THE REPRESENTATIONS OF TAME HEREDITARY ALGEBRAS

V. Dlab C M. Ringel
Carleton University Universitdt Bonn
Ottawa, Canada Bonn, Federal Republic of Germany

§1. INTRODUGEION

An (associative, not necessarily c;mmuté.tive) ring R (with 1) 1is
called (right) hetedi{fary if each right idéal of R 1is projective or,
equivalently, if the functor Extl(X, -) 1s right exact for any (right)
R~module X . Important examples of hereditary rings are the Lensor nings
defined in the following way: Let S be an (artinian) semisimple ring,
and SMS an S-S-bimodule; we denote indu“ctively Mi+l = Mi ? M, with
M =5 then, inducing the multiplication by the tensor product ® the

direct sum T(M) = @ M becomes a ring. In this paper, we shall
i>0

consider only ).seJMp!uZmafLy rings; for these rings, the properties of being
right hereditary and left hereditary coincide. It is easy to see that
the temsor ring T(M) is semiprimary if and only if Mi = for some 1i.
Note that there exist examples of hereditary semiprimary rings which are
not tensor rings [10]; later in this paper, we shall consider ome partic-
ular class of such rings in more detail, Also, we should mention the
following class of tensor rings: lLet F, G be (not necessarily commut-

ative) fields, and .M. an F-G-bimodtile. Writing S = F x G,M can be

FG
considered as an S—S—Bimddule, anci we denote by R(FMG) the tensor algebra

N F
T(SMS) which, of course, is just the matrix ring (O g) . Tor such a
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bimodule FMG , the invariant d(FMG) = (dim FM)-(dim MG) is known to be

of importance (here, dim denotes the ordinary vector space dimension),

An indecomposable R-module X 18 a (right) R-module having no mnon-
zero submodules Yl and Y2 such that X = Y1<® Y2 . The semiprimary
ring R 1is sald to be of finite nepresentation type if there is only a
finite number of (isomorphism classes of) indecomposable R-modules. In this
case, the indecomposable modules are of finite length, and every (arbitrar-
1ly large) module is the direct sum of indecomposable ones [9]. We say
that a hereditary semiprimary ring R is of wild representation type
provided that there are fields F and G and a bimodule M = FMG with
d(M) > 4 such that the category of all R(M)-modules of finite length can
be embedded as a full and exact subcategory into the category MR of
R-modules of finite length. (For arbitrary, not necessarily hereditary
semiprimary rings, this definition would be too special; in addition to
the full exact subcategories one has to consider also those which are
representation equivalent to them). This rather technical condition has
the following interpretation: If R is a finlite dimensional algebra over
a commutative field, then the condition is equivalent to the fact that
there exists a commutative field k such that for any finite dimensional
k-algebra A , the category of all A-modules of finite length can be

embedded as a full and exact subcategory into M Thus, it is un-

R .
reasonable to expect a complete classification of all R-modules of finite

length in this case. Also in the general case, the category MR with

R of wild representation type seems to contain a rather large amount of
indecomposable modules of finite length., For example, for such a ring R
and any natural number n , there exists
MR(M) can be embedded as a full and exact subcategory into MR . If
R is neither of finite nor of wild representation type, then R is

FMG with d() > n such that

called Lame,
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The hereditary semiprimary rings of finite representation type,
together with all their modules, have been completely described in [4]; a
more conceptual account has appeared in [5]. In particular, it has been
shown that they are always tenmsor rings. The tame tensor rings which
satisfy some duality condition (which is, for example, satisfied in the
case of finite dimensional algebras) have been described in [5]; also all
but a certain class of their modules (the "homogeneous" ones) were exhib-
ited in detail there. However, the following construction will show that

there are tame hereditary semiprimary rings which are not tensor rings.

Let F be a field, € an automorphism of ¥ , and § an (e,1)-
derivation of F (that is, 6 : F—> F is additive and satisfies
6(f1f2) = s(fl)-G(fz) + 6(fl)-f2 ; see [2])., This information leads to an
F-F-bimodule M = M(e,8) which, as a left F-space is just FF(® FF .

whereas the right F-action is given by
(a,b)«f = (af + b+8(f). hee(f)) for ah,feF.

Note that the F-F-submodule F @0 of M and FFF are canonlcally iso-
morphic, and we shall identify them. Now we can define the ring Kn(e,a)

as the (nt+l) x (n+l)-matrix ring

¥

(it contains, as a subring, the ring of all lower triangular

(nkl) X (nkl) matrices over F) . It is obvious that Kn(e,a) is
hereditary and semiprimary. For mn =1, ﬁl(e,ﬁ) = R(FMF) ; thus we get
a tensor ring. However, for n > 1, An(a,ﬁ) is a tensor ring only in

the case that the (g,1)-derivation & is inner [2]. Indeed, M(e,6)
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decomposes as a bimodule if and only if &(f) = e(f)e - ¢f for a suitable

cel .

Theorem 1. A fame hereditany semiprimary ring {8 Mornita equivalent
1o the product of a tensor ring and a finite number of nings of the fomm

Kn(e,d) for a suitable choice of n's, €'s and §'s .

Next we are going to consider the question whether it is possible
to describe the category of all Kn(e,s)—modules og finite length. For
6 = 0 , this has been done in [5] (where the ‘Kn(ELO)-modules were consid-
ered as representations of the extemnded Dynkin diagraml.éh_ with respect
to a modulation using e , and a suitable orientation; note that this
explains our notation An(s,G)). On the other hand, for n = 1, the

problem was solved in [7] (where the A (g,8)-modules were called repre-

1

sentations of a non-simple affine bimodule). The general case consists in
a combination of these results, as the next theorem reveals. We denote by
Flz; e, 8] the twisted polynomial ring comsisting of all finite formal
sums 20 ftzt with ft € F , and multiplication defined by zf =

e(f)z i—ﬁ(f) . Evidently, Rn(a,ﬁ) has precisely nt+l simple modules
S,s+++» S, which are ordered in such a way that Extl(Si, Si—l) # 0 for

1<1<n; then we have also Extl(Sn, So) #0 .

In what follows, always n > 1 . A sequence (rl,...,rd) of
integers satisfying 0 <r_<n is called hegulan if ry #n, s #0
and LT w(rt) for all t , where = is the cyclic permutation
(L 2...n-1 0 n) . Furthermore, (rl, Tosenns rd) is called
phepro fective if r,=0, r,=1 and (rz,...,rd) is regular, Finally,

(rl,..., LI rd) is called preinjective if r =n-l, ry=n and

d-1
(rl,..., rd—l) is regular.
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Theorem 2, Let n > 1. The indecomposable Kn(s,a)—inadw&eé are
of the following Lypes: For every regular, preprojective, ok preinfective
sequence  (ry,.ee, Ty there i a unique indecomposable module X with

a composition series

0=X°C Xl(:....CXd=X,

such that Xt/xt-& 5, for all t . The direct sums of the remaining
t
indecomposable modubes of §inite Length form an abelian exact subcategory

which £8 equivalent to tfhe category of Flz; e, 8l-modules of ginite Length.

The equivalence of the categoriles is given in the following way:
The F[z; ¢, §]-module W dis associated with the Kn(a,ﬁ)-module

W@ ,,, ®W on which 1; (¢,8) operates by the ordinary matrix operation
— n+1— n

from the right, with the additional condition that, for (a,b) € M and

w e W, we define w(a,b) = wa + wbz . The above theorem has several

consequences:

Corollary 1. The representation type of a hereditary semiprimary
ring A A8 not detenmined by the quotient A/N(A)2 , Where WN(A)

denotes the radical of A .

In fact, taking for F the field €(z) of rational functions in
one varlable over the complex numbers, for € thg identity automorphism
and for & the ordinary differentiation of functions, one can use, as in
[7], the results of [6] to show that the ring A = En(l,G) is wild, while
the ring B = Kn(l,o) is tame. But for n > 1, A/N(A)2 = B/N(B)2 .
Furthermore, using the results of [3], the ring Kn(l,s) , where F is a
differentially closed field with a differential 8 , will have only finitely
many indecomposable modules of any given finite lemgth. In contrast,

A (1,0) with any infinite field F has infinitely many non-isomorphic
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indecomposable modules of length d for an infinite number of integers d .

Now, if we assume that F contains a central subfield k of
finite index such that the restriction of € to k is the identity and
8§ 1s trivial on k , then (and only then) An(e,ﬁ) becomes a finite
dimensional k-algebra. Moreover, the F{z, €, §]-modules of finite length
are uniserial, so that Kn(e,6) cannot be wild. Thus, in this case, the

two theorems yield the following result,

Corollary 2. let k be a commutative field and A a hereditary
§inite dimensional k-algebra. Then A is tame if and only if it As
Mornita equivalent fo the product of a fame Lensor algebra and a finite

number of algebras of the form K.n(s-:,s) .

Let us remark that an indecomposable tame tensor algebra is deter-

mined by a modulation of an extended Dynkin diagram.

The paper is divided into 3 sections followed by a remark. In §2,
two endofunctor are defined in the category MA. of all ﬁn(e,s)-modules
of finite length, and are used then in §3 to prove Theorem 2. The proof

of Theorem 1 is completed in §4, The final remark refers to a recent

paper [1].

§2. CONSTRUCTION OF FUNCTORS

In the representation theory of tensor rings, certain functors play
a decisive role; see [5]. One constructs first elementary functors whose
behaviour imitates that of the basic reflections in the Weyl group, and
then composes them to the Coxeter functors, which correspond to the Coxeter
transformations in the Weyl group. The aim of this section 1s to comstruct
similar functors for the rings of the form A = An(a,ﬁ) . It turns out

that the situation is much easier in this case: The elementary functors
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which will be denoted by P+ and T~ are endofunctors, and one may work

with them in the same way as one usually does with the Coxeter functors

+(nt1) ~(n+1)

(which are here the (n+l)-powers T and T

of the elementary

functors) .

We denote by MA the category of all A-modules of finite length.
If So""’ Sn 1is the canonical ordering of the simplé A-modules introduced
in §1, then for every A-module X of finite length, we denote by dim X =

(xo,..., xn) the (nt+l)-tuple in which x;

factors of X isomorphic to Si 3 we shall consider dim X to be an

element of the rational vector space Qn+1 . Observe that A has

1s the number of the composition

precisely one projective simple module, namely So , and precisely one
Injective simple module Sn + Let us reiterate that, since the case

n=1l is known by [5] and [7], we shall always assume n > 1 ,

Proposition. Let n > 1. For the ning A= an(e,d) , there exist
gunctons rt . MA+ MA and T ¢ MA+ MA with the §oflowing
properties:

(€)) I""S0 =0, while for any other indecomposable A-module X

(with dim X = (X5 Xypeers X)) 5 there is a canonical {somonphism

1
-+
I'TX=X and

+
dim I‘ X"‘ (xl,too,xn’ _xo + xl + Xn).

(11) I"'Sn =0, while for any other indecomposable A-modufe ¥
(with dim Y = (Fgseres Yp_qs ¥,) » there 44 a canonioal Lsomorphism

Ty 2 Y and
dim I Y = (- Ya + ¥y + Ya-1? yo""’yn—l)‘
(11) 17 s a night adjoint fon T .

As a consequence, one gets again the usual properties (compare

[5]: P+ ts left exact; I' dis right exact; i1f X ¢ S, is
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indecomposable, then End(X) = End(I‘+X) and Extl(Y,X) £ Extl(I‘+Y, I‘+X)
for all Y etc. [On the other hand, note that the dim~formulas are
different from the usual ones, The dim-change is the composition of the
expected reflection (xo,..., xn) —> (- X +xy o+ X xl,...,xn) and a
cyclic permutation. The reason for the appearance of the cyclic permuta-

tion lies in the fact that we use a fixed (internally defined) ordering

of the simple modules Si's.]

In order to facilitate the work with the A-modules we shall inter-—

pret them as the representations of the species where Fi =F for all i .
PO S, S
f- N\
Fo < M(e,q) Fn *

This seems to be the easlest way to get a better understanding of the
internal structure of the modules and to have some graphical methods for
illustration available, Recall that there is a canonical copy of FFF
embedded into M(e,8) ; we denote the embedding by 1 . The representa-
tion X = (Xi’ j¢i) of the species A consist of nt+l F-vector spaces
i—l¢i : Xi — Xi—l (1 <41 <n) and a linear map

oty T X . M(e,6) —> X . Amap g = () = (&, jd)i) —> (X;, j¢:;.) is

Xi s 1 linear maps

given by ntl linear maps o, : Xi — X;_ such that

(Izi<n) and o ¢ = ¢! (a_® 1) .

= 1§
%y 1 4-1% % 4-1% % o o¥n (%

The full subcategory of all representations (Xi, jcbi) of A such that

Xn® M(e,8)

o¢/ V\]_ ®1 (1)

X< X
o¢l vet n—l¢n n
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commutes will be denoted by Le(A) ., This category is equivalent to the

category MA of all En(a,a)-modules of finite length,

It gseems to be convenient to have another description of the

category MA available; in the proof of the Proposition we will use both

descriptions simultaneously.

To begin with, we need some additlonal notation: If X 48 an
F-vector space, and ¢ an automorphism of the field T , we denote by
Xe the twlsted vector space with the scalar multiplication . defined by
x+f=x¢e(f) for xe€X, fe¥F, If o: XF — Yy is F-linear,
then the same o , considered as a map Xe —> Ye , is again F-linear.

In particular, considering the F-F-bimodule Fe (with f x e (f

xef, = £

1 2

for x, £ £, € F) , we have Xe = X® Fe . Note that there is an
F

obvious exact sequence of F-F-bimodules
m
0 —> F—> M(g,8) > Fe —> 0 .

Also, recall that for a bimodule FNG over the fields F and ¢ with finite

dim gY> we may define an G-F-bimodule *N = HomF(FNG’FFF) (left duall) such
that there is a canonical one-to—one correspondence between the G-linear

—_ — V) —
maps XG > YF ® N, and the F-linear maps XG ® G( N)F > Y., for any

FG F

vector spaces XG and YF « It is obvious that for an automorphism ¢
-1

* *
of F, one has (Fe) =Fe ~ . Also, we will need that (M(g,8)) =

Fe—l A M(e,8) . [Proof [7]: Consider the basis of the left F-space
1

¥ = M(¢,8) ®Fe ~ ®M(c,8) given by the elements ui_j = uy R 1 @uj +
(1<4i, j <2), where u; = (1,0) and u, = (0,1) € M(e,8) , Then,
‘ullvf = E:_l(f)-u11 s
ulz-f = s"lé(f)-ull + f-ul2 ,
u21.f = Ge—l(f)-ull + f-u21 s
tyyoE = 86 S(E uy, F 8(E)ruy, + (D) ey + e(D)en,, .
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This shows, that ull’ u22, Uy + u21 generate an F~F-bisubmodule U such

that FNF/FUF = oFp e The canonical map
M(e, ) ®(Fe"1 BM(e,8)) —> N/U = .Fp
induces the map
re”l @ (e, 8) —> Hom, (M(e,8), Fp) =*(s,0)
which is obviously injective, and is therefore an isomorphism of bimodules. ]

We know that the A-modules correspond to those representations of

the species

Fl <
M(E,a)/
F
[o]

with F s F for all 1 which satisfy a certain commutativity condition

(note that we use now a different numbering of the indices!). Equally

well, we may consider the specles

- F. < F, < cre T F
B = Te L ®M(e,y7 1 2 n—l\
F > ¥
o Fe—l n
with F, = F for all i : The categories of the representations are

i

obviously equivalent under the functor (Xo, veny Xn, j¢ :L) —>
(R es Xpp voes X5 J.d:i) . Since Fe Tl = *(Fe) and re L ® M(e,8) =
#M(e,8) , the representations of B can be written in the form (¥, jwi)

with the F-vector spaces Yi (0 <1 <n) and the linear maps

lll)o: Yo——> Yl ®M(e,d), 1-1”’1‘ Yi——-> Yi—l (2<i<n), and nwo : Yo—-—> Yne .
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In this way, the A-modules correspond just to those (Yi’ j¢i) for which

the diagram

1@

Yl ® M(eg,6) > Yle

N\ W2 ot n1tn (2)

o] n
Illp o

commutes. The full subcategory of those representations of B which
satisfy the condition (2) will be denoted by Lc’(B) . Obviously, it is

equivalent to M, and in this way we get an alternative description of

A
the category of all A-modules of finite length.

In the remaining part of this section, we denote the bimodule
M{e,8) simply by M . Recall that we have an exact sequence of bimodules

0—> F —> M2 Fe —> 0 .

Let Xl, Xn be F-spaces, and £ ! Xn —_— Xl a linear map. We

claim that the following sequence is exact:

£ 191 -£®1
1 0o 1Q®w (1 ®Tf, E)
0 —> X_ x, O ® W}——"(x, ® M)ox e —— x>0 .

For, it is easy to check that the composition of any two consecutive maps
is zero, and the following diagram shows that the sequence is the extension

of two exact sequences:

0 > X 18, X ® 18 e —s0
1 1 1
1 1 1
0—> x —> X &(X &M)——>(x,® W&k e —> X —0
1 (0,1) (0,1)
1@, 1®m
0 > Xn > Xn® M > ch-: > 0
339
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-~ ®1
1®

Nys Mo Hoo and L be the corresponding canonical maps; hence, in the

Let Q be the image of the middle map (l ? t ) , and let

diagram
X X, @ M
//f///;f l\\\\\lg;ﬁk ul,/Z, 1 \\\l\f;f
/,/’
Xn Q Xle
X ® M X e
n n

the left square is a pushout and the right square is a pullback. This
pair of squares will be of importance in the sequel. The dimension of QF

1s easy to calculate:

dim QF = dim (Xl)F + dim (Xn)F .

Now, we are going to define the functor

=
+
=
R

LefA) — Le'(B) = MA

of the Proposition. Let X = (Xi, j¢i) be a representation in Lc{A) .

Take the map £ = l¢2 vea > X, and form the above pair of

n—l¢n : Xh M
squares. The commutativity condition (1) shows that we can factor the two

maps o¢1 and o¢n through Q and get
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Now, define Yo to be the kernel of the map X ; thus we have

®

X X
1 1
,///5///;7 \\\\31 1
N\
Xn Y X 5 A >¥
1®1\¢ ”n\A
X

V

M
\\\\343 )
o Q o X1E
,///?;jﬂ /////E;v
£

X @ M

n n
If, in addition, we define Yi = Xi for 140, i_1¢1 = i—1¢1 for
2<i<n, and 1¢o = ulk ’ nwo = unk , we get a representation
Y= (1, j¢i) in Le'(B) ; put Pf§‘= Y . DNote that the commutativity

condition (2) follows from the commutativity of the right square above.

It is obvious that this construction is functorial.

The reverse functor T  is equally easy to comnstruct given a

representation ¥ = (¥,, .b,) in Le"(B) , we define I'Y = X = ( )

1* 3 Xio 594
as follows. Put Xi = Yi for 1 #0, and i—1¢i = i—lwi for 2<i<n .
Then denoting the composition 1¢2 see n—1¢n of these maps by & , we use
again for this £ the pair of squares. This time, we factor the two maps
1w° and n¢o through Q , and, in this way, we get k : Y0 —> Q.
Denote the cokernel of k by X.o and the cokernel map by A : Q — X0 .
In order to complete the definition of I we set o¢l = Anl and

o¢n = Ann '
Next, assume that X e Lc(A) is given. Then either the map
A Q—> X, (defined above) is surjective, in which case we obviously

-+
have I'I'X =X , and also dim (Yo)F = dim QF - dim (Xo)F ., 0r, XA is

not surjective, and then a copy of the representation
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0 < 0 < ves S 0

F < . 0

splits off X . Thus, 1f X 1s indecomposable, then it is simple projec-
tive (of course, conversely, this is the only simple projective representa-
tion'in Lc{A) ). Similar arguments apply for Y e Lc'{B) and establish
that either I‘LFI'__Y_ =Y , or that a simple injective representation is a

direct summand of Y .

The dimension dim X of an A-module X was defined in terms of

the canonical ordering of the simple modules §, introduced in §1 . Thus,

i
if the A-module Y corresponds to the representation Y= (Yi, jtbi) in

' .
Le' (B) and if dim (Y:L)F =y;» them dim¥ = (yl,..., Y yo) . This
immediately yields the dim-formula, since for an indecomposable represent-

ation X = (Xi, jd&i) in Le(A) which is not simplé projective and which

satisfies I‘+§ =Y , we have

dimY =dim Q -dim X =din X, + dim X - dim X .
o o n °

1

To complete the proof of the Proposition, it remains to show that
the functors T and T~ are adjoint. Let X e LefA) , Ye Le'(B) and
a=(a) :+ ¥ > I'+_}£ . In order to define the corresponding map
I‘-g_ —> X , we only replace a : Yo — (I‘+_'}g)° by a suitable map

B : (F_Do —> Xo defined by the following diagram
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Yn\ Yo ”-'T-*-—*-'P P ——>» (T Y) =»0 Yle
Y ®M Yns
Ot]_ 1
o R
1 0
*n %o %n “1
o 1 ¥
%
¥ f”’f’//’ \\\\1r

x| o ~4>(r Ty —

n\+/\

X®M

It is clear that, in this way, we get a bijection between Hom ¥, I‘+_}_(_)

and Hom (I'-L X) which is natural in both arguments.

§3., THE INDECOMPOSABLE An(e,a)-MODULEs

Our aim is to prove Theorem 2 of §1l. Hence, we deal with the
modules over a ring A = A'n(e,G) for some fixed n>1, € and & .
As in the case of tame tensot rings, we introduce the notion of defect of
a module., Thus, let X be an A-module of finite length with dim X =
(xo,..., xn) . The defect 3X of X is defined to be the difference

between the number of simple injective and the number of simple projective

composition factors of X :

X=~-x%x +x .
o
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First, let us formulate the following (rather trivial) assertioms.

Lemma. lLet X be an indecomposable A-module, 1§ X # 8, then
5% = aI'X . 4 ™ #0 , Zhen Zhe Lengths o4 "% and x satisfy the
formutla

length T'PX = length X + (nt1) 3X .
Proof. The first assertion follows from

+
M X = - xl - xo + xl -+ xn = - xo + x = oX .

To verify the second formula, observe that
+
= - < o
dim ' X (yo,yl,...,yn) s Where vy X + Xy + X (0<i<n)

Thus the length of F+nX equals to
n

n
z vy, = (D) (-x +x ) + z x, = (nt+l) 3X + length X ,
1=0 1 o n 120 i

as requlred.

Now, the procedure to describe all indecomposable A-modules of
finite length is rather clear. Since it follows precisely the arguments
used in the case of a tame tensor ring, we shall outline only the main

steps; for further details, one is referred to [5] and [7].

If X is an indecomposable A-module of negative defect, then, for

some r, P+rX = 0 , For, otherwise one ecould apply P+n inductively and

I,+r1

would get non-zero modules tX for all t e€ N, The length of P+ntX

equals length X + t(n+l) 5X , which has to become negative for large ¢t
a contradiction. If r is the least number with P+<r+l)x =0

P+IX o So (the simple projective module) and therefore X = P—rso .

, then

Consequently, the dimension type of X is of the form
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(Xy seey Xy ¥=1, 444, x=1) with 1 <8 <n . These modules are called
e §

preprofective; they are uniquely determined by their dimension types, and
are all of defect -1 . Similarly, the Indecomposable modules of positive
defect are called pteinjective. They are of the form P+rSn , the

dimension type 1s of the form (X, +.., %X, x+l, ..., xt1) for some §
b g ——d

with 1< 8 <n, and thelr defect is +1 .

Now, the direct sums of indecomposable A-modules of zero defect
form an abelian, exact, extension closed subcategory R of MA ; the
objects of R will be called #egulait. Some of the simple objects of R
(simple in the category R, not necessarily simple A-modules) can be
easily listed: Sl, vy Sn—l (these modules are actually simple A-modules)
and the indecomposable A-module T of dimension type dim T = (1,0,...,0,1)
corresponding to the non-zero elements in Extl(Sn, So) + The A-modules
from R whose composition factors (in R) are all of the forms
Sl""’ Sn—l’ and T , form a serial subcategory U of global dimension 1.
The indecomposable A-modules which belong to U are uniquely determined
by their lowest composition factor and their lemgth (in R). Note that u
is stable under P+ and T ; for example, P+T = Sn—l’ I'+Si = Si—l
(for 2<1i<n-1), and P+Sl =T . Also, R is the product category of
U - and of the category H of all homogeneous A-modules; here, an object
of R is called homogeneous if none of its composition factors (in R)
equals Si (1 <i<n-1) or T . Equivalently, an A-module X is
homogeneous if the maps 1-1%4 (L<di<n) of X= (Xi’ j¢i) are all
isomorphisms. Here, of course, we consider X as a representation X
of the species A . [In order to see that R 1s the product category of

U and H , one shows that Extl(H, Si) =0 = Extl(Si, H) for all simple

homogeneous objects H and 1 < i < n-l . Indeed, given an exact
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sequence

0— H—> E —> Si — 0

one can embed Si into E using ker Similarly, given an exact

i-1¢i '

sequence

0—> 8 >E—>H—>0 ,

one can embed H into E using the image of iq; 4+ Now applying the
functor P+ to H and Sl , we get also that Extl(H,T) =0 = Extl(T,H)

for all simple homogeneous objects H .]

The category f 1is easily seen to be equivalent to the category
of all F[z; €,6]-modules of finite length., The equivalence functor

M Flz;e,8] —_ MA_ is def:[.ned by W+— (Xo,..., Xn’ j¢i) , where

X, =W for all 1 > 4.1$; 1s the identity map for 1 <1 <n, and

b W oM —> W is given by o¢n (w® (a,b)} = wa + wbz . [Here again,

we have identified M, with Lea(A) . The description of the functor in

A
terms of actual A-modules is given in the introduction!] For, in the case
that X = (Xi’ j¢ i) is homogeneous, we may identify the different vector
spaces Xi' ‘via the maps i—lq)i » S0 that these maps become the identity .
maps. Thus, the only map of interest is o¢n

according to (1), the restriction of 0¢n to Xﬁ@ F i the identity map,

: X ® M—> X , However,
n o

too. Consequently, thé only invariant are the values oq;n(w@ (0,1)) for
we Xn = Xo . If we défiﬁe Wez = od,n(w ® (0,1)) ', then we get an

Flz; e¢,6]-module structure on X .

To complete the proof of Theorem 2, it remains to show that the
indecomposable preprojective, or preinjective A-modules, as well as the
indecomposable A-modules in U are uniquely characterized by the

existence of a composition series

C...Cc¥ =X

0=X0C Xl 4
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with Xt/xt—l = Sr for a preprojective, preinjective, or regular
t .
sequence (rl,..., rd) , regpectively. Consider first the case of an in-

decomposable module X in U . Then X has a unique composition series

in U the factors are S, (1 <i<n-1) and T . There is a unique

i
refinement of this series to a composition series of A-modulés; and the
indices of the composition factors obviously form a regular se&uence.
Conversely, i1f an indecomposable A-module X has a composition series
which corresponds to a regular sequence, then (calculaﬁiﬂg ﬁhe defect) X
has to be regular. WNow, since we can embé@ eith;r ;ﬁe of the Si's
(1<1i<n-1) or T into X, X cannot %éiong to H and therefore has

to belong to U ., Next, consider the preprojective modules. Note that

there is an inclusion

se e C""_> P-kso

§ G175 €T 25 C
0 [v] [o]

with the factors P—(k+l)SO/P—kSO= P_ksl . For, consider the sequence

0—>8§ —>T§ —>8 —>0,
o o 1

and apply P_k . TIf we consider this inclusion series for some

X = P"kso , We see that there is a unique refinement to a composition

o .
series of A-modules and that the indices of the composition factors of
this series form a préprojective sequence. A similar argument works in

the case of preinjective modules.

Note that the methods and results of thils section are not restricted
to the Awmodules of finite length only, but that they can be used to deal
with certain classes of A-modules of arbitrary length, For example, one

can show, as in [8], that every unlon X of a chain

(t)

e x® e exPeo
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of indecomposable A-mofules of finite length is again indecomposable, and
that either every non-zero endomorphism of X is a monomorphism or an
epimorphism, so that, in particular, the endomorphism ring End(X) of X

has no zero-divisors,

§4, WILD RINGS

Let R be a semiprimary ring. Since we are interested only in
the representation type of R , we may suppose that R is indecomposable
(that is, R cannot be written as the product of two rings), and basic

(every simple factor ring is a field). Let N be the radical of R .

Lemma. Let £, g be onthogonal primitive idempotents such that
F=fRf and G = gRg are fields. Then there is a §ull and exact

embedding of the categony of R(_£Ng.)-modules of finite Length into mod..
FoG R

Proof. Let h = l-f-g; thus £,g,h form a complete set of ortho-

gonal idempotents. Hence R can be written in the form

F £Ng fNh
R = gNf G gNh |J.

hNf  hNg  hRh

and any module MR can be decomposed into the direct sum of abelian group

M

1

Mf ® Mg ® Mh , on which those matrices operate. Let (X'F’ Yg,

¢ XF ® FngG —_ YG) be an R(FngG)~modu1e. We define an R-module M
in the following way: Let Mf =X, Mg=Y , and My = X ® £Nh , and

let the scalar multiplication be given by the maps

ME ® fNig = X ® fNg 2> ¥ = Mg ,
1d
ME ® £Nh = X ® £Nh —%
Mh ® hiNg = X ® £Nh @ hig 2B ML, ¢ oo, Oy oy
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all the other maps be zero. It is easy tec verify that, in this way, we
get an R-module and that the respective functor is a full and exact

embedding.

This shows, Iin particular, that in the case that R dis tame we

have d(FngG) < 4 for all such idempotents f and g .

Assume now, in addition, that R is hereditary. Then for any
primitive idempotent e , eRe is a field. Let Crreees € be a complete

set of orthogonal primitive idempotents. The product I Fi of the fields

Fi = eiRei is a subring of R which complements the radical: N @)HFi = R,

If RMR is an R-R-bimodule, we denote by iMj the submodule iMj = eiMej'

Obviously, M = 691?5 . Usually, we will consider iMj as an Fi-Fj—

bimodule, Assuming that R is tame, we know that d(iNj) < 4,

On the other hand, if d(iN ) <3 for all 1,j , them R has to

N

be a tensor ring. Namely, the only way R can fail to be a tensor ring

is that for some 1i,j the extension

N 2 ———
0 —> (N )j > iNj i(N/N )j > 0 (3)

does not split as a sequence of Fi—F -bimodules., But then necessarily

3
dimFi(iNj) >2, and dim (N > 23 thus d(iNj) > 4 , Therefore, we

P,
may assume that there exists a pair i,j with d(iNj) = 4 guch that the

corresponding sequence (3) does not split, Necessarily, we have

2 _.
(4,0, =1, and dGONH) =1. Let L=1, 4., L =] be

3

a sequence of maximal length such that 1 Ni #0 for 1<t<n.
t=-1 "t

changing the indices (replacing it by t ) , we are in the situation

1_'—->2 s n"‘l

/ \

0 > n
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ik

such that for all bimodules , we have d( =1 . (For, using

1174

1® 10 @ n~1Nn 1s canonie-

ally embedded into o(Nz)n') In the case that the idempotents € seves ©

1-1M
the multiplication map, the tensor product oN

n

form a complete set of orthogonal idempotents, we are just in the situation
of a ring of the form An(e,G) . For, d(oNn) = 4 and the fact that o
1s not a simple bimodule, imply readily that oNn is of the form M(e,3)

for some e, § [7].

Thus, we may assume that there is e with # 0 for some

ntl iNn+l

i . (The case # 0 can be treated similarly.) Let 1 be the

n+lNi

largest possible number with iNn+1 #0. Incase i=n, we are in

the situation

possibly with some additional arrows (indicated by ——— ). It is easy
to see that there is a full and exact embedding of the category of
representations of the species C

nNn-l-l

F ————— >
o Fn Fn+l ?

(taking for the maps 141 (1 £i<n-1) the identity maps, and for the
additional arrows ———~—> the zero maps), But C 4s wild: Consider
the (unique) indecomposable represent;atior;s X with dimension type

(t, t+l, 0) and Y with dimension type (t+1, t, tb) , where b =

dim (nNn+l)F for some fixed t , Then it is obvious that there are no

n+l
homomorphisms X -—> Y or Y —* X (except zero), that the rings of
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endomorphisms of both X and Y are fields, and that Exthg.gg is
arbitrary large (depending on t). It is well-known (see for example [7],

lemma 1.5) that there exists a full and exact embedding of L(ExthZ,X)L)

into L(C) .
o+l
7t
e
//,/
l_> ' X —> i___, i+1 — s e ﬂ> n-'l
D= / \
0 > n

can be reduced to the previous situation using the functor P_(n_i) .

Namely, define a functor from the category of representations of

n+l
2.
-~
Jtass
1< i

1_—-> e > +1 > awe —> n'“l

"/ \

0 < n

into the category of representations of 0 , which coincides on the

circuit with P_(n—i) and is the identity elsewhere. This functor kills
only a certain number of injective modules, but the full and exact sub-

category which is embedded into L(D') is mapped bijectively into L{o) .

Tn combination with Theorem 2, this completes the proof of Theorem

§5. REMARK

Since this paper deals in some detail with the relationship

between hereditary semiprimary rings and temsor rings, a particular class
of tensor rings should be mentioned which attracted some interest lately.

In a recent paper [l], M. Auslander and M, TI. Platzek develop parts of a
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general representation theory of hereditary artin algebras, and they stress
the fact that the techniques used in thelr paper are applicable for all
hereditary artin algebras, not just for those assoclated with a k-apeciles
(those called, in this paper, tensor rings). However, at the beginning of
the proof of one of the main theorems (4.1), the authors introduce the

following property for a hereditary artin algebra R

) 1If So’ Sl, S, are non-isomorphic simple modules such that

2
1 1
Ext (Sl, So) #0 and Ext (82, SO) # 0 , then Hom(P(Sl),P(SZ))=0,

where P(Si) denotes the projective cover of Si s

and work with it throughout the proof., In fact, this property is equivalent
to the property that the ring is a tensor ring whose diagram does not

contain any circuit of the form

Indeed, the diagram of R 1s constructed in the following way: The
points correspond to the simple R-modules, and the arrow 1 ~> j means
that Extl(Si, Sj) # 0 , Of course, the condition (P) just excludes
circults of the form mentioned above, However, if this type of circuits
is excluded, then the ring R 1s in fact a tensor ring: Let e, be
palrwise orthogonal ldempotents with P(Si) = @

i
is equivalent to the fact that ei(N/Nz)ej #0, and Hom(P(Sj), P(Si)) #0

R . Then Extl(Si, Sj) #0

is equivalent to the fact that eiRej #0 (or, to e,Ne, # 0 if
J

i
Si # Sj). The condition (P) therefore can be rephrased as follows:

®") For any i,j , only one of ei(Nz)e and ei(N/Nz)e

3

can be non-zero,

3
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This, of course, immediately implies that for any 1,j , the exact sequence

0 > ei(N )ej > eiNej > ei(N/N )ej > 0

splits, and therefore R is a tensor ring.

1.

4,
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