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1. INTRODUCTION

There has been a great interest in the root systems lately, since
they arise in rather different mathematical problems: their properties
seem to reflect many features of the corresponding objects and imply
nontrivial consequences. Recall that a root system (see e.g. [2]) is
just a set of vectors in the real euclidean n-space R satisfying
certain strong symmetry and integrality conditions, and that the

indecomposable ones can be classified by the Dynkin diagrams
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These diagrams are obtained from the corresponding root system by choosing
an appropriate basis; the choice of such a basis is unique up to symmetry.
Having fixed a basis, every root is an integral linear combination of the
basis vectors with either only non-negative, or only non-positive
coefficients. Well known properties of the root systems include, in

particular, the summation property which asserts that, having a root =

d
which is a sum r = I rt of the pogitive roots T, o there is a permuta-
t=1 1
4a
tion © of {1,2,...,d} so that % r () is a root for every
t=1
1< a’ < d . BAnother property of the root systems is the existence of

the largest rcot. In this paper, we shall interpret both these features
in a module theoretical manner.

It has been shown in [4] that the Dynkin diagrams can be characterized
as those (connected) valued graphs whose category of (finite dimensional)

representations is of finite representation type (i.e. has a finite number
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of non-isomorphic indecomposable representations). Recall that a
representation of a valued graph I requires a choice of an orientation
and a modulation M = (Fi, iMj) of [ ; here, for each vertex i of T ,
Fi are division rings and, for each arrow i +j of T , iMj are (finite
dimensional) Fi-Fj—bimodules. We assume that a central field K exists
such that [Fi:K] <o for all i and that K acts centrally on iMj .

The representations X = (X,, &.), where 9.:X, ® M, + X, for each
- 1 31 R S 1] J

i +3j (or, alternatively, X = (Xi, jwi)' where jwi:Xi - Xj ® jMi ,

jMi = Hoij(iMj, Fj) for each i1 = j) form an abelian category which is
equivalent to the category of all (right, finite dimensional) modules over
the (hereditary) tensor K-algebra defined by the semisimple K-algebra
A=IF., and the A-A-module @ .M, . The (basic indecomposable)

it iwy I
hereditary K-algebras of finite representation type are precisely the
tensor K-algebras over the Dynkin diagrams [3] . Hence, the entire theory
of representations of Dynkin diagrams can be interpreted as the theory of
modules over hereditary algebras A of finite representation type. Since
there is a one-to-one correspondence between the indecomposable modules
over A and the positive roots of the corresponding Dynkin diagram
(induced by the "dimension type" map dim: X - dim X = (dim XF.)ieF into
the Grothendieck group of mod A) [4#] and since there are no i;finite

dimensional indecomposable modules [5] , the structure of mod A is largely

determined by the corresponding diagram alone.
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Of course, [4] provides further information on the structure of

modules, such as ordering of the indecomposable modules

+
X =Dy Ry = Typeen, X =T Xy = CLyy Xp = Cllyren

in the way that Il,Iz,...,In are all indecomposable injective modules
satisfying Hom(Ip, Iq) =0 for all p < g <n (and thus Hom(Xp,Xq) =0

for all p < ¢); here, ¢t denotes the Coxeter functions of [4]. It follows
that the endomorphism algebra E = End XP of the direct sum of all

P
indecomposable modules has a (lower) triangular matrix representation.

¥

The sequence of Xp s also defines an order in which a given module can

be split into a direct sum of its indecomposable components.

The results of this paper complete the knowledge of these module
categories by describing certain composition series (and consequently
also homomorphisms). The module theoretical interpretation of properties
of the root systems mentioned earlier is then established as follows:
Given a Dynkin diagram, its positive roots can be interpreted as the
indecomposable modules over an appropriate hereditary algebra, and in
this way, we can assign a module theoretical meaning to the summation
property of the roots systems; the largest positive root corregponds to
the largest indecomposable module, which contains every other indecompos-

able module as a subfactor, that is as a quotient of a submodule.
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2. MAIN RESULTS

ILet A be a basic hereditary K-algebra of finite representation type,
' =T(a) its oriented (Dynkin) diagram, A/Rad A = 1 Fi and
iel

Rad A/ (Rad A)2 = @ thF . Throughout this section, assume that K is

i* "1 j
infinite.
LEMMA. Let k ¢ T be a source and X, % indecomposable A-modules
satisfying

dim 2 = dim X + dim Fk ’

where T, is the simple a-module corresponding to the vertex k . Ihen

there ig¢ a short exact sequence

0=+ X=>2= Fk -+ 0
Proof. Let X= (X, jwi) with

. - ch i+ 1
jwi' Xi - Xj ® jMi ’ jMi Hom(iMj, Fj) for each i ~+ j ,

and similarly 2 = (Zi’ jni) be the representations of the graph T

corresponding to the modules X and Z , respectively. Write dimF xi
i

. di L = 2, .
xl and 1mFiZl i

Consider the affine variety
X b

V =V = T Hom (F,%, F.0® M,
i+ mFi i’ 75 i

with the group action given by

G = @ GL(xi, Fi)
i
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as follows:

-1
(gi) . (jwi) = (r(gj ® 1) jwi g9, )

*, X,
. 1 ]
. 0] 3 a . Th
with g9; € GL(xi, Fi) and jwj € HomFi(Fl ' F:j ® le) us the

isomorphism class of X corresponds to an orbit DX in V. Since X
is indecomposable, its orbit is open (and therefore also dense). For,
there is only a finite number of orbits and one can verify that the
dimension of the stabilizer of any element of DX (which is equal to
dimKEnd X}, is the smallest possible. Indeed, this is trivial if there
is only one field involved or if End X is the smaller field G of the
two fields G CF involved; if End X =F and [F:G] = 2, then every
other orbit in V corresponds to a decomposable module, whose stabilizer
dimension is therefore =2 dimKEnd X ; finally, if [F:G] = 3, there is a
nontrivial homomorphism between any two indecomposable modules with the
endomorphism rings equal to G , and thus again, the K-dimension of the
endomorphism ring of any decomposable module is 2 3 dimKG .
Now, consider the projection of V
P ? V- Vk = 'H. HomF'(F:i, Fjj ® jMi) ;
i+ i
i#k

the orbit DX is mapped onto

Dx = {(jwi)i#kl (jwi) € DX}

corresponding to the restriction (Xi, of X to the graph T\{k}.

jwi)i#k

[ . .
It follows that DX is dense and contains an open subset in vk (in fact,
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it is open and dense in Vk) .
For the indecomposable module Z , the same conclusions hold as

for X ; in particular, the orbit DZ' is dense in Vk . Thus,

' ]
Dx N DZ #0,
and therefore there are representations
. X 2

i ' 1
X = (F," jwi) € Dx and 7 = (F,

such that

\I/.=jni for all i #k and all j .

X,
Now, let W= © (r.7® .Mk) , and denote by F the flag variety
ey 33
of Fk-spaces

F = {UEVEWIdimU=xk, dim V = x_ + 1}
with the group

1
G ={(g,) e T ceL(x.,, P.)| g ¢ G such that

1) L]
= . i d all 3
jwi 9, (gj ® 1) j¢1 for all i# k and a j}

acting on W canonically. Denote by Py and i the canonical

projections of F to the Grassmann varieties GrU and Grv

Pyt F - GrU = {u C_:_W]dim U= xk},

pZ-:F+GrV= {VC_ZWIdimV=xk+ 1= zk}



442 V. Dlab, C. M. Ringel

and note that G' acts again on both GrU and Grv . Viewing GrU as

a subvariety of the projection

X X,

k J
I Hom, (F F.°"® . of V
W s S ) ’

)
we conclude that the orbit O, of X CW is open (and thus dense) in
GrU . Similarly, the orbit Dé, of Zy ©W is open and dense in Grv .
. -1 - .
Therefore the proimages pX,(D',) and pz%(pé,) have the same properties,

and consequently

"l ] —‘l
Per (D) Npy i (0p) # 8 -

Hence there are monomorphisms

X x, +1
k k 8
_).
Fk Fk W,
X,
so that, denoting the canonical projection W -~ FjJ 8>.Mk by T the
] b
representation
1
X" = (F, AY) with V" = .1 da Yy = ¢
otherwise, belongs to DX . Similarly,
. ( zi "
Z" = (F, .N.) with "= and "= 7
z i M s T 5k B 515 % 5N
othexwise, belongs to Dz . Consequently, we get an embedding X" - 2"

for the corresponding modules and

XN X"""Z"%Z

yields a monomorphism from X to %. This proves the lemma.
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REMARK. One can prove algo the dual statement: Let k e I be
a sink and ¥, % indecomposable R-modules satisfying dim Z = dim Y +

dim F, . Then there exists an exact sequence

k

O+Fk+Z+Y‘>‘O.

PROPOSITION. Let X, Y and 2 be indecomposable A-modules

satisfying

dimZ = dim X + dim Y .

Then theve exists an exact sequence
0+X+Z+Y+0 or 0+Y+Z+>X+0.

Proof. We apply the functors S; of [4] for suitable i's to the
modules X and Y, so that the image of one of them is simple injective
A'-module (A' is the K-algebra corresponding to the new orientation:)
whilst the other image is nonzero. Assume, without loss of generality
that

S, ...8, Y =F and S, ...5, X=X'#0.
1 1
r 1 r 1

Thus, also S. «..5, 2=2"#0 and
r 1

dim 2' = dim X' + dim F

k

Consequently, Lemma yields an exact sequence
0~ X' 2'+F +0,

+ .
and, applying to it the functor Si ...SI , we get the required statement.
1 r
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As an immediate consequence of the proposition one gets by
induction, using the summation property of the root systems, the
following

THEOREM. Let X seeesX

4 and Z be indecomposable modules

172

over a hereditary algebra n of finite representation type, such that
d

dimz = I dim X

=1 t

Then there 1s a sequence

0=2,C2 C...C3% =2

of submodules of z and a permutation w of {1,2,...,d} such that

/2, %

< < .
-1 xﬂ(t) for aqll 1 st £4d;

Z
t
moreover, there is a sequence

= < < < ==
0=k SkyS...Sky, Sky < S8, <..c2 <2 =4

such that all zzt/zkt » 1 St sda, are indecomposable.

Thus, in particular, we have
COROLLARY 1. Every indecomposable B-module 2z has a composition
series

(x) 0=2,C2C..Cz, =2
and a sequence

¥ = < SeraS s =
(%) 0=k <k, kgoy SKg < Bg S8y g Seeus 8, S0 =4
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such that, for every 1<t <d, %, /% 15 an indecomposable A-
t 't

module of length t .

COROLLARY 2. Let 2z be the largest indecomposable a-module. Then,
for every indecomposable A-module X , there exist a composition series

(*) of 2z and a sequence (**) such that all 2, /%, are indecomposable
t ot
A-modules and

X~z /2 for a suitable t' .
%ﬁ kt'

3. REMARKS AND EXAMPIES

Note that in case of the finite field X = Z_ of two elements,

2

the results of Section 2 may not hold. Consider, for example, the

algebra
22 0 0 Zb
0 Zb 0 Zé
Al=
0 0 Zé Zé
0 0 0 Zé
/—-\
and the following (right) A,-modules (the graph of 2, is 1 2 34):
\\__2

the indecomposable injective module X = (Zé 22 Zé Zé) corresponding to

the last row, and the largest indecomposable module

z= (7,80 0803z (1,1)3 z,_@za)'

Then X is neither a submodule nor a quotient of Z . 1In fact, the

complete submodule structure of Z looks as follows:
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with A, =2 _@®O0 ,

1 2

A, =0@3%, ,
A3 = (l,l)Zé and
A4=z'2@7a'2

The results of Section 2 can be easily illustrated graphically.
Given an algebra A, consider the set of all positive roots r , attach to
each r the A-module Xr of the dimension type r , and for every pair
of roots I, r, such that r,~r; is a simple root, draw er>—>-xr2

or Xr-—%b xr (the cases exclude each other), respectively. Moreover,
2 1

one may indicate the fact that two respective cokernels or kernels are

isomorphic by drawing the arrows parallel. Thus, for example, if



Interpretations of the root systems 447

R ¢ ¢
A2= 0 ¢ ¢ ’
0 0 c

1,2 .
then P(A )y =1 j——-l>2 =3 is of type B3 and the corresponding root

system with the medule structure is described by

+

e
N\
e

Observe that this graph does not coincide with the graph of all

SE—

N
e

(')
H

/
N\

e

irreducible maps of [1] between the indecomposable modules, which looks

as follows:
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+

I
Pl c I]_ 2 1
| \ /
I
P2 C 12 2
N
+
I
P3 C I3 3
The real algebra
R (0] C
A3 = (8} C C
0 0 C
1.{1.2)
whose graph P(A3) = 2-_’j§3 differs from P(Az) only by orienta-

tion has the root and irreducible map diagrams as follows:

o Ee—

O\
7N

P

g
N
=

S S—
&

—
-

J
L

H
[
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b |
[
o}
[\

SN\

and

H

+
H
N

+

NN

N

w

Let us conclude with a more interesting example of the algebra

F F
F

H O O
H = O O
H O O O O

with P(A4) =1 = 2//;i:—;:::§:§96 of type Egi the root diagram as

=

Lo TR B B I T

follows:
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