 
dimensional C-subspace of WC. Assume that A (x *i) = A(x) * (r + si) for some 
real r and s. Then ( - x2, ax, + l,O, u) = (qr - my, uxzr + xls, r,s). Conse- 
quently, r = 0, s = a, and we get a contradiction. 

In the case of the matrix B we proceed similarly. Again, we consider the 
matrix as an R-linear mapping from V, to W,. Obviously, B is C-indecom- 
posable if and only if the matrix 

C= 

0 oc do 00 0 

0 ld-co 00 q 

1 01 00 00 0 
0 -10 00 00 0 

0 oc d 
0 1 d -c 

0 1 01 0 
0 -10 0 i 

, 
1 

1 =- 
4 

0 -1 0 
1 0 1 

2 0 
2 

1 0 
1 

0 

0 

-1 0 
0 -1 

0 
2 

xB 

2 

0 

1 0 
0 1 
1 0 

1 

J 

I ’ 

I 
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with c = (a- 1)/4, d = b/4, q = l/4, is C-indecomposable. Also, since 

is C-irreducible, the matrix S=( :- :) (which occurs in 

C) is C-irreducible. According to Lemma B, if Cii C-dkomposable, then 

with formally complex 4 X 4 matrices D and D’. Also, by Lemma B, we can 
assume that the third diagonal element of D’ is zero. Let 

and 

x = (X1’ x2, X3,X4> l,o,o,O)r=(; ~‘)(0,0,0,0,1,0,0,0)’ 

y’( Y1,Y2,0,y4,0,0,1,0)T= (O~O~0,0~O~Q190)T. 

Then Cx, C (x-i), Cy and C (y-i) belong to a two-dimensional C-subspace Wo 
of We. However, the following calculation shows that this is impossible. 
Indeed, 

Cx = ( cx3 + dx,, x2 + dx3 - cx4, xl + x3, - x2, 0, 0, 1,O) T, 

C(x+)=(-cx4+dz3,x,-dx,-cx,, -x2-x4, -x,,o,l,o, -l)T, 

Cy=(dy,,y,-cy,,y,, -yz,wtLO)T 

and 

C(y.i)=(-cy,,y,-dy,+q,-y,-y,,-yl,d,-c,O,O). 

Now, W& is generated by Cx and C(x*i). Hence, comparing the last four 
coordinates, we get 

and 

Cy=[Cx](c+di+l)+[C(x.i)](d-ci) 

C(y+)=[Cx](d-ci)+[C(x+)](-c-di). 
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Thus, the first, third and fourth coordinates of Cy yield 

dy, = cxl - dx, + cx3 + dx*, 

y1 = x1 + (c + 1)x3 - dxq, 

- yz= -xz+dx,+cxd, 

and the second, third and fourth coordinates of C(y *i) yield 

yl-dyr+q= -ccx,+d+ 

- yz- y4=dx3+cxq, 

- yl= -cxS+dx,. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Taking the linear combination 

(l)-2c(2)-2d(3)-(4)+2d(5)-(2c+1)(6), 

we get - q = 0, a contradiction. 

The proof is completed. n 

AS a consequence of the results in this section we have established the 
Theorem. Indeed, given a real 2m x 2n matrix, it is obviously C-similar to a 
zero-augmented product of C-indecomposable matrices. By Lemma A in 
combination with Proposition 1, every C-indecomposable matrix is of type (i) 
or (ii), or is a square matrix. The C-indecomposable square matrices are, by 
Lemma B, extensions of C-irreducible ones. The latter are described in 
Proposition 2. Thus, taking into account Proposition 3, the types (iii) and (iv) 
exhaust all possible C-indecomposable square matrices. At the same time, 
the argument shows that all these types are C-indecomposable and pairwise 
non-C-similar. Also, it follows that the decomposition is unique. 

3. TRANSLATION OF THE PROBLEM 

Our problem asks for a classification of all R-linear transformations 1c/ 
between two C-vector spaces Vc and We of dimensions n and m, respec- 
tively, i.e., for a classification of all R-linear transformations q between the 
R-vector spaces Vc@cCn= Vn and Horn&Cc, W,)e W, of dimensions 2n 
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and 2m, respectively, subject to the following definition of equivalence: 
Two R-linear transformations $: V,~&,+Hom,(,&, W,) and 4’: V& 

G3&,+Homc(nCc, Wb) are similar if there exist regular C-linear transfor- 
mations 

q:V&V, and p: W,+W,& 

such that Hom(&, p)\c/( q @ 1) = $‘, 
Using the natural isomorphism 

Horn,,, Vc@&, Hom,(&, Wc))=Homc( Vc@&G&, WC ), 

we see that our problem asks for a classification of all C-linear transforma- 
tions 9 between the C-vector spaces VcG3&,G3&, and W, subject to the 
following condition: cp and cp’ are equivalent if there exist isomorphism 
n : V,+ V& and 5 : W,-+ WL such that 

commutes (in comparison with the earlier notation, E = p, 17 = q - ‘). For later 
use, we remark that it is easy to verify that the elements 

s=l@l-i@i and t=l@l+i@i 

form a basis of the left C-vector space &,@nC, and that 

si=l@i+i@l=is and ti=l@i-iii=-it. 

Thus 

where the first summand is generated by s and the second one by t, and the 
right action of C on the second summand is given by the conjugation -; thus 
(as+bt)c= acs + Et for all a, b, c EC. 

In this way, we have translated our problem to the classification of all 
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indecomposable representations of the extended Dynkin diagram 

(232) 
A,, = o----o 

with the bimodule ,$a@&,, i.e., of the oriented species 

The general theory of representations of extended Dynkin diagrams can 
be found in [4]. Let us summarize the results of [4] required in the proof of 
Lemmas A and B. Denote by l?. the (Abelian) category of all its representa- 
tions, i.e. of all the triples (V, W, cp) consisting of C-vector spaces V, and W, 
and a C-linear transformation 

together with the maps 

where 17: V,+ V& and <: We+ Wb are C-linear transformations such that 
&I = cp’( 77 (8, 1). For every X = ( V, W, rp) E c define the dimension type dimX 
by dim X = (dim V,., dim W,). 

Now, denoting by P,, P,, and I, and I, the indecomposable projective 
and indecomposable injective representations in C, there exist endofunctors 
C + and C - of C (the so-called Coxeter functon) such that 

C-‘Pi and C+‘Ii for r=O,1,2 ,... andj=1,2 

are indecomposable representations in C (the “discrete” ones). Moreover, for 
an indecomposable X E C such that C -X# 0, or C +X# 0, we have 

dim(C-X)=c-l(dimX), or dim(C+X)=c(dimX), 

respectively, where c is the Coxeter transformation on R2 defined by 
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for all (v,w) E R2. The dimension types of P,,P,,I,,I, are respectively (1,2), 

(0, l), (l,O), (2, l), and thus there is a bijection between discrete indecompos- 
able representation in I?. and the “positive roots” of ?i,,, i.e., the elements 

c_9(1,2)=(2q+1,29+2), 

c-9(0,1)=(29,29+1) 

c9(1,0)=(2q+l,29), 

with q=o,1,2 ,..., in R2. These elements are just all the pairs ( p + 1,~) and 
(p,p+l) withp=O,1,2 ,.... Of course, the roots (1,O) and (0,l) correspond 
to the indecomposable representations for which the map cp is zero (and 
which, in the matrix form, yield the zero-augmentation). Furthermore, all 
other (“homogeneous”) indecomposable representations X satisfy dim X = 
(p,p) for some p=1,2 ,... . 

This proves the following lemma which, in turn, implies Lemma A. 

LEMMA A*. For each p=l,2,..., there is just a indecomposable 
representation in C whose dimension type is ( p + 1,~) and just one whose 
dimension type i.s ( p, p + 1). The dimension type of any other indecompos- 
able representation in C is ( p,p), p = 1,2, . . . 

Denote by X the subcategory of C of all homogeneous representations. 
This subcategory is Abelian [4], and Theorem 1 of [7] implies 

LEMMA B*. X is a product of uniserial subcategories of global dimen- 
sion one, each of them containing only one simple representation. 

Note that Lemma B is precisely a reformulation of Lemma B* avoiding 
any homological notion. The rather technical statements there just describe 
some basic facts about extensions of simple representations in X. For 
example, if we have an exact sequence 

o-+x 4 Y 5 x+0, 

where X and Z are simple objects of x, then either Y is indecomposable 
(and then X and Z are isomorphic, and Y is uniquely determined), or there 



NORMAL FORMS OF REAL MATRICES 

exists an isomorphism q : Y+X @Z such 

0-x -1! Y 

II & 

l 
+ z-to 

II ’ 
7r 

0+x 1: X@Z + z-+0. 

that the diagram 

121 

where Y is the canonical inclusion and 7~ is the canonic projection, com- 
mutes. This proves the first assertion of Lemma B(b) with 

x=z=s, y= s 1’ ( 1 0 s and v=((i ;“)(i f)). 

Also, in this case, given an isomorphism 1: Z-+X, we may replace cp by the 
map QI + vie, which yields the second assertion of Lemma B(b).The assertion 
of Lemma B* follows immediately from the fact that, for X, YE x, 

dim, Hom(X, Y) = dimn Ext’(X, Y). 

The description of simple representations in X is given in [7] in terms of the 
category 9& of all R-modules of finite dimension over C (recall that 
R = C[z, -1): 

LEMMA C*. The functor T: 9RR +X given by 

T(h ) =(%~cPT$ where cp(m@s)=m and cp(m@t)=mz, 

defines a full exact embedding. The categoy X is the direct product of 
T (ORB) and a uniserial category of global dimension one with one simple 
object S: 

S=(C,GP), where tp(c@s)=O and cp(c@t)=C. 

Now, Lemma C follows from Lemma C*, because an easy calculation 
shows that the matrix representation given there is just the evaluation of the 
mapping 
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which corresponds to cp : MC@&,@&,-+ M, of T(GXL,) with respect to 
the basis {u,@l,ur@ii,u,~l,u,@i ,..., ud@l,ud@i}, where {u,,us ,..., ud} 
is a C-basis of M. For, if uIz = EC”,= ruk( a,, + ibkl), then 

~(Ul~l~l)=l[~(Ul~s)+~(U~~~)]=~ U,+ 5 Uk(ak,+ibkl) 

[ k=l 

and 

cp(u,G3iil)= -p,(u@iii)i =$+l@3)-+l&3’t)]i 

i 

d 

2 Uk(akl+ibkl) i= f 
I i 

d 

=-- Ur- U&+ 2 Uk(bkl-iakl) . 
k=l k-l 1 

Thus, denoting by {u;, u;,ub, ul, . . . , u&,uI;} the basis of Hom,(,C,,Mc) 
given by u;(l)=u,1/2 and u[(1)=uki/2, we have 

and 

Ir,(U,@i)=U;+ $ (U;bkr-U;akr). 
k=l 

Also, the matrix representation corresponding to S is given, in a similar 
way, by 

l+b(uc3l)=u’ and $(u@i)= -u”. 

Finally, it remains to verify Lemma D. It is a routine matter to show that 
x - T, with an arbitrary non-negative real T, and z2 - (a + ib), with either 
b > 0 or b = 0 and a < 0, are irreducible elements in R, and that there is a 
bijection between these polynomials and the isomorphism classes of simple 
R-modules M with dim M, < 2. 

But, every simple R-module M satisfies dimM= < 2. For, R is a principal 
ideal ring containing R as a central subfield, and thus M = R/fR, f~ R, is a 
finite-dimensional R-module. Consequently, E = End MR and therefore also 
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D=End,M are finite-dimensional R-algebras. Since R/Z, where Z is the 
annihilator ideal of M, can be embedded in D (in fact, R/Z=D), we have 
Z # 0. Now I = gR with g E R is a maximal two sided ideal, and thus an easy 
calculation shows that g = z or g E R[z2]. From this, it follows immediately 
that dim MC < 2. 

The statement of Lemma D is proved in [l]. We are indebted to P. M. 
Cohn for pointing out that a general argument is given in his monograph on 
Free Rings and Their Relations (p. 234). 

In conclusion, let us make two brief remarks. First, our problem can be 
also interpreted as the classification of all indecomposable representations of 
the Dynkin diagram 

with the species 

& .\ (231) . 

“/- 

x, CCR R 

7 
C 

subject to certain dimension conditions: 

i7 
V, x WC t- Graph of ‘p 

oxw, 

Second, considering the Dynkin diagram hi2 with the species 

our method yields immediately 
over a division ring F. 
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