INFINITE DIMENSIONAL REPRESENTATIONS
OF FINITE DIMENSIONAL HEREDITARY. ALGEBRAS (*)

CrAUsS MICHALL RINGEL

This conference is concerned with abelian groups and their rela-
tions to modules, and it seems to be appropriate to present here some
parts of & general representation theory for finite dimensional here-
ditary algebras, since it will turn out that for certain finite dimensional
hereditary algebras, the socalled tame ones, the modules behave rather
similar to abelian groups, or to modules over a principal ideal domain,
although there occur some new complications.

The recent progress in the representation theory of finite dimen-
sional algebras was limited mainly to the modules of finite length,
and one would be interested to know in which way the structure of
the modules of finite length determines the behaviour of arbitrary
modules. Two results of this type are known: A finite dimensgional
algebra R is said to be of finite representation type provided there
are only finitely many indecomposable modules of finite length. Now,
if R is of finite representation type, then any module is the direct
sum of modules of finite length [35, 4], and one knows since Azu-
maya [8] that such a decomposition is unique up to isomorphism.
On the other hand, if R is not of finite representation type, then
Auslander has shown that there exist indecomposable modules which
are not of finite length [5]. This however is a mere existence proof,
and does not reveal a concrete description of such a module. In this
paper, we want to use the existing knowledge on modules of finite
length in order to develop a general structure theory for modules of
arbitrary length. In order to do so, we will restrict the investigation
to the rather narrow clags of finite dimensional algebras which are
hereditary, since for them at least some classes of modules of finite
length are well understood.

(*) I risultati conseguiti in questo lavoro sono stati esposti nella conferenza
tenuta il 14 dicembre 1977.
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Throughout the paper, we fix a commutative base field k; algebras
will be defined over %, and associative with 1, modules will usnally
be right modules. Recall that an algebra B is said to be hereditary
provided submodules of projective modules are projective again. In
spite of being narrow, this class of algebras contains some finite di-
mengional algebras which are of great interest, also in apphcatlons
We give some exa,mples

First, let R, be the ring of all (n-+-1) X (n—l—l)-matrices of the form

* o

*c
*.0
0 "

with entries in k. Then R, has precisely » projective simple modules,
and the R,-modules without projective simple direet summand cor-
respond to (n-+1)-tuples (V, ¥,)icic, Where V', for 1<i<n, is a sub-
space of V. Thus, classifying R,-modules is the same as classifying
the possible position of n subspaces in a vector space. This shows
that the problem of classifying R,-modules is of importance in geo-
metry. It is known that for n<3, R, iz of finite representation type.
Of great importance has been the cage » = 4, the socalled 4-subspace
problem. The methods developped by Gelfand and Ponomarev [25]
in order to give a complete list of the indecomposable R,-modules of
finite length, had a great influence, since it was possible to copy
them for the other finite dimensional hereditary algebras of «tame»
type [9,18,14]. In the cases n>5, the classification of the indecom-
posable RB,-modules of finite length seems to be rather hopeless, but,
at least, one knows some classes of modules.

Next, congider the problem of classifying n-tuples of linear trans-
formations ¢,: V- W, 1<i<n, where ¥V, W are vector spaces. Note,
these are just modules over the ring

Eookr
0 &k
where % ig the n-dimengional vector space. (For any bimodule Mg,

z QZ) with feF, ge @ me M, obviously

form a ring, which usually will be denoted by (g Jg ) For » = 2,
these objects (V, Wy, g1, ¢,) are usually called Kronecker modules,
since Kronecker [26] has given a complete classification of those of
finite length, thus solving a problem raised by Weierstrass. Tbe re-

the matrices of the form
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lation to modunles over a principal ideal domain, here k[X], can be
seen in this case very easily: if one of the two maps ¢., ¢, is an iden-
tity map, say we consider the Kronecker module (V, V,id, @), then
this Kronecker module can be identified with the k[X]-module (V, ¢),
where X operates on V via the linear transformation ¢. Kronecker
modules may be used very effectively in solving differential equa-
tions [23]. Also, they have turned out to be of great importance in
perturbation theory. There, under the name of «gystems», an ex-
tended theory of infinite dimensional Kronecker modules has been
developped. Our aim is to incorporate these results into a general
theory of modules over & finite dimensional hereditary algebra. We
will comment on these investigations at the end of the introduction
farther. ‘

Also, we may consider other bimodules »M,. As long as F and @
are semi-simple, and all three F, @, M are finite-dimensional over &,

we obtain a finite dimensional hereditary algebra (g Jg) For ex-

ample, denoting by R the real numbers, by H the quaternions, the

algebra
R H
0 H

seems to be of interest, since the modules without simple projective
direct summand correspond to pairs (Ug, Vy) where Vy iy an H-vector
space and Ug C Vgx a real subspace. A complete classification of the
finite dimengional modules has been given in [17]; here, we have to con-
sider modules over the principal ideal domain R[X, Y]/(X*-- X2+ 1).

Note that the corresponding algebra (]([)& g) with C the complex num-

bers, is of finite representation type.

After having given some examples of finite dimensional hereditary
algebras of interest, we note that a general representation theory for
finite dimensional hereditary algebras alse should give some insight
into properties of modules over an arbitrary finite dimensional al-
gebra R'. In fact, given R’, there always exists some finite dimen-
sional hereditary algebra R, and a full and exact embedding of the
category of R'-modules into the category of R-modules. Thus, there
seems to be good reason to propel the knowledge on representations
of finite dimensional hereditary algebras.

Why is it of interest to congider infinite dimensional representa-
tions? We believe that the only reason for the usual restriction in
dealing with finite dimensional algebras to consider only modules of
finite dimensional algebras to consider only modules of finite length,
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is the fact that modules of finite length are easier to handle. Of course,
as soon as one deals with general rings or algebras, a similar restriction
to modules of finite length would be considered as inappropriate, since
the ring itself would not fall any longer into the class of modules
considered, thus one usnally considers finitely generated modules.
However, we note that the coucept of a finitely generated module
has some anomalies: if we congider a fnll exact embedding of some
module category Mg into Mz, the image of a finitely generated
R'-module may no longer be a finitely generated E-module. Thus, it
seems to be reasonable to consider always also those R-modules which
in some fnll exact subcategory which is also a module category, be-
come finitely generated. A typical example would be the Kronecker
module (k[X], k[X],1d, -X). Of course, in dealing with finitely gen-
erated modules over a general ring, the injective envelopes of the
finitely generated modules are important. They are usually no longer
finitely generated, but are for certain types of rings, for example
noetherian rings, well behaved. In a suitable subcategory, the injec-
tive envelope of the Kronecker modunle (k[.X], k[X], id, - X) is just the
Kronecker module = ((X), k(X), id, - X), with %(X) being the field
of rational functions in one variable. We will see that this Kronecker
module @ plays a dominant role, it will be characterized as the unique
indecomposable « torsionfree divisible» module. Thus, there always
will be certain important infinite dimensional representations, and we
will see that the investigation of these modules also gives some new
insight into the behaviour of the modules of finite length. For exam-
ple, in 5.6, we will give a new interpretation of a well-known invariant
in the tame case, the socalled defect. As a final argument for the
necessity to consider arbitrary, not necessarily finite dimensional mo-
dules, we should mention the fact that the applications in perturbation
theory depend on the knowledge of infinite dimensional Kronecker
modules.

Now, we want to give a survey of the main results of the paper.
Let B be a finite dimensional hereditary algebra. We start with two
clagses of modules of finite length, the indecomposable preprojective
and the indecomposable preinjective modules. They can be defined
by applying a construction due to Auslander to the indecomposable
projective or injective modules (see 1.4 and B), and, as the name
snggests, their behaviour i rather similar to that of projective, or
injective modules, respectively. In fact, one may characterize them
in terms of relative projectivity and relative injectivity. A module &
will be called preprojeciive provided every non-zero submodule splits off
a non-zero preprojective direct summand. of finite length. The structure
of these preprojective modules may be rather complicated. For &
modunle X, let X be the intersection of the kernels of all maps X — P
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with P indecomposable preprojective, and define by transfinite in-
duction 72X =[)9+X, for A limit ordinal, and X = §FF+1X

n<i
otherwise. Then X is preprojective if and only if §2X = 0 for some

ordinal A, and theorem 2.6 asserts that for any ordinal 4, and any
indecomposable preprojective module P, there exists a module X with
72X = P. Note that this bebaviour is similar to that of p-groups
with respeet to the Ulm subgroups. .If we define dually J.X as the
sum of the images of all maps I — X with I indecomposable injee-
tive, then there is no need to iterate this process: according to 3.3,
we have J(X/JX)=0. If we call X preinjective provided JX = X,
then the preinjective modules are just the direet sums of indecompo-
sable preinjective modules; in particular, they are direct sums of
modules of finite length. Also, acecording to 3.3, the maximal pre-
injective submodule JX of X is always & pure submodule, and we
may ask whether it is a direct summand. As we will see, this depends
on the representation type of R (see 1.C). If R is tame, then JX is
always a direct summand (theorem 3.7), if R is wild, there exists X
such that JX is not a direct summand (theorem 3.9).

Call a module regular provided it has no indecomposable prepro-
jective or preinjective direct summands. The investigation of reg-
ular modules will be done only in cagse R is of tame representation
type. Here, however, we will see the striet analogy to the theory of
abelian groups.

Given a module X, let X be the sum of all submodules U of X
of finite length such that U has no indecomposable preprojective
direct summand. Call X #orsion provided BGX = X, and torsionfree
provided GX = 0. The torsion regular modules form an abelian sub-
category ¥ which is the product of categories T, (¢ € T') each of which
is equivalent to the category of torsion modules over some ring H,(D)
of n X n-matrices of the form

_D_D..._D
¥D D
M- MD

where D = D, is a (not necessarily commutative) discrete valuation
ring with maximal ideal M (theorem 4.4). For all but at most three ¢,
we have n = 1; thus, for these ¢, the modules in &, can be considered
as torsion modules over a discrete valuation ring, and therefore behave
like p-groups. The rings D,, for the various ¢ € 7', are not independent.
In fact we prove in (6.8) that a suitable matrix ring over D, is the
completion of a subring of some division ring ¥ which only depends
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on. R. The index set 7' is always infinite; if & is algebraically closed,
then T = Py(k), the projective line over k. Note that P,(k) has one
more clement as the corresponding index set for the primary decom-
position of k[X]-modules. Since T iy an abelian category, we may
speak of simple objects in &, these are modules of finite length, and
we call them simple reqular. . ‘

A module Y will be called divisible, provided Ext (X, ¥) =0 for
any simple regular module X, or, equivalently, for any module X
without indecomposable preinjective direct summand (4.7). Any mod-
ule X contains a unique maximal divigible submodule DX, and DX
is a direct summand of X.

o PPX
I g‘l-l-lX

g

BX
- DX

IX
0

Given & simple regular module 8, there exists a4 unique indecom-
posable module 8¢ in ¥ which is divisible and containg § as a sub-
module. Modules of the form S» will be called Priifer modules, since
they are similar to the Priifer groups in abelian group theory, We will
show that an indecomposable module which is not of finite length, is
either a Priifer module or torsionfree regular (4.8).

Also, there exists a unique indecomposable torsionfree divisible
module @. Its endomorphism ring is a division ring, and @ is finite
dimensional over End (§) (theorems 5.3 and 5.7). The divisible mod-
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ules are direct sums of indecomposable divisible modules, and inde-
composable divisible are the indecomposable preinjective modules, the
Priifer modules, and @ (5.4).

In the last section, we will consider torstonfree rank one modules.
By definition, these are submodules X of @ such that @/X is torsion
regular. In certain cases, for example if the base field % is algebraically
closed, we will give a complete classification of the torsionfree rank
one modules using equivalence classes of height functions 7' — N, U
U {oo}, similar to the classification of the torsionfree rank one abelian
groups. Here however, we see the fundamental difference to the abe-
lian group case which stems from the additional element in the index
set I': the endomorphism ring of a torsionfree rank one module does

not have to be an order in End (@), but may be finite dimensional -

over % (6.5), This we use, for B being tame (!), in order to show thab
there exists a finite dimensional hereditary algebra R' of wild represen-
tation type, and a full and exact embedding of My into My (6.9).
Also note that F = End (@) is the division ring mentioned before.

We add a remark on the methods we use. Begides the Auslander
construetion « dual of transpose », and the corresponding « almost splif
exact » sequences, which we will call Auslander Reiten sequences, e
will need partial Coxeter functors and some facts aboub growth num-
bers. In the case of tame representation type, we make extensive
use of the matberial collected in the tables of [14]. In addition, we
will need two general results for modules over finite dimensional alge-
bras, namely a characterization of pure submodules, and a result on
finite dimensional direct summands. These two results will be pre-
sented in sections 1.7 and 1.G.

Let us come back to those papers inspired by problems in perturba-
tion theory, and which deal with infinite dimensional Xronecker mod-
uler over C. We refer to the appendix of [2] for a well presented
example which gshows the use of Kronecker modules: there, the dif-
ferential operator ¢ = d¢/di* on a certain subspace V of the Hilbert
space W = L([—1, 1]) is considered, with ¥V depending on four given
linearly independent boundary conditions. In this way, one obtains
the Kronecker module (V, W, %, ¢), with ¢ the inclusion, and a change
of the boundary conditions being interpreted as a perturbation. This
development seems to have been started by Aronszajn [1], and in a
joint paper with Fixman [3], some algebraic foundations were laid.
Some of the regults of [3] are in fact valid for arbitrary finite dimen-
sional algebras (see sections 1.7 and G of our paper), bubt it seems
to be interesting to note that the proof of the equivalence of (i) and (ii)
of 1.F in [3] and [38] uses topological considerations, whereas we invoke
Auslander Reiten sequences. The main result of Aronszajn and Fixman
gives the structure of the divisible Kronecker modules, and the fact

i ir
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that the maximal divisible submodule DX always is a direct summand
(see Cor. 2 of 4.7, and 5.4). These investigations were continued by
Fixman and his students. In[19], Fixman considers torsionfree rank
one Kronecker modules and gives the complete classification in terms
of height functions on P,(C) (see 6.5), the groups Ext (X, Y) for X, ¥
of rank <1 have been determined in [20]. In[21], Fixman and Zorzitto
prove the purity criterion 2.2, Cor. 3 for Kronecker modules (note
that the result in the form we state is valid also in the wild case, in
contrast to a remark at the end of the introduction of [21]). Finally,
we should mention the work of Okoh [27, 28,29, 30] treating pure
simple modules, and the question of decomposing a given Kronecker
module as the direct sum of modules of finite length. We do not
touch the last questions in our paper. We should point out that two
of our results in the tame case seem to be new also in the special
situation of Kronecker modules, namely the construction of arbitrarily
large preprojective modules given in 2.6, and the fact that the cate-
gory of Kronecker modules id « Wild »: according to 6.9, any C-algebra
which is generated by less then N, elements, §, the first strongly
inaccessible cardinal number, occurs as the full endomorphism ring
of a suitable Kronecker module.

Section 1 containg some preliminaries which are needed in the course
of the paper. Starting with section 2, we assume that E is a (twosided
indecomposable) finite dimensional hereditary algebra which is not of
finite representation type. Beginming with 4.3, we assume, in addition,
that R s of tame representation type.

1. Preliminaries.

We want to collect some basic results which will be used throughout
in the paper.

First, some words about notation and terminology. If R is a ring,
we denote by rad B the Jacobson radical of B. We usually will work
with a finite dimensional hereditary algebra R which is defined over
some fixed commutative field k. Being interested only in the R-mod-
ules, we may assume that R is a basic algebra, that is, B/rad R is the
product of division rings. In case R/rad R is a division ring, we call B
a local algebra. Usually, we will assume that R is twosided indecom-
posable, that is, B does not contain any central idempotents besides 0
and 1.

Modules will usually be right R-modules, and module homomor-
phisms will be written on the opposite side of the gcalars, thus for
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(vight) modules X, ¥, Z, and homomorphisms f: X - Y, g: Y - Z,
the composition of f and ¢ will be denoted by gf. An indecomposable
module X is always assumed to be non-zero. The length of a module X
is denoted by |X|. If X and Y are isomorphie, we will use the symbol
X ~ Y. Note that sometimes the word «module» will mean «iso-
morphism class of module». The category of R-modules will be de-
noted by Mx.

In dealing with hereditary rings, we will denote Ext* just by Ext.

N, N,, Z, R, C, H denote the natural numbers, the natural numbers
with 0, the integers, the reals, the complex numbers, and the qua-
ternions, respectively.

A. The Auslander construction and Auslander Reiten sequences. For
arbitrary finite dimengional k-algebras, M. Auslander has introduced a
construction which seem to be of ever increasing importance. Let M
be a right R-module of finite length, and let Py-f> P, — M —0 be
the first two terms of a minimal projective resolution of M (of course,
in case R is in addition hereditary, as we will assame later, the map f
has to be a monomorphism, and 0 — P, %P, > M —0 is the com-
plete minimal resolution of M). Applying the functor *= Homp ( ,Rx),
we obtain a map f*: P5— P of left R-modules, whose cokernel will
be denoted by Tr M, it is a left B-module. Similarly, starting with
a left R-module N of finite length, and two terms of the minimal pro-
jective resolution of N, we map apply now * = Homj (,pFE), and
obtain as cokernel a right R-module denoted by Tr ¥. If we use now
the ordinary duality D = Hom, (,k), we obtain from the left R-
module Tr M a right R-module AM = D Tr M. If we first apply D
to the right module M, and then Tr to the left module DM, we
obtain A-'M =Tr DM, again a right R-module. In general, the
constructions 4 and A-* are not really functorial: given a homo-
morphism f: M ~> N between R-modules of finite length, we can define
Af only by using an appropriate lifting which is not necessarily uni-
quely given, thus 4f is only defined up to maps factoring through
injective modules, and similarly, 4-* is only defined up to maps
factoring through projective modules. However, in case B is here-
ditary, both A and A-, are functorial.

The main property of the construetions 4 and 4-1is the following:
Let M be an indecomposable module of finite length, Then AM is
either zero or indecomposable again (and again of finite length), and
AM = 0 if and only if M is projective. If AM =0, then M can be
recovered from AM by using 4-Y since AAM~ M. Similarly,
A-1M is either zero, or indecomposable and of finite length, 4-*M =0
ift M is injective, and if A-*M 50, then AA—*M ~ M. This shows

i
I
I

li
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that A and A~ are very useful in constructing indecomposable mod-
ules of finite legth.
Given a non split exact sequence

0 >X%Y-E 750

of modules, then we call X — ¥ —Z an Auslander Reiten sequence,
provided it satisfies the following two properties:

(i) If y: X — X' iy a map which is not a gplit monomorphism,
then there exists ¢': ¥ — X' with y =y'a.

(i) If 6: Z2’—Z is a map which is not a split epimorphism,
then there exists 6': Z'— ¥ with 6 = §d'.

The existence of such sequences was egtablished by M. Auslander
and I. Reiten in [7]. In fact they have shown the following: If X
is an indecomposable module of finite length which is not injective,
then there exists an .Auslander Reiten sequence X — ¥ — Z with
Z ~ A X (note that all the modules X, ¥, Z are of finite length,
however, the properties (i) and (ii) are valid for arbitrary modules
X', Z' which are not necessarily of finite length). Similarly, if Z is
an indecomposable module of finite length which is not projective,
then there exists an Auslander Reiten sequence X — ¥ — Z with
X~ AZ.

On the other hand, if X —Y — Z is an Auslander Reiten sequence,
then X and Z both are indecomposable, and if for two Auslander
Reiten sequences X — Y —Z and X'— Y'— 7', we have X ~ X' or
Z ~ Z', then the sequences themselves are isomorphic, This shows
that Auslander Reiten sequences are unique.

Now assume, in addition, that R is hereditary. Then we have
noted above, both A and A-! are functors, and the application of 4
gives a bijection

Hom (X, ¥) — Hom (4X, AY),

provided X has no non-zero projective direct summand, whereas the
application of 4~1 gives a bijection

Hom (X, ¥) - Hom (41X, A1Y),

provided Y has no non-zero injective direct summand. In this way,
we may identify for modules without non-zero projective direct sum-
mand the rings End (X) and End (4X). Also, we note the following:
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LemmA: Let R be a finite dimensional hereditary k-algebra. Let
X, ¥ be modules of finite length, then

dim;, Hom (Y, .A..X) - dim;, EXﬁ (.X’ Y) "

B. Indecomposable preprojective modules and indecomposable prein-
jective modules. We agsume that R is a finite dimensional hereditary
algebra. If s is the number of simple modules, there are also just ¢
indecomposable projective modules, and s indecomposable injective
modules. If P ig indecomposable projective, then End (P) is a division
ring, We write P — P’ for P, P’ indecomposable projective modules,
provided Hom (P, P') 50, and, in this way, we obtain a partial
ordering on the get of indecomposable projective modules.

If X is a module of finite length, then we call X preprojective,
provided 4mX = 0 for some meN. If X is in addition indecom-
posable, then thig is equivalent to the fact that X ~ A-tP for some
i & N,, and some indecomposable projective module P. If we assume
that X, ¥ are modules of finite length, with X indecomposable, and
Y preprojective, then the existence of a non-zero map X — ¥ im-
plies that also X is preprojective. In particular, submodules of pre-
projective modules of finite length are preprojective again. Also, if
0 —X — ¥ — Z —0 iy an exact sequence with modules of finite length,
and X and Z both are preprojective, then Y iy preprojective.

Tf X is a module of finite length, then we call X preinjective,
provided 4-»X = 0 for some m e N. For an indecomposable module X
of finite length, this means that X ~ 41 for some €N, and some
indecomposable injective module I. It is clear that we have the dual
properties to the preprojective case. In particular, the class of pre-
injective modules of finite length is closed under quotients and exten-
sions.

If R is a twosided indecomposable, then either there exists a non-
zero module which is both preinjective and preprojective, then all
modules of finite length are both preinjective and preprojective, and
therefore there iy only a finite number of indecomposable modules of
finite length, thus R is of finite representation type. Or clse, the 2s
countable series of indecomposable modules 4¢P, A'I with ieN,
and P indecomposable projective, I indecomposable injective, are mu-
tually disjoint.

In the second cage, it is known that there exist also indecom-
posable modules of finite length which are neither preprojective nor
preinjective. We call 2 module of finite length regular, provided ib
does not have any non-zero preprojective or preinjective direct sum-
mand. It is clear, that the class of regular modules of finite length is
closed under extensions. Algo, if X, ¥ are regular modules of finite
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length, and ¢: X — ¥ is a homomorphism, then the image of ¢ is
regular again. T

Next, we want to show that there is the possibility to calculate
effectively the action of 4 on the indecomposable modules of finite
length. Let Py, ..., P, be the indecomposable projective modules. For
any module X of finite length, we introduce its dimension wvector
dim X as follows: Since End (P;) is a division ring, we see that
Hom (P;y X)pnqcpy 18 @ vector space, and leb

(dim X); = dim Hom (P;, X)gya(py-

Clearly, this is just the number of composition factors in a given
composition series of X which are isomorphic to the simple factor
module of P;. Thus, dim X is an s-tuple of elements of N;, and it
will be convenient to consider dim X as an element of the vector
space Re, Note that the sum of the components of dim X is equal
to the length |X| of X.

Some of the indecomposable modules are characterized uniquely
by their dimension vector. In fact, if X and Y ave indecomposable
modules with dim X = dim Y, and X is either preprojective or prein-
jective, then it follows that X ~ Y.

We come to the calculation of the effect of the Auslander construc-
tion. Namely, there exists a regular transformation ¢ on RS, called
the Cometer transformation for R such that for any module X of finite
length, and without projective direct summand, one has

dim AX = o(dim X),

and similarly, for ¥ of finite length and without injective direct
summand, one has :

dim A*Y = ¢ Ydim ¥) .

We will recall in the next section that ¢ leaves invariant a quadratic
form. '

0. The representation type of o finite dimensional hereditary algebra.
Let R be again finite dimensional and hereditary, and agsume, in addi-
tion, that F is basic. Let Py, ..., P, be the indecompogable projective

8
modules. Since R is basic, By ~ @ P,. As a consequence, we see that
8 i=1
Efrad B =[] IF;, with F, being isomorphic to the endomorphism ring
i=1
End (P,) whieh is a division ring. We may consider rad R/(rad B)*
as R[rad E - R/rad R-bimodule, and decompose it as the direct sum
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of submodules ;M,, where ] F; acts on ,M; on the left via I, and
on the right via F;. The species of K is given by the collection
(Fyy i M;)14i5<s The species defermines nearly completely the repre-
sentation theory of R, we derive from it certain invariants: the oriented
diagram of R is given by s points, with arrow from the point ¢ to the
point j provided .M, 0, and we add to sueh an arrow the pair of
numbers (dimy, (;M,), dim (;M;)y). Note that the oriented diagram
does not have any loops or oriented circuits. In particular, for fixed
points 4, j, there is only one of the two possible arrows ¢ —j, and
j — 1. If we replace the arrows by edges, we obtain the diagram of E.
The ring R also determines & quadratic form ¢ on R® as follows: Let
fi= dim, F';, and m;; = dim, (.M,). Then we put

QD1 vory Bs) = Efi‘v?““zmiimiwi .
i

(%)

Note that this quadratic form (up to a scalar multiple) is uniquely
defined by the diagram of R, in particular, it does not depend on
the orientation. It is this quadratic form, which is invariant under
the Coxeter transformation: for all x € R, we have g(ex) = g{x).

It is known that R is of finite representation type if and only if
g is positive definite. In case of R being twosided indecomposable,
we call R to be of tame representation type provided ¢ is semidefinite
but not definite, and, we call B to be of wild representation type
provided ¢ is indefinite.

D. The tame case. Assume that R is a twosided indecomposable,
finite dimensional hereditary algebra of tame representation type,
and let P,,..., P, be the indecomposable projective modules. There
are only 16 different cases for the oriented diagram of B and we will
list these cases together with further information at the end of this
section.,

In this situation, the quadratic form ¢ vanishes precisely on &
one-dimensional subspace of R which is generated by a vector h = (k)
with coefficients , € N, such that at least one of the h; = 1. We have
listed h in the table, it is uniquely defined by the stated properties.
An indecomposable B-module X with dim X a multiple of b will be
called fomogencous ().

There exists a non-zero linear form §: R* — R which is invariant
under ¢, called the defest, and which we normalize by the conditions
that §(P,) € Z, for all 1<i<s, and 8(P,) = —1 for at least one % (*). .

(1) Note that this differs from the use of the notion «homogeneous» in [14].
(%) In [14], the defect had not been normalized.

|



334 Claus Michael Ringel

In this way, ¢ is uniquely defined by the oriented diagram, and it
is eagy to check that the values d(P,) do not even depend on the
orientation, but only on the diagram. We have listed the vector with
components — ¢(P;) in the table.

Let us note the main properties of the defeet. If X is an indecom-
posable module of finite length, then d§(dim X) which we will just
denote by 6X, determines whether X is preprojective, preinjective,
or regulaxr. Namely, 60X <0 if and only if X ig prejmwjective, and
60X > 0 if and only if X is preinjective. Also, again under the assump-
tion that X is indecomposable of finite length, |6.X}|<86.

Of great importance is the fact that in the tame cage the regular
modules of finite length form an abelian exact subcategory t, and that
one knows the structure of this category completely. Since {is abelian,
we may consider the simple objects in t and call them simple regular.
Thus & non-zero module § is simple regular if it belong to t, and if
it does not have a proper non-zero submodule which belongs to t.
It X is in t, the sum of the simple regular submodules of X is
called the regular socle of X, the length n of a regular composition
sequence, that is

0=X,cX,c..cX,,cX, =X

with X,/X, ; simple regular for all 4, is called the regular length of X.
Given § simple regular, and » € N, there exists a unique indecomposable
regular module S with regular socle § and regular length #, and every
indecomposable regular module is of the form 8@, for some S and
some n. In particular, every indecomposable regular module has a
unique regular compogition series.

Let us consider now the set of simple regular modules. On this
set, 4 operates with finite orbits, and all but at most three orbits
are one element sets., Let 7' be the set of orbits. If § and 8’ are
simple regular, then Ext (8, §')s40 if and only if §'= 48. Thus,
the category t decomposes as the direct sum of categories t,, where
¢ runs through the set 7, and an indecomposable regular module with
regular composition series given by X, belongs to t; if and only if one,
and therefore all of the regular composition factors X,/ X, ; belong to t..

For 8 simple regular in {,, let n, be the smallest natural number
with A™8 ~ 8. Note that 8™ is always homogeneous, whereas the
modules 8¢, with 1<i<mn, are not homogeneous. Note that for §
simple regular in t;, 8 itself iy homogeneous, iff », =1, iff all mod-
ules in {, are homogeneous. In this cage, we call ¢ homogeneous.
The numbers #,, for ¢ non-homogeneous, are listed in the table with
their precise multiplicity.



Infinite dimensional representations ete. 335
type diagram h (— 0P,), n, e
i, | @22, 21 12 _ _
i, | @2 11 11 — —
g\/: : I.--1, |.1.--1
'A‘MJ'Z ) L 11.”11 1111 _29+1,Q+1 L1
By | @ e . e [11.-011 |12---21 |m 1
2,1) 2
0 | @22 oo o—oP, 120001 |11-011 |m 2
(132) 1)2).‘
80, | @2 e—s o0 ooy 199,001 | 120422 | 1
BD, % e B0, 12---22 iz---zl 2,n—1 (1,2
(1,2) .
O’hj)n (>'—' ree —— i2---21 12'”22 2, n—1 1,1
. . 1 11 1
D, %ﬂ . ,-—< 12---21 12~- 21 2,2,n—2|1,1,1
1 1 ‘
E, 2 2 2,8,3 1,1,1¢}
- 12321 | 12321
e 2 2 '
B | @—e—s I —— | 1oni301 |128a321 |2 %4 LT
' l 3 3
B, 19345642 | 12345642 | 205 | BT
Ay | @—e—et2e 12321 {12342 |2,3 1,1
il (211) ’
Py | @mte—tr—ce—s 12342 (12321 |2,3 2,1
~ ' (193)
Gy | @—o—e 121 123 2 1
7t (331) '
Gy | G——etilo 123 121 2 3

||u|.

i
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In the last section, we will need, for P preprojective of defect
—1, and § simple regular in some t,, the dimension

¢, = dimgyggny Hom (P, §™),

and, for ¢ non-homogeneous, we have listed this dimension in the
table. Note that it does not depend on the particular orientation:
For, a change of orientation does not change the dimension vector
of 8™, and therefore not the dimension dim Hom (P, 8™)gep) HOW-
ever, a funetor infering a change of orientation, does not change neither
End (P) nor End (8™), thus it keeps e;,.

A description of 7T, for general base field %, seems to be difficult.
We note that T always is infinite. In case % iy algebraically closed,
then T can be identified, in a natural way, with the points of the
projective line Py(k) over k. For & =R, possible parametrizations
of T have been considered in the appendix of [14], one always may
choose one of the sets P,(C), P,(R) or the hemisphere

{y,2)eRlp>+ y*+ 2 =1, 2>0}.

Note that T ig determined by the bimodule M, listed in the tables

of [14], and we note that the functor I" from the category of (‘g ‘g[ )

modules into the category of R-modules mentioned there has the
following property: there exists an indecomposable projective mod-
ule P with endomorphism ring J, which we will call distinetive, such

that for any (g g‘r)-module (U, V,p: U@ pgMg— Ve) with endo-

morphism ring B, we have Uy~ zHom (P, I'(U, V, ¢))r. One point
corresponding to a distinctive indecomposable projective module is
encircled in the table on the previous page.

B. The functor Ext. We will use the standard properties of Bxt,
in particular the long exact sequences. Note that there are the fol-
lowing canonical isomorphism:

(@) Ext (X, ] ¥.) ~ T] Ext (X, ¥,), and
() Bxt (DX, ¥) ~ [] Bxt (X, T),

where X, ¥ are R-modules, and (X,);, (¥,); are families of R-mod-
ules. If, in addition, X iy finitely presented, then also

(6) Bxb (X, DY) ~ @ Ext (X, T,).

In particular, (¢) is valid in case R is a finite dimensional algebra
and X is of finite length.
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F. Purity. We insert here a general result on pure submodules
which is valid for finite dimensional algebras, and which will be used
throughout in the paper.

Let B be a finite dimensional algebra. In dealing with modules
of infinite length, one has to realize that there is a new type of non
gplit extensions. Comsider a module X with a submodule V, such
that both V and X/V are of infinite length. If there exist submodules
0C UcVCWcXwith W/U of finite length such that V/U is not a
direct summand of W/U, then V cannot be a direct summand of X.
In this case, the fact that the submodule V of X does not split off,
is explained by the fact that a certain extension of modules of finite
length does not split. There are however examples of submodules
7 ¢ X which are not direct summands, which cannot be explained in
this way. We will see such examples in the course of the paper.

THEOREM: Let R be o finite dimensional algebra. Let V be a sub-
module of the module X. Then the following properties are equivalent:

(i) For any submodule W of X with VCW and W]V of finite
length, V is a direct summand of W.

(il) For any submodule U of X with UCV and V/U of finite
length, V)U is a divect summand of X|U.

(ili) For any submodules U, W of X; with UCVCW and W/U
of fimite length, V/U is a direct summand of w/U.

In this case, we will call ¥ a pure submodule of X.

PROOF OF THEOREM: It is clear that both (i) and (i) imply (ifi).
Thus assume (iii). Let ¥ C W with W/V of finite length. We may
assume that W/V is indecoposable. Let A(W/V)-% X -5 W/V be
an Auslander Reiten sequence ending with W/V. If we assume that
V is not a direct summand of W, then the canonical projection
7 W — W/V is not a split epimorphism, thus there exists #': W — ¥
with @ = fn'. There exists n': V — A(W/V) making the left square
commutative

0 A(W[V) 2> T 5> T7[7 =0
v In” ]\n’ Tid
0> ¥V —=W5SWV-0.

A
Let U be the kernel of #”. Then we can factor n” over V/U and =’

22
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over W/U, and obtain the following diagram

0—>A(W/V)e ¥ LWV -0
A A h
id

0= VU —WTU—->WV->0
N A A
id

0> TV — W BW[V-0.

According to our assumption, the middle exact sequence splits. But
this implies that the upper exact sequence, being induced from a
split exact sequence, is also split, contrary to the assumption of being
an Auslander Reiten sequence. Thig contradiction shows that V hag
to be a direct summand of W, thus we have proved (i).

In order to prove (ii), we proceed dually. Given UCV with V/U
of finite length, we see that we may assume V/U indecomposable.
If V/U is not a direct summand of X/U, V/U cannot be injective,
thus there exists an Auslander Reiten sequence V(U -% Z -4 A-Y(V/T),
and a lifting of the inclugion y: V/U — X/U to o': Z — XU, with
y=9a We get " and a commutative diagram

0>V|U% Z L 4~YV[U)—>0

l id 1” j ?"
Y

0->V|U XU~ X|V —0.

Now, the image of ¢ is of the form W/V for some VCWCX, and
W[V is of finite length., But then we can use our assumption (iii)
which shows that V/U is a direct summand of W/U, and therefore
the upper sequence splits being induced from a split exact sequence.
Again, this is a contradiction, and therefore ¥/U has to be a direct
summand of X/U.

We note some elementary properties of pure submodules. Let
vcvck.

(@) I£ U is pure in X, then U is pure in V.

(@') If V is pure in X, then V/U is pure in X/U.

(b)) If U is pure in V, and V pure in X, then U iy pure in X.
(

b} If U is pure in X, and V/U is pure in X/U, then V is pure
n X,
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For the proof of (b), let U’ C U, with U/U' of finite length. Since
U is puve in ¥, there exists ¢/ in ¥ with U/U' @ ¢'/U' = V[U'. Now
V/C' iy of finite length, thus using that V is pure in X, there exists
¢ in X with V/0'@C/C'= X/(’. But then U/U'® 0|U'=X[U".

Similarly, for the proof of (3'), let V< V' C.X with V'/V of finite
length. Then there is ¢/ with V/U@® C€'/U = V[0, and since then
'/ U is of finite length, there is 0 with U@ C= (. Thus V@ C= V.

Direct summands are examples of pure submodules. However, in
contrast to the set of direct summands of a fixed module, the set of
pure submodules of a fixed module is closed under unions of filterted
families:

(6) Let (V) be & filtered family of pure submodules of X.
Then |J V; is pure in X.

iel

Proor: Let V=:|JV.CW, with W/V of finite length. There
i€l
exist submodules ¢ of finite length with ¢ -+ V = W. Choose such
o ¢ with minimal length., Consider the various CzN V, there is some
ieI with 0N V. maximal, say ¢ = 0. Since V,is pure in X, there
is ¢' with 0 + Vo= 0'@®V,. Thus

CA+V=Ct Vb V=C+V+V=C+7,

and therefore, according to the minimality of C, we have |0|<|C'|.
But then ¢ - V,= (' @V, implies 0N V,= 0. Since we have choosen
¢ NV, maximal under the CNV;, we see ONV; =0 for all 4, and
therefore

0NV =0n (Uv;) = (ENT)=0.

i€l 1el

Thus 0@ V = W, which shows that V" is & direct summand of W.
An immediate consequence is the following type of examples:

(@) Let X;, se, be a family of modules. Then (_—BX,-QHX,-
is a pure submodule. iel i€l

Proor: For any finite subset I' C I, we know that @X: =11

iel’ iel'
is a direct summand of J[ X;, and @ X, is the sum of the filtered
iel iel
tamily { @ XI'c T ﬁnite}.
il .
We 6;1(1 this section with two remarks which will not be used in
the paper, but which are perhaps of independent interest.
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REMARK 1: The theorem which has been stated for finite dimen-
sional algebras remains true, with the same proof, for the socalled
artin algebras (rings which are finitely generated over a central artinian
ring), but is no longer true for artinian rings. In fact, let F be a dif-
ferentially closed field with derivation 4, let § = F[T 6] be the
twisted polynomial ring in one variable T and let M be the sub
I-F-bimodule of § genemted by 1 and T Note that dim, M =

= dim M, = 2, thus
R I M
0 F

is an artinian ring. Consider the right R-modules X = 8§@ 8, and
its submodule V = T8 @ T8, where the R-action is given by ordinary
matrix operation. Note that X/V is of finite length, and V is not &
direct summand of X, thus condition (i) of the theorem is not sat-
isfied. On the other hand, it is rather easy to see that » C X satisfies
condition (ii) of the theorem, since for UCV with V/U indecom-
posable of finite length, either V/U is preinjective and therefore a
direct summand of X/U, or regular and then injective in the category
of regular modules, thus again it is a direct summand of X/U. (We
have used here the fact that the representation theory of R is rather
gimilar to the case of hereditary finite dimensional algebras of tame
type, with similar notions of preinjectivity and regularity, see [31],
section 7.)

REMARK 2: For a genera,l ring R, P. M. Cohn [12] ‘has called a
submodule V3 of a module Xy pure, provlded for any left module 5,
the induced map Vo®z M — X;®z M is a monomorphism. In the
case of a finite dimensional algebra R, this notion coincides with the
previously considered one. In fact, for any right artinian ring R,
a submodule V;z C X is Cohn pure 1f and only if it satisfles the con-
dition (i) of the theorem

Proor: In [12], Cohn hag shown that ¥V C X is Cohn pure, if and
only if given elements ;€ X, r;& B, 1 <t <n, 1<j<n, with Zwm,e 14
for all j, there exist elements v,€V, 1<i<n, such that °

> (@—gq)ry=0  for all j.

i

Now assume, V C X gatisfies the condition (i), and let #,€ X, r,e
with Zw V. Let W=V -+ ZmiR then W/V is of finite length,

thus thele exists a direct decompomtmn W=V@C0. Write ;=
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— v, - ¢,, with v;€ V, ¢,& C. Then Y (¢;—v,)7;; belongs to CNV=0.
Conversely, assume V € X is Cohn pure, and let VCWcX with WV
of finite length. Let z: W — W[V be the canonical projection, and let
mn n
@Ry 2> DBy LWV -0
i=1 i=1

be a finite presentation of W/V. Denote the canonical base vectors

(0..010...0) of Rz by é;, thus « Is given by a matrix (r;) with -

k13
i€ R, such that a(e) = S ;1. Leb z=p'(e:), where ' : D Re— W is

i=1

a fixed lifting of §. Clearly, > @r:; = f'a(e;) belongs to ¥, since
i
mp’' o = 0. Thus, there are elements v,€V with Z (@,— ;) ry=0 for

n
all j. Define y: QB — W by y(e;) = #;— v;. Then

i=1

yo(e;) = g(wi—- V)7 =10

shows that y factors over §, thus there is y': W|V —W with y =19'6,
and consequently, my’ is the identity of W|V, thus = splits.

G. Direct summands of finite length. In this paper, we will con-
sider mainly modules of infinite length, presupposing a good knowl-
edge about the modules of finite length. It is natural to ask whether
a given module will have 2 direct summand of finite length, and there-
fore even an indecomposable direct summand of finite length. Also,
one may ask the stronger question whether the module is even &
direct sum of indecomposable modules of finite length. If B is an
artinian ring of finite representation type, then any module can be
decomposed as the direct sum of indecomposable modules of finite
length ([35], see also [4]). Thus, in dealing with modules of infinite
length, there is no need to congider any longer rings of finite represen-

tation type.

Given a decomposition X = @ X, where every module X; has a

iel

local endomorphism ring, Azumaya has shown that the number of
direct summands isomorphic to a given module V is an invariant
of the module X [8]. In the case the X, are of finite length, this is
rather easy to see, since we will give an internal description of this
invariant.

It V is 2 module with local endomorphism ring Brd (V), let

Fnd (V) = Bnd (V)/rad End (V)
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be the residue division ring of End (V). Given an arbitrary mod-
ule X, let

rad (V, X) =
= {peHom (V, X)|pp erad End (V) for all y e Hom (X, V)} .

Note that this is an Bnd (X) - End (V)-submodule of Hom (V, X),
thus we may form G(V¥, X)= Hom (V, X)/rad (V, X). Since obvi-
ously G(V, X) is annihilated on the right by rad End (V), we may
consider C(V, X) as a right Bnd (V)-vector space.

We will use these vector spaces C(V, X), where V runs through
the set B of indecomposable modules of finite length, in order to
prove the following theorem:

TarorEM: Let B be o finite dimensional algebra. Given a mod-
ule X, there exists a pure submodule Y which s the direct sum of inde-
composable modules of finite length, such that Y/X has no indecom-
posable direct summand of finite length. Any two such submodules ¥, ¥’
are isomorphic.

In fact, we prove the following more precise result, where we
denote for ¢ € Hom (V, X) its residue class in C(V, X) by &.

ProposiTIoN: Let B be a finite dimensional algebra. Given a
module X, chooge for any Ve a family (g;p)iy of elements g€
€ Hom (V, X) such that (@y); is a basis of C(V, X)gjy. Then the

map
(piv)w: @ @V"*X
vesR iely
i$ a monomorphism, the image is a pure submodule, and the cokernel
has no indecomposable direct summand of finite length.
Conversely, given a pure submodule ¥ of X with Y= Y,,

ieJ
with ¥, indecomposable of finite length, and such that X/Y has no
indecomposable direct summand of finite length, let

V={jEJ|Y,'NV},

and for jeJy, choose an isomorphism «,: V ~ ¥;, and denote the
inclusion ¥;—2X by p;. Then (y; o)y i8 a basis of G(U, X)imin) -

Proor: The proof will be done in geveral steps.

(a) Let ¥ =P ¥, be a pure submodule of X, with ¥, inde-
jeJ

composable of finite length. Let Jy= {je J|X; ~ ¥V}, and for j € Jy,
choose an isomorphism o;: V — ¥, and denote the inclusion by y,.
Then (y;e;); is linearly independent in C(V, X)gmn.
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Assume f = 3 y,a,8; belongs to rad (V, X), where j runs through
3
o finite subset J, of Jy, and f;&End (V). Now @ ¥, is a pure sub-

jely
module of X of finite length, thus a direct summand of X. Let
st;: X — ¥,; be the canonieal projections, with ;= 8. Since B
belongs to rad (V, X), it follows that B =otm, 3y = o
belongs to rad End (V). d

2
(b) Let W= @ V, with inclusions y;: ¥ —W. Then (7;); is a
i=1

basis of C(V, W)z

By (a), these elements are linearly independent. Let ¢: V —W
be given. Denote by m;: W —V the canonical projections. Thus
195 == Oy ADA Y pe7; = Uy, Therefore @ = » v;7;¢ shows that ¢

< .

is a linear combination of the elements 7, with coefficients in End (V).

(¢) Let X be an arbitrary module, let @;: Vv —X, 1<ign be
a finite set of maps such that (§;); is a linearly independent seb in

C(V, Xz Then (pd: @V —>X is a split monomorphism.

i=1

Proof by induction on n. For m=1, the fact that ¢, does not
belong to rad (V, X) shows that there is 7, with ¢, ¢ rad Bnd (V).
Thus ¢, is an automorphism and ¢, is split mono. Now assume
there is given ¢, ..., ,. By induction, Wwe may assume that

n—~1
(@it _C“BIV —X
j=

is a split mono, with image X ' Let X' be a direct complement of JE’
in X, thus X = X'@ X'. We can write ¢u: W X'@ X" as (¢ 00)
with @!: V — X’ and @,: ¥ — X". Note that @, belongs to the sub-
space C(V, X') of C(V, X)zmir)» and therefore G, is a linear combina-
tion of the basis elements Gy ..., Pa.a. 0L G(V,.X'). This shows that
¢ cannot belong to rad (¥, X"), since otherwise @y vy Pn \’;vould not
be linearly independent. Thus, the case == 1 shows that g,: ¥V —X"
is a split mono, say let g(V)® ¢ = X'. Then I=XQ@oV)®C
dhows that the image of ()., which is jus X' ®ogn(V) is a direct
summand of X. Also, (p;)i.1 has %o be a monomorphism.

(@) Let V,, 1<j<m, be pairwise non-igomorphic indecompos-
able module of finite length. Let ¢y v, — X, 1<t<n;, be maps
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with (@.); linearly independent in C(V;, X)gmqy,). Then

m ng
(@is)is @ (‘PIVF'*X
is a split monomorphism.

By the previous case,

‘Pu @Vj W;—X

is a split mono, say with retraction m;: X — W,;. We claim that the
map (7;p;) € End ((-D W,) is an automorphism. However, this is clear,
j

sinee m;p;=idy,, and, for j+# j', W, and W, have no common inde-
composable direct summand. But if (7;¢) is an automorphism, then
D @ W, — X is a split monomorphism.

(¢) Now assume for V e, there is given a family (@;p)ier i
Hom (V, X) such that (§); is & basis of C&(V, X)gmm). Now PV
4

Iy
is the filtered union of the finite direct sumg P V where B’ is a
VeB' ielj,
finite subset of B, and Ij is a finite subset of I,. It follows imme-

diately that (p.y)w: D@V — X is a monomorphism onto a pure sub-
v Ir

module ¥ of X, since the restrictions of (p.r)iy to @ @ V are mono-
Ve’ ieri,
morphismg onto direct summands of X, It remaing to show that
X/Y bhag no indecomposable direct summand of finite length. Assume
X[Y has a direct summand W/Y with W/Y~V e®B. Since Y iy pure
in X, there iy an embedding ¢: V — W with W = Y@ ¢(V). Also,
since Y is pure in X, and W/Y is pure in X/¥, we know that W is
pure in X. But then, according to (a), the set (F;p)ier, U ¢ is linearly
independent in C(V, X)gm(y), contrary to the assumption that (@;y)ier,
is a bagis. This proves the first part of the proposition.

(f) For the converse, let ¥ be a pure submodule of X, ¥ =

= @ Y, with ¥, indecomposable of finite length, and X/¥ without
jeJ

indecomposable direct summand of finite length. Let Jy = {jeJ|
|¥; ~ V}, choose isomorphism «;: ¥V — ¥, and let y,: ¥; — X be the
inclugion. Let ¢ = y,0;. We know from (a) that (@), is & line-
arly independent subset of C(V, X)gmy). Extend this to a basis
(¢iV)iEIV, of G(V, -X)End(V)s with ngrv. By the first p&rt of the the-

orem, the image of (p.y);» is a pure submodule of X, which contains ¥
as a direet summand.



Infinite dimensional representations ete. 345

But then P @\—) Vrs (@@ V)/Y;X/Yis a pure submodule, and
V Ir\Jv vV Iy
every indecomposable direct summand. of ((—D@ V) /¥, being of finite
v I )

length, is a direct summand of X/¥. Thus, since XY has no inde-
composable direct summand of finite length, we conclude that
((—B(—D V)/Y: 0, and therefore I, = Jy. This proves the last part

v Iy
of the proposition.

REMARK: Assume X is a divect sum of indecomposable modules:
of finite length, say X = @ V. Then we know that the inclusions
4

I
y: V> X give rise to & basis () of CV, Xigm - However, if
we choose an arbitrary basis (pw)isr, of C(Vy X)gma g, for every v,
then the image Y of (pw)w may be a& proper submodule of X.

TxampLE: Let R be a finite dimensional hereditary algebra of
tame representation type, and let S be a simple homogeneons module.
Denote by 4,: 8§# — §#+! the canonical inclusion. Nowlet X = P X,
with X, = 8%, and leb nelN

7 = (id, u): 8 > §* @ 8 = X, B Xy > X .

From the decomposition X = @ X,, we see that C(S8" X)ms gn is
one-dimensional, and it is clear that @, 0, thus it gives a basis of
C(8%, X)gng g+ OR the other hand, the image ¥ of (pa)s i3 2 proper
submodule of X. In fact X/¥~ 8° (for the definition of 8%, see 4.5).

2. Preprojective modules.

9.1. Let P be the set of (isomorphism classes of) indecomposable
preprojective modules of finite length. Note that P is partially or-
dered by: P'>P iff there exists a chain

P’=P1—>P2—>...—>.Pﬂ_1—>1’,,31’

of non-zero maps, where all P;e . Let % be a subset of P closed.
under predecessors (thus, if Pe9 and P'>P, then P'e). It is.
clear that 9 is either finite, or 9 = %. For any module X, let FuX
be the intersection of the kernels of all maps X — P with Pedl.

PropostrioN: Let 9 be a finite set of indecomposable preprojective
modules closed under predecessors. Let X be a module. Then, for
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any P in 9, there exists a (not necessarily uniquely defined) sub-
module Up of X which is isomorphic to a direct sum of copies of P
such that

X=ﬂ‘ﬁX@@ Up.
Pel

Tn particular, Ty X is a direct summand of X, and Ty Ty X = Ty X.

Tor the proof we will use a factorisation of the functor Jy, and
induetion on the number of elements of 9. Before we give the proof,
we want to derive two corollaries.

intersection of the kernels of all maps X — P with P indecomposable
‘preprojective. '

] 3 2.2. The functor Fy will be denoted just by &, thus §X is the

COROLLARY: Let X be a module, Then §X = X if and only if
X has no indecomposable preprojective direct summand.

Proor: If X =X'(PP with P indecomposable preprojective,
o then obviously X< X’'c X. Conversely, assume there is a non-trivial
| 8 homomorphism X — P with P indecomposable preprojective. Let
! be the set of predecessors of P in $8. Then % is a finite set, thus we
can apply the proposition: the submodule fyX of X has a direct

A | ; complement which is the direct sum of indecomposable preprojective
' 1 modules.

i | COROLLARY 2: If P is indecomposable preprojective, and X is a
'nl . module with X = §X, then Ext (P, X) = 0.

Proor: Let 0 X Y —P—0 be an exact sequence. Let U
be a finite subset of P closed under predecessors and containing P.
i Then FyY¥CX, since Y/X ~ P, and, on the other hand, X =

.f = FyXCTyY, thus X = T4¥Y, and therefore X iy a direct sum-
mand in Y.

that X has no indecomposable preprojective direct summand, and
that every indecomposable submodule of Y/X of finite length is pre-
projective. Then X is pure in Y.

:
:
i i COROLLARY 3: Let X be a submodule of the module ¥. Assume
l‘ .
|
i
[

5 I Proor: Let U be a submodule of ¥ containing X such that U/X
] is of finite length. By assumption, the indecomposable direct sum-
. 1 mands of U/X have to be preprojective, since they are submodules
2 i of Y/X. Let % be the set of predecessors of the indecomposable direct
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summands of U/X in $. By construction of %, §4UC X, and, since
F4X = X, we see that even $4U = X. By proposition 2.1, X = T U
is a direct summand of U.

9.3 TmwvMA: Let 9 be a finite set of indecomposable preprojec-
tive R-modules, closed under predecessors. Then there exists a finite
dimengional hereditary algebra B and adjoint functors S=: p M — M
and §+: 9% —,M with natural transformation yy: §-8+X — X such
that

(1) yx is & monomorphism, for all R-modules X.

(2) yx is an isomorphism, whenever X has 1o direct summand
isomorphie to any P in 2.

(3) §+P =0 for Pel.

(4) If PP\, and all predecessors of P belong to 2, then
S§+P is simple projective.

Tor a proof, we vefer to [6] and [34] (for tensor algebras, this has
been established in [14]).

PROOF OF PROPOSFTION 2.1: By induction on the number of ele-
ments in 9. If 9( is empty, nothing has to be shown. If 9 is non-
empty, let @ be a module in 9 which iz not the predecessor of any
other module in 9. Let B =9\ {¢}. By induction,we know that X
is of the form X = TpX @ @ Us, for some submodules U, being

PeB

€
direct sums of copies of P. Now fyX is contained in §xX, and there
is an exact sequence of the form
i€l

where m in the inclusion map, and I is some index set. Now we use
the lemma above for B. The functor S* which we obtain is a right
adjoint funetor, thus it is left exact and commutes with products.
As a consequence, we get the exact sequence

0 o> S+ Gy X Sy g+ 5 X~ T 8+Q
jel

of B-modules. Since §+Q is a simple B-module, the ring B/Ann ¢
is a simple artinian ring (where Ann M denotes the annihilator of
the module M), and therefore T] 87@ and also the image of 8*f are

iel
direct sums of copies of §+@. Thus, we obtain an exact sequence

0 > S+ Gy X Z05 g+ Gy X ——> DTG 0

jeJ
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for some index set J. Note that this sequence splits since S*@ and

therefore also @ 8*Q are projective modules. As a split exact se-
je

quence, it stays exact when we apply the functor §~. This gives us

the following commutative diagram with exact first row

0 — §-8+Fu X 5% 8-g+9u X -2 5 (DS-F+Q —0
jedJ
l?s*mx l?’%x '

T X —> Tgi.

Since F3X does not have any direct summand isomorphic to some
P &%, we know that yg,xis an isomorphism. Now the map (8-9)y7 Tpx

can be extended to X, since F3X is a direct summand of X, and
therefore it has to vanish on T3 X by the definition of . This implies
that the monomorphism yq, x in fact has to be an isomorphism. Since

both yg, x and yg, x are isomorphisms, we see that m is o split monomor-

phism with cokernel isomorphic to (P S-8+@Q. Note that §-8+@ ~ §.
jeJ
Let U, be a complement of PyX in PyX. Then Uy~ PQ, and
jes

T=05XQ QUr=TuXBUe@® DU =L D D

This finighes the proof.

COROLLARY: The image of the natural map yy: §-8+X — X ig
just TpX.

Proor: Congider the commutative diagram

8- 8+ Fo X S8, 8-8+ X

l'yﬂ'ﬁx l'}"X

FpX —4» X.

Since §xX has no direct summand isomorphic to P &%, it follows
from the lemma that ygyy is an isomorphism. On the other hand,

X = (I"uX @ @ Up for submodules U, which have the property that

;S"‘S+ UP 0. As a congsequence, also S~8*u is an isomorphism, and
therefore % and y; have the same image.
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9.4, We have seen that for any finite subset 9 of P closed under
predecessors, the submodule $gX is & direct summand of X, and that
X[FyX is a direct sum of indecomposable preprojective modules. For
§ = 9y, the situation is rather different. We will see that §X does
not have to be a direct summand of X, nor that X/JX hag to be a
direct sum of indecomposable modules. An example of the latter is
given by the module T P which clearly satisfies g (H P) =0 without

Pe Pe
however being a direct‘;B sum of indecomposable mod;fles.

On the other hand, assume for some module X, the submodule
§X is a direct summand, say X = $X @ C for some submodule C.
Since $0 == 0, we see that X = FTX Q@ 0 = §9X. Thus, 2 neces-
sary condition for $X to be a direct summand is that §9X = §.X.
The main result below will be that not only 2= 7, but that all
functors §* with A an arbitrary ordinal, are different. Here, 34 is
defined inductively as follows:

Let X be a module. Define X =X. If 1is an ordinal, and
guY iy defined for all 4 < A, then let §2X = () u.X in case Ais 2

23
limit ordinal, and §2X = §¢1X in case A is not a limit ordinal.

Finally, let §°X =[] 92X where the intersection is taken over all

ordinals what so ever.
It is clear that §°9° = §°. For, given any module X, there is

some ordinal A such that =X = §2X, since any chain of submodules
has to stop eventually. Bubt then 91X = §4+X, and therefore

gogoX — 0K = F2X = X .

We list some elementary properties of the functofs g2, with A an
ordinal, or A= co.
(@) If f: X — Y is a homomorphism, then f($2X)C F4¥.
(b) For any module X, we have FHX/[F+X)=10.

The proof of both (a) and (b) is by transfinite induction and rather
straight forward. An immediate consequence of these two properties

is the following useful fact:

(¢) Assume X is 2 submodule of ¥, and TA(Y/X)=0. Then
MycX,

Finally, we mention that §4 always commutes with direct sums:

(@) It X, is a family of modules, then P X.) = D I,
Again, the proof is by transfinite induction.
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2.5, In the proof of the next theorem we will need the following
lemma:

LeEMMA: Let P, P’ be indecomposable preprojective modules. Then
there exists an exact sequence

0 P —>Q—->Q —0

where @ and Q' are both preprojective of finite length, such that
Hom (@, P') = 0.

Proor: We will index the set P of indecomposable preprojective
modules by Nin the following way: let Py, ..., P, be the indecomposable
projective modules numbered in such a way that Hom (P;, P;) 5 0
implies 7<j. For neN, and 1<i<s, let P, = A-"P;, where 4
refers to the Auslander construction. It is clear that in this way
Hom (P;, P;) = 0 implies ¢ < j for all ¢,j. If

0 “—*Pia—‘;"Xi‘""*.Pi_[_,"‘*O

is an Auslander Reiten sequence, then the indecomposable direct sum-
mands of X; are of the form P; with i<j<i - s.

In order to prove the lemma, fix P = P,, We show that for
every n € N, there exists an exact sequence

0 >P5%Q—>Q —0

such that the indecomposable direct summands of @ are of the form

P, with j > n, and with @' preprojective of finite length. For n <1,

we can take just the Auslander Reiten sequence starting with P.

Now assume we have such a sequence for some n. Let @ = @ P},
)

thus m,; % 0 only for some j >mn. Consider the monomorphism

PE5Q= 6}—)1’;’1—-‘-"1”—» G;)X;"f,

its cokernel is an extension of @ by @ P, and therefore prepro-
jective of finite length. The indecomposable direct summands of (DA

are of the form P, with k> n 4 1. 7

2.6. THEOREM: Let A be an ordinal, and P an indecomposable pre-

projective module. Then there ewists a module X = X(A, P) such that
J2X ~ P.
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Proor: By induetion on A. Thus fix 4 and P, and assume we
have constructed X(u, @) for all ordinals p< 4, and any indecompos-
able preprojective module Q.

First, assume A is a limit ordinal. Fix modules X, = X(u, P),
and isomorphisms ¢y §4X, — P, for all u < 1. Define X = X(A, P)
and « by the following commutative diagram with exact rows

0— (—Bﬂ"‘Xﬂ - @Xu — @Xﬂ/g‘”XM
u<i

p<i n<a
(2w id

0> P — X ->@X/FXu

p<A

where the maps in the first row ave the canonical ones. We have
93 X, THXy) = @ FHE[THEy) = 0, thus §4X CaP). Conversely,
p<a

n<i
congider for v < A the commutative diagram

ﬂ‘vXp —> .X,;

[ ll'

A
@ ‘J‘HXM — @X“

p<a p<a
(@

Y

P & X

where ¢, denotes the inclusion of the »-th summand. We may regard
the right vertical map X, — X as an inclusion, thus X, may be con-
sidered as a submodule of X in such a way that 9X,=a(P). Con-
sequently X 29X, = a(P), and therefore also $2X =[] 9"X 20(P)-

y<A
Together with the previously derived inclusion, we see that $+X = a(P).
Next, agsume A= -1, where u is an ordinal or p=0. For
any indecomposable preprojective module @, we fix some X, @). IE

k(] .
Q' = @ Q. with Q. indecomposable preprojective, Wwe introduce

i=1

T @) = DX, @),

q=l

and we see that also in this case, FuX(u, @) ~ Q' For cogveniency,
we uge N ag index set for P, say B = {Paln e N}. According to 2.5,

we may choose exact sequences

0 -——>P£"->Q,,-—>Q,’,-—>O
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with Q,, Q. preprojective of finite length and Hom (Q., P,) = 0.
Denote by o, @, = X(u, @,) 2 monomorphism mapping onto
FuX(u, Q.), and by Z, its cokernel. Thus we have the following
commutative diagram with exact rows and columns :

0 0
v v
0>P—Ltrsg, ——>Q.—0
l“u lan
0 — P2 X(p, @u) > ¥, —0
| v {
Z,— =7,
y ¥
0 0

We define X = X(A, P) and « by the following commutative diagram
with exact rows

0> @P 22 DX(u, Q) > DTV —0
neN neN neN

R

0—- P —%—>» X —PY,—0
neN
where ¢ is the summation map. Applying J#, we get T4Z, =0, since
Zo=X(u,Q,)/X (11, @,). Thus $#Y,C6,(Q,) ~Q,. Therefore

sw( @ Yﬂ) = @IS 6.0L) ~ DL
neN neN

neN neN
Since ﬂ’(@@;) = 0, we also have

neN
m(% Y,,) = WH(@N y,,) = srsru(% Yn) =0.

As a consequence, ﬁ’ﬂX;Q o(P).
Congsider for some m e N the commutative diagram

P s X(u, Qn)

tm tm
Y

|
PP -2 DX (4, Q)

neN

¢

Y 5
P = X
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As in the previous case, we may suppose that the right vertical map
is an inclusion map X(u, @.) S X, and, in this way, a(P)= y,(P)C
C §uX (4, Qn) € T4X. Now suppose there is given some homomorphism
p: JuX —P,,, for some meN. Then its restriction to X (u, @n) ~ Qn
has to be zero, since Hom (@, P,,) =0. Thus its restriction to «(P)
is zero, since «(P)C §4X(u, Q). This shows that «(P) is contained
in the kernel of any homomorphism ¢ from §2X into an indecompos-
able preprojective module, thus «(P) is contained in FFLX = Fu1X =
= §*X. Together with the previously established reverse inclugion,
we conclude that «(P)= F2X. This finishes the proof.

2.7. A module X will be called preprojective in case it satisfies
the following equivalent conditions:

(i) §°X =0,
(ii) There exists an ordinal A with $2X =0,

(iii) Every non-zero submodule U of X has a direct summand
which ig indecomposable preprojective. SRR

Note that for modules of finite length, and also for indecompos-
able modules, this notion reduces to the previous use of the notion

4 preprojective ».

PROOF OF THE EQUIVALENOE: Clearly, (i) and (ii) are equivalent.
Also, if §°X = 0, then §°U =0 for any submodule U of X. I U
has no indecomposable preprojective direct summand, then U =1U
by 2.2, and therefore also §°U = U, thus U = 0. This proves the
implication (i) = (iii). On the other hand, assume (iii) for X. Since
any transfinite chain of submodules of X has o stop eventually, there
is an ordinal A with $2X = 9°X. If this submodule is non-zero, then
by assumption it will split off an indecomposable preprojective direct
summand, and therefore §+1X c f2X, impossible. Thus $4X = 0,

which shows (ii).

PrOPOSITION: The clags of preprojective modules is closed under
submodules, products, and extensions.

Proor: If UCX, then also §°UC9°X, thus it X is preprojec-
tive, also U is preprojective. If 0 XY —Z—0 i3 an exact
sequence, and X and Z are preprojective, then §°Z =10 implies
§°Y ¢ X, and therefore §°¥ = §°¢°Y¥ C §°X = 0. Tinally, let X; be
a family of modules. We claim that §4(T] X.) c T §2X; for all ordi-
nals A. Again, we have to check it only for A =1, using transfinite
induction, since intersections commute with products. Now J] §.X; is

23
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the intersection of the maps of the form
T[X. 2 X% P

with P indecomposable preprojective, where x; denotes a canonical
projection. As a consequence, F(J] X;) being the intersection of the
kernels of all maps J] X; — P with P indecomposable preprojective,
is contained in ] $X;. Thus, if all the X, are preprojective, then

(] X) cT[ 9%, =0,

thus J] X is preprojective.

3. Preinjective modules.

3.1. Let & be the set of (isomorphism clagses of) indecomposable
preinjective modules. Note that & is partially ordered by: I>I' iff
there exists a chain

I=l—-I~>..—>I,_ I, =1I

of non-zero maps, where all I,e&. Let B be a subset of & closed
under suceessors (thus, if 7e®B and I>I', then I'e®B). Again, it is
clear that B is either finite or ¥ = . For any module X, let JuX
be the sum of the images of all maps I —2X, with Ie®B. In the
case of B = &, we denote the functor Jy just by J, thus JX is the
sum, of the images of all maps I — X with I indecomposable prein-
jective.

ProrosirIoN: Let B be a finite set of indecomposable preinjec-
tive modules cloged under successors. Let X be a module, Then JzX
ig a direct summand of X. For any I e B, there exists a (not neces-
sarily uniquely defined) submodule V; of X which is a direct sum of

copies of I, such that JgzX = PV;. If B’ iy a subset of B closed
IeB
under successors, then JpX = @V;.
Tel’
The proof will be rather gimilar to the corresponding result for

the functors Ty. Again, we will use a factorisation of the functor dg.

3.2. Levra: Let % be a finite set of indecomposable preinjective
E-modules, closed under successors, Then, there exists a finite dimen-
sional hereditary algebra B and adjoint functors S8—: ;i — M and
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S+: pM — M with natural transformation py: X — 8+8-X such that
(1) @y is an epimorphism, for all R-modules X.

(2) @y is an isomorphism, whenever X has no direct summand
isomorphic to any ITe.

(3) 8-I=0 for all Ie¥.
(4) If Ie P\, and all successors of I belong to A, then S-I
is simple injective.
Again, for a proof, we refer to [6] and [34].
ProoF oF PROPOSITION 3.1: By induction on the number of ele-
ments in B If B is empty, nothing has to be shown. Otherwise,
choose some Y in % which is not the successor of any other element

in B, and let A =B\{¥}. By induction, we know that JuX is &
divect summand of X, and of the form Ju& = @V;, where each V;
IeU

is g direct sum of copies of I. 'We apply the lemma to 9, and obtain
an algebra B, functors S~ and 8+, and a natural transtormation @.
Let w: JyX — X be the inclusion map. There is a direct sum Y

J

of copies of ¥, and & homomorphism «: ) ¥ — X such that the ho-
J
momorphism (e, %): €D Y @ 3y X —X maps onto JgX, thus we obtain
J

an exact sequence

DY@ Iy X L5 X > X[IpX —0.
J

Apply the right exact funetor 87, We get

@8- T 5Ly §X > 8 (X[IpX) 0,
J

where we have used that direct sums of copies of I, with I in A,

vanish under §—. However, S~ i simple, thus there is 2 subset J'

of J such that the restriction of S7a to @S Y isa monomorphism.
Jl

Also, 8~Y is injective, and since B i o finite dimensional algebra,
any divect sum of injective modules is injective, thus we obtain 2

split exact sequence

0->@PS Y-8 X~ 8 (X)IgX)—0,
JI
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which gives under S* the split exact sequence -

0 >P8t8 Y - 88X - 8T8~ (X[IgX) - 0.
7

However, by induction, the natural epimorphism @y X — 8+8~X
splits and has as kernel just JyX and thus induces an isomorphism
X /33X — 8T8~ X. Since we will show that X/JgX has no direct sum-
mand isomorphic to any I&c®B, we see that we have the following
commutative square with vertical maps isomorphisms

§+ 8- X — §+8-(X /3 X)

T ‘[ (PXIJ%X

X[igX — X[IgX
Thus, the lower map also is a split epimorphism. with kernel isomor-
phic to P/TS~Y ~@P Y. This shows that JuX. is a direct summand
7 J’
of X, and that the inclusion JyX C JpX splits with cokernel P Y.
J’

Thus, there is a direct complement Vy of JyX in JuX, which is a
direct sum of copies of Y.

It remains to be seen that X/JgzX has no direct summand iso-
morphic to any I in B. In fact, we show that Iy(X/IX) = 0. Thus,
let o: I —X[JpX be a homomorphism. We get an induced exact
sequence

0—JdgX >X - X[IgX -0
L
0>dgX—-X'— I —90.

Now JgX is an epimorphic image of a direct sum I, of indecom-
J

posable preinjective modules I; belonging to %, and there is a commu-
tative diagram with exact rows

0~—>323X->X’-+I—->0
i

0PI, > X">I1->0.
7

Sinee I is of finite length, X" decompoées into the direct sum of some
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of the I, and a module X” which is an extension of the form

0->-PL,>X">1I-0,

jeJ’

with J' finite. But then X" itself is a direct sum of indecomposable
preinjective modules belonging to B, since all I, and I belong to %,
and B is closed under successors. Thus, X" is a direct sum of elements
of 9B, and therefore «'f'(X")C JpX. But then «=0.

This finishes the proof.

COROLLARY: The kernel of the natural map gz X —8Y8~X is
just JgX.

3.3. THEOREM: Let X be an arbitrary module. Then IX is a pure
submodule of X, with (X/IX)=0, and IX is o direct sum of inde-
composable preinjective modules.

ProoF: We use N ag index get for &, say J={S./ne N}, in such
a way that I,<I; implies i<j. Let d,= da,,...1,)+ Lhen

JnX = Jn._l-X@ Vn
with V, a direct sum of copies of I, Thus

J.X:UJnX:@Vn,

neN - neN

that is, JX is a direet sum of copies of the various I,. Since X =

= |J J,X is the union of a chain of direct summands of X, we see
neN

that JX has to be pure in X.

TFinally, assume J(X/JX)=0. Then X/3X splits off an indecon-
posable preinjective summand, thus there is a submodule ¥ of X
containing JX such that' ¥/JX is indecomposable preinjective. Since
3X is pure in X, and ¥/JX is of finite length, JX is a direct sum-
mand of ¥, say ¥ = JX @ ¥' for some submodule ¥’ of ¥, Now
Y' is an indecomposable preinjective submodule of X, and therefore

¥Y'C 3X, a contradiction.

3.4. Modules X with JX = X will be called preinjective, thus these
are just the direct sums of indecomposable preinjective modules.

ProrostTioN: The class of preinjective modules is closed under
quotients, direct sums and extensions.
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Proor: If X — Y is surjective, and JX = X, then also ¥ is
generated by the images of maps I — ¥ with I indecomposable pre-
injective, thus J¥Y =Y. Let 0 - X - ¥ —Z — 0 be exact, and X
and Z preinjective. Since X is preinjective, X = JX CJY. Thus
there is a surjective map Z = Y/X — Y/JY. Since Z is preinjective,
also Y/3Y is preinjective, by the first part of the proof. Thus Y/IY =
= J(Y[IY) = 0, by 3.3. This shows that ¥ = J¥. It is obvious
that direct sums of preinjective modules are preinjective, again.

Remarx: The direct product of preinjective modules does not
have to be preinjective.

Oonsider for example J]I. We claim that J(H I) = @1I. For,
Iel Ie Iel
if I' is an indecomposable preinjective module, and B is the set of

successors of I', then any homomorphism ¢:I'—J[I maps into

Ie3
[TI=@IcPH]I, thus J (H I) C@I. The reverse inclusion is trivial.
IeB IeB  IeJ Ied Ied

3.5. We want to derive an eagsy corollary from the fact that JX
is always pure in X.

COROLLARY: Let X be of finite length withqut non-zero preinjective
direct summands. Let. ¥ be preinjective. Then Ext (X, ¥) = 0.

Proor: Let 0 - Y —Z — X —0 be an exact sequence. Then
Y = JYCJZ, and conversely also 3ZC Y, since J(Z[Y)= IX =0.
Thus, JZ = Y. However, since JZ is pure in Z, and Z/JZ2 = X is
of finite length, JZ is a direct summand of Z. Thus the given sequence
splits.

3.6. We are interested to know under what conditions JX is not
only pure in X, but even a direct summand of X. The following
theorem gives a necessary and sufficient condition on the algebra 4
in order to have the property that for any A-module X, the sub-
module JX is a direet summand. This condition will be used to single
oub all those algebras A which have this splitting property.

TreorEM: The following conditions are cquivalent for a finite dimen-
stonal hereditary algebra A:

(i) For any A-module X, the submodule JX is a direct summand
of X.

(i) If X is an A-module with ¢ submodule U of finite length,
and if 3X)=0, J(X/U)= X|U, then X is of finite length.
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Proor: (i) = (ii). Assume there exists a module X not of finite
length, and a submodule U of finite length, such that JX =0,
3(X|U) = X|U. We want to construct a module Y such that 3Y
is not » direct summand of Y. Let X/U = @I, with I, indecorpos-
able preinjective. For jedJ, let jel

0->V,»W;»I;—0

be a non-split exact sequence with ¥, preinjective of finite length.
Such sequences do exist, for example let V,=AI; and take the
Auglander Reiten sequence. Let

V=@V“ W=W,, =@, ﬁ=@ﬁ“

jeJ jed

and congider the induced exact sequence

l td E4 n
(

-
-~

0—->VS>W-AhX/T~0
Voo
0 0

where ; is the inclusion, and = the projection.

Since V is a direct sum of indecomposable preinjective module,
and o/ (V) € V, we have o/(V)C JY. On the other hand, 3(¥/«/(V)) =
= J(X) = 0, thus also JY Ce/(V). This shows that J¥ = o' (V). Now
assume JY is a direct summand of ¥, then there is a splitting map
o: X — ¥ with p'o the identity of X. Consider the diagram

0—+U—->X>X|U—~0
(%)

The right square fr'c=mnf'c="m commutes, thus there exists p: U — 14



\Ilg_!\.'

360 Claus Michael Ringel

making the left square commutative. Note that this diagram shows
that the exact sequence

0>TU—->X5X/U—0

is induced from the lower exact sequence in (%) by ¢. However, U is

a module of finite length, thus ¢: U —V = (P ¥, maps into a finite
jeJ
direct sum, sayy into @)V, with J* a finite subset of J. Let J"= J\J'.
jel’
The lower exact sequence of (%) splits accordingly into the two exact
sequences

0PV, >~PW;,~Pg; -0

jeJ’ jet’ jeJ’
and

Oﬁ@Vj—*(-BWJ-*@Qj—*O.

jeJ” jed’ jeJ"

We conclude that therefore X hag a direct summand isomorphie to

PQ,. In particular, IX s£0, contrary to our assumption.
jeJ”

(ii) = (i). Let X be a module. Assuming (i), we want to con-
struct a complement of JX in X. Congider the get 11 of submodules
U of X with the following two properties

(@) 3IXN T =0, and
(b) I(X/(IX + T)) = 0.

The set is non-empty, since 0 €1l. The set U also is inductive:
let (U,); be a chain of submodules belonging to 1. The union |J U;

clearly satisfies (). In order to prove (b), let I be indecomposable
preinjective. Then

Hom (I, X/(3X 4+ U,)) = Hom (I, im X/(IX + T))
= lims Hom (I, X/(3X + U,)) =0.

Consequently, we may choose U maximal in 11. We claim that U
is a complement of JX in X, Assume JX 4 U# X. Let JX 4 Uc
c ¥ C X such that ¥'/(JX 4 U) is of finite length. Let J(X/Y') =
= Y/¥' with Y'C Y CX. We can apply (ii) to the module ¥/(3X 4+ U)
with submodule Y'[/(3X 4+ U), since

YJOX + U)CHX/OX+ T) =0 and I(T/T)=X/T".
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Thus, we see that Y/(JX 4 U) is of finite length. If we apply
Hom (—, JX) to the exact sequence

0 >3 X+ TH5Y->Y/(3X4T)—0,
where : denotes the inclusion map, we get an exact sequence
Hom (¥, 3X) Ee3¥, Hom (JX + U, IX) — Ext (¥/(3X + U), 3X).

By 3.4, the last term is zero, thus Hom (,JX) is surjective. In par-
ticular, if we take the projection map @: IX @ U — JX with kernel U,
we see that ¢ extends to a map o't ¥ — JX. Let U’ be its kernel.
Then x = '|JX @ U shows that the restriction of = to U is zero,
thus U C U', and that the restriction of @' to JX is the identity, thus
Y = IX@® U'. Moreover, since X/(IX@ U') = X|Y satisfies

(X)X DT)) =0,

we see that U’ belongs to 1. This contradicts the maximality of U,
and therefore concludes the proof.

3.7. THEOREM: Let A be a finite dimensional hereditary algebre of
tame representation type, and X an® A-module. Then JX is a direct
summand of X.

This ig an immediate consequence of the previous criterion and the.
following lemma.

LEmitA: Let A be a finite dimensional hereditary algebra of tame
type. Let X be an A-module, and U 2 submodule of X of finite length
which is the direct sum of ¢ indecomposable modules, Assume JX =0,
and J(X/U) = X/U. Then X/U is the direct sum of at most 6 inde-
composable preinjective modules. In particular, X/U, and therefore
also X, are of finite length.

RumArk: Tt will be clear from the proof that the factor 6 in the
formulation of the lemma can be improved in most cases. Actually,
the case that X/U is the direct sum of 67 indecomposable modules
can only occur in case of type Ey. On the other hand, if 4 is of type
Au, An Or Gn, then the assumptions of the lemma imply thab XU
is the direct sum of at most ¢ indecomposable modules.

PRroOF OF THE LEMMA: Decompose X/U = @@, with @, inde-
ied
composable preinjective. Let J' be a subset of J with precigely 61+1,
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elements. Consider the exact sequence induced by the inclusion (P @, C
CD, jeJ’

jEJ

’ 0—+U—>X’—>@Q,->O

jeJ’

I

0>U—»X—>PQ;—0.

jeJ

Then X' is of finite length, thus we can calculate its defect X', Since
U is the direct sum of ¢ indecomposable modules, 6U >— 6¢. Since
€, is indecomposable preinjective, 6Q;>1 for all jeJ', thus

6X'= 86U~ Y 80Q;>—6t+6t41=1.

jeJ’

As a eonsequence, X' splits off an indecomposable preinjective direct
summand, Since X' can be considered as a submodule of X, we see
that 0= JX' C JX, contrary to our assumption, This shows that J
can have at most 6f elements.

3.8. Now assume that the algebra R iy of wild representation type.
In this case, we have to work with growth numbers. Recall that we
denote by 4 the Auslander construction. Also recall that for any
module X of finite length, there is defined a vector dim X in R, where
s is the number of simple R-modules, as follows: we choose a fixed
ordering P,, ..., P, of the indecomposable projective modules, and the
4-th component of dim X i given by the dimension

dim Hom (P;, X)gna 2y -

Clearly, the length |X| of X is just the sum of the components of
dim X,

ProrosrrioN: Let B be a twosided indecomposable finite dimen-
sional hereditary algebra of wild representation type. Then there
exists a real number g > 1 such that for any indecomposable injective
module I, the limit

lim = dim AT

n=>rco

in Re exists, and has no zero component.
Note that this implies that also the limit lim 1/g» |4~ I} exists and
f—>rco

is non-zero. Thus, both dim A»I and |A»I| grow exponentially with n.
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The number g measures the growth rate, and will be called the growth
number of I,

~ For the proof, we refer to a forthcoming paper [33]. The case
s = 2 has been considered in [31]; as an illustration of the general
result, it seems to be valuable to consider this case s =2 in more
detail: in fact, we can give an explicit formula both for ¢ and the
limit lim 1/g" dim A" 1. |

fA=>00

Thus, let E be of the form

B = F M

0 @
where J', G are division rings, and Mg is a bimodule, everything
finite dimensional over the commutative field % which operates cen-
trally. Let @ = dim Mg, b = dim pM. The algebra R is of wild rep-
resentation type if and only if ab > 4. An R-module is given by two
vector spaces Up, Vq, and & linear map ¢: Ur® rM ¢—> Vg, its di-
mension type is dim (U, V, ¢) = (dim U, dim Vo) eRe If X is an
R-module of finite length and without non-zero projective direct sum-
mands, then dim AX = ¢ dim X, where ¢ ig the linear transforma-
tion of R* given by the matrix (ab;—l :f . Thus, in order to

study the behaviour of 4, we have to look at ¢. In fact, assume the
limit ' = lim 1/g" dim A*X exists, and is non-zero, for some indecom-

n—rco

posable module X of finite length. Then x' is an eigenvector of ¢
with eigenvalue g. For, X cannob be preprojective, since ArX #£0
for all n, thus dim A"X = e* dim X, and therefore for x = dim X,

ey = gx'.

1 .
cx' =lim = ¢rtix =g-lim
" #=r0c0

n—rc0 g“‘“

Thus, we have to determine the eigenvalues of ¢, and to decide whether
one of those is the growth number of E.
Now, the eigenvalues of ¢ are
1 e 1 1 e
g == (ab—2 +V(ab)*—4ab) and -=3 (ab —2 —V/(ab)* —4ab),

2

oo

they are real if ab>4, and different, if ab s 4. This shows that we
can have a growth number > 1 only in case ab > 4. An eigenvector

for g is given by

b+ v/ (ab)* — dab 1 ab — V' (ba)? — 4ab
xl___(a-l- (ga) a)’ R xzﬂ( (2“) )
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Now assume that ab> 4. In this case it is clear that for a vector
x€R? lim (1/g")c"x always exists, and that it has positive compo-
n—roo

nents if and only if x belongs to R, ;4 Rx,, where R, = {reR[r>0}.
Now the dimension types of the indecomposable injective modules

are (é) and (11)), and it is easy to check that both belong to R, x,+

+ Rw,. This shows that g is the growth number of R, and that
lim 1/g® dim A1, for I indecomposable injective, is a multiple of x,.

n—rco

3.9. THEOREM: Let B be o finite dimensional hereditary algebra of
wild representation type. Then there exists an R-module X such that
JX s not a direct summand of X.

ProoF: We may assume that R is twosided indecomposable. We
want to construct a module X as the union of a proper chain of sub-
modules X,, of finite length,

XycX,cX,c..cX,c..UX, =X,

such that 4X,, =0 and J(X,/X,) = X,,/X, for all m, thus also JX =0,
(X[ Xo) = X[X,. As a consequence, the assertion will follow from 3.6.
In the proof, we will need two results on exponentially growing se-
quences which will be derived in 3.10.

We use N as index seb for & as follows: let I, ..., I, be the inde-
composable injective modules such that Hom (I, I,) 7 0 implies 4.
For neN, 1<i<s, let I,.., == 4»I;. Then, for all 4, j, we have that
Hom (I;, I,) % 0 implies i>j. Consider the sequence (a,), With a,=
= |I,|. If g is the growth number of R, then

1
lim Eam+i> 0 s

n—rco

for all 1<i<s, thus, by 3.10.(2), there is ¢ with 1<i<s, such that
for all ¢, N e N, there exists n>N with a;> ay..;+ ¢ for all j > ns 4.
Let I =1, Thus we have:

(¥}  For any ¢, ¥ e N, there exists #>N such that for any inde-
composable preinjective module I', with I' 4 A" I, and Hom (I’,
ArI) 0, we have |I'|>|4"I| + e.

For, let I'= I, for some jeN. Since Hom (I;, A"I)540, we have
j=ns -+ i, and since I;42 A*I, we have even j > ns 4- 4. Consequently,
| = ;> @nspi - b= |A*I| + b.
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Let P be the indecomposable projective module with P/rad P ~
~gocl. Let g be the growth number of R. Since g>1, there is
#eN with ¢g¥>2.

Let X,~P. We are going to construct X, by induction on m,
with the following properties:

(1) -Xan—l/-Xoc Xm/-Xo splits,
(2) X/ Xy~ A" I, with n,>um,
(3) X, =0.

Assume, we have constructed X,,. Denote by o: X,— X, the
inclusion map, by p: X,—@Q the cokernel of x. By induction, we

have

m
Q = @AMI, with W;f}%j .

i=1

Congider the sequence (b,), with b, = dim Hom (P, 4»I). By 3.3,
we know that lim b,/g">0. Thus, we may apply 3.10.(3), to the

N—roQ

sequence (b,), and the natural numbers %, ..., N in order to obtain
a natural number ¥ > u(m 4 1) such that

m
bay1> 2 o, for all >N .

jeml

Ler ¢=|X,|. Applying (%) to ¢, N, we find n= Ny >N with the
following property:

(@) If I’ is indecomposable preinjective, I' 4 A" ], and
Hom (I', A™+I)+0, then \I'| > |Arn ]| + | X -
Note that

b, . .y = dim, Hom (P, A*m+1]) = dim, Hxb (4™ 1, P),

g+
using 1.4. And,

= dim, Hom (P, A"~ ]) = dim, Hom (4"+~"I, I) =
— dim, Hom (A" I, A%I),

b

Rypb1— Wy

where we use the fact that dim,Hom (P, ¥) = dim; Hom (¥, I for
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any module ¥, and a property of the Auslander construction, see 1.4.
Consequently, we conclude that

(b) dim, Ext (A", P)> dim, Hom (4", Q).

We apply the functor Hom (A"+I, —) to the given exact se-
quence

0 >X,%X,-5 00,
and we get the connecting homomorphism
6: Hom (41, @) — Bxt (A1, X;).

According to (b), the map J is not surjective, thus there exists an
exact sequence

B: 0 »X,L Y2 Atwn] ()

which i3 not in the image of §. We form the following commutative
diagram with exact rows and columns:

0 0

v v
0—> X, &% X, 5Q-0

¥ ' lid
Y N 2
0— Y S5 X, —>0-0

/

Y
AnmﬂI&.Anm-uI
v v
0 0

and we may suppose that y': X,, — X, is an inclugion. In this
way, we have constructed X, ,, and the properties (1) and (2) for
X.ny1 are clear from the construction.

It remaing to be seen that JX,, ., = 0. By 3.1, we have to exclude
the case that there is an embedding ¢: I'—X,,, for some indecom-
posable preinjective module I’. Since ¢ does not map into X, acecording
to 3X,, =0, we see that #'¢p 0. Thus Hom (I', A*]) 0, On the
other hand, since I’ embeds into X,,,;, we have

| <& | = [A"mn ) 4 | X
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It follows from property (a) that I' =~ A"+, Since any non-zero
endomorphism of an indecomposable preinjective module is an auto-
morphism, '¢ has to be an isomorphism, and therefore ' splits.
Consequently, we get & map o: Xpyy — X, with gy’ being the iden-
tity map of X,. Congider the following diagram

0 XY S Ammnl -0

I
lid leu' itp
¥

0>X, %Xt @ —0.

the left square being commutative according to o'y == gy’ ¢ =o. Thus
there exists p: A" I — ¢ making the right square commutative, and
therefore the lower sequence B is induced from the upper sequence
by v, that is, B = d(y), contrary to our assumption. This shows
that there can be no embedding ¢: I' —> Xpyy with I' indecomposable
preinjective, and therefore 3X,.,=0.

3.10. It remains to derive those results on exponentially growing
sequences which were used in the proof of Theorem 3.9. Let (an)n
be a sequence of real numbers. Note that lim a,/g*=a i and only

n—roo
if for any >0 there exists N with gn(a—¢) << g*(a -+ ¢) for all
n>N.
(1) Let lim a,/g" = >0, with g>1. Let¢ eN. Then there
>0
exists N with @, > @, + ¢ for all n>N.

Proor: First, choose some natural m with (@/2)(g—1)gm>e. Leb

[\ N

0<8< ...g._:_%
g+1

There exists N>m such that g*la—s¢)<e,<¢"(@+ ¢) for all n>N.
Thus, for n>N, we have

g — > g (@ —) —g*(a + &) = g"lalg —1) —ely +1)]

a a
> g"-g(g—1)>g"’-§(g—1)>c-

(2) Let (a.), be a sequence, let s N. Assume

. Apgti
lim —-’fffi> 0

{00
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for some g>1, and all 1<i<s. Then there exists 4, with 1<i<s,
such that for ¢, N €N, there exists n>N with a;> a,,.,+ ¢ for all
j>ns +14.

Proor: According to (1), choose for any ¢e N, some N, such
that @,,,> a,+ s¢ for all u>N,. If we fix such an u, with u>N,,
it is easy to see that one of the s elements ' between % and w + s—1
satisfies @y, ,> a, -+ ¢ foralll<t<s—1. Call this element u,, thus
we have a, ;> ay,~+ ¢, for all 1<t<s—1. In the infinite set U,=
= {u,Ju>N,} there have to be infinitely many elements which are
congruent modulo s, thus there is some i(¢), with 1 <4(c)<s such that
the set U, o= {uoJe>N,, u, =4(c) (mod 5)} is infinite. Again, for infi-
nitely many ¢, the elements ¢(¢) have to be equal, say equal to 4,
In this way, we have found . Now, let ¢ and ¥ e N be given. We
may replace ¢ by a larger number ¢ satisfying i(¢') = 4, thus we may
assume ¢(¢) = ¢. Now choose an element ns -4 ¢ in U, such that
#n>N. We claim that thiy satisfies the property

@5 > Gpsy 4 © for all j>ns 1.
Let j>ns 44 be given, leb ¢ = j— (ng +4). If 1<f<s—1, then
@ = Gnogipt > Ongps+ €, since ns +ie U,.
If t>5, say t=ms 41 with 1<m, 0<t'<s—1

05 = Qnspipmotr = Onoqips + MEC> s s+ €,

since ns + 4+ ¢>N,, and using the previous case. This finishes the
proof.
(3) Assume lim a,/¢g" > 0 for some g>1. Let ¢g*>2 for some
n—=rco

natural number «. Assume, we have selected natural numbers ;> uj
for 1<j<m. Then there exists N >u(m -4 1) such that for all a> X,

m
we have @n,;> Y @y y,.
=1

Proor: Let 4= lim a,/g". For ¢=a-(g—1)/(g- 1), there exists
fi~—>co

N' with g™(a—e) < @< g™(a + &) for all n>N'. Let N be the maxi-
mum of u(m - 1) and the various N’ n, with 1<j<m. We claim
that this N works. Thus, let n>N be given, let n = ut + » with
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ueN, and r<w#. Then we have

m m m
S tny< (0 ) Sgri<(at ) g =(a+ o) ¥ grt-ntra
i=1 =1 §=1 =1
{—1 . gut_l
<(a+ s)g’-_Eog"‘ =(a+e)g prums <(a+egg¥=_(a-+e)g" =
’:

=(a—e)g-g"=(a—&) g™ <any .

4. Torsion regular modules.

4.1. A module of finite length will be called torsion if it has no
non-zero preprojective direct summand. For an arbitrary module X,
let TX be the submodule of X generated by the submodules of finite
length which are torsion. This submodule BX will be called the tor-
sion submodule of X, and X will be said to be torsion if BX = X,
and torstonfree if TX = 0.

Note that if X, X, are torsion submodules of X of finite length,
then no non-zero direct summand of X, -~ X, can be preprojective,
gince otherwise there would be 8 non-zero homomorphism from one
of the modules X,, X, into an indecomposable preprojective module.
Thus, the set of torsion submodules of finite length is filtered. As a
consequence, if a submodule of finite length is contained in BX, then
there is a torsion submodule of X of finite length containing Y. Also
note that a torsion module cannot have a non-zero preprojective
direct yummand. For, assume X is torsion, X = P@ X' with P inde-
compogable preprojective. Then P is a direct summand in every sub-
module which containg P. Thus there does not exist a torsion sub-
module of finite length containing P, a contradiction. As & conse-
quence, we see that we have the following inclusions, for any module X

JXCBXCTX.

TuworEM: Let X be a module. Then BX is a pure submodule, and
B(X/BX)=0.

ProOF: We have seon that BX has no indecomposable prepro-
jective direct summand. If we show that every indecomposable sub-
module of X/BX of finite length is preprojective, then we can con-
clude from Cor. 3 in 2.2 that GX is pure in X, and we also know
- that B(X/BX)=0. Thus, let BXcUCX, with U/BX of finite
length. Let U’ be a submodule of X of finite length with U= U"+

24

il
i

1
il
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+ BX. Now Un BX is a submodule of finite length of TX, and,
therefore contained in a torsion submodule U” of finite length. Since
U'4- U" is of finite length and not contained in TX, it cannot be
torsion, thus U’ U” has an indecomposable direct summand P which
is preprojective, say U'+ U'=P@V for some submodule V. Since
U" is torsion, Hom (U”, P) = 0, thus U” has to be included in V.
Consequently

UBX ~ U[(T' N T") o (U + UMV 5 PO(V/T")

shows that U/BX has an indecomposable preprojective direct sum-
mand.
We note the following consequence:

COROLLARY: If GX is of ﬂ'm:te length, then BX is a direct sum-
mand of X.

If BX is not of finite length, then BX does not have to be &
direct summand of X, even in the tame case.

COROLLARY 2: The class of torsion modules is closed under quo-
tients, extensions, and direct sums. The class of torsionfree modules is
closed under submodules, extension and products.

As we have seen, the extension of a torsion module by a torsion-
free module is always pure; however, it does not have to split. Let
us consider also the other way: it is rather trivial to construct non-
split extensions of a torsion module by a torsionfree module. How-
ever, if such an extension is pure, then it splits:

Lema: Let Y be a pure submodule of X. Assume Y i3 torsion-
free, and X is torsion. Then Y is a direct summand of X.

Proor: We claim that the torsion submodule BX of X ig a direct
complement. First, we show that BXN Y =0. For, let U be a
submodule of BX N Y of finite length. There exists a torsion: sub-
module U’ of finite length containing U. Now since ¥ is pure in X,
we see that ¥ is a direct summand of ¥+ U, say Y+ U'=Y@U".
Since U’ is torsion, the projection map U'CY 4+ U'=Y@U'— X
into the torsionfree module Y is zero, thus U'€ U". Thus U=UN
NYCTNYCU'NY=0. This shows BXN Y = 0. On the other
hand, let ¥/Y be a torsion submodule of finite length of X/¥, with
YCVCX. Again, using that ¥ is pure, we see that there is a sub-
module V' in X with Y@ V'= V. Since V'~ V/Y is torsion, V'C
CBX. Thus also BX + Y =K.
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4.2. A module X will be called regular if X has no non-zero pre-
projective or preinjective direct summand. This is equivalent to the
fact that X has no indecomposable preprojective or preinjective direct
summand, and also to the fact that JX = 0 and §X = X. Now, if
a module X satisfies JX = 0, then for any submodule U of X, we
have JU =0, and if X satisfies $X = X, then for any quotient
of X, we have §Q = @. Thus, if X is regular, & submodule U of X
is regular if and only if U = U, and a quotient module ¢ of X is
regular if and only if 3@ = 0. And similarly, if X and Y are regular,
and ¢: X — Y is a homomorphism, then the image of ¢ is regular.
This proves the first part of the following assertion, the remaining
ones being equally clear. '

ProposiTioN: The class of regular modules is closed under images
of homemorphisms, extensions, and direct sums.

Also, we want to recall from 1.¢ a construction, which in our case
associates to every module a regular module. Note that for indecom-
posable preprojective modules P, any maximal pure submodule U
of & module X which is a direct sum of copies of P is in fact a divect
summand of X, according to 2.1. Thus: ' ‘

LEmMMA: Let X be a module. For any indecomposable projective
module P, let Up be a maxzimal direct summand of X which is a

direct sum of copies of P. Then X/(JX o) UP) is regular.
PeP

4.3. In contrast to the investigation of preprojective and prein-
jective modules, the study of regular modules will be limited to the
tame cage, the general case being hard to attack. From now on, we
will assume that R is a finite dimensional hereditary algebra of tame
representation type.

PROPOSITION: Let B be a twosided indecomposable finite dimen-
sional hereditary algebra of tame type. Let P be an indecomposable
projective module with defect —1. Then, for any regular module X,
there exists a submodule U of X which is isomorphic to a direct sum
of copies of P, such that X/U is torsion regular. ‘

ProOF: By transfinite induction, we will construct submodules Ua

with Us,,/Us~ P for any ordinal 2, and U= U Uy for any limit
n<a

ordinal 2, such that X /U, is regular, for any 4. The construction will
stop as soon as X/U. is torsion regular.

First, we show: if ¥ is torsionfree regular, and Hom (P, Y) =0,
then ¥ = 0. For, Hom (P, Y) = 0 implies that one particular simple

T
Hi
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module does not appear as composition factor of ¥, thus ¥ can be
congidered as module over a finite dimensional hereditary algebra R'
which is a proper factor algebra of E. Now R’ will be of finite rep-
resentation type, and therefore Y is a direct sum of modules of finite
length. However, a torsionfree regular module has no non-zero direct
summand of finite length whatsoever. Thus we see that ¥ = 0.
Now assume Y is regular, but not torsion. We claim that there
is a submodule V of ¥, with V ~ P, such that ¥/V is regular, again.
Proof: By assumption, ¥'= ¥/BY 50 thus there exists a non-
zero homomorphism «': P — Y'. Let 7' be the image of «'. Since
Y' is torsionfree, 6V'< 0. Thus §(Ker o) = 6P — ¢V’ >0, and there-
fore Ker o' =0, that is, «’ is 2 monomorphism, and V'~ P. Assume
Y'/V' has an indecomposable preinjective direct summand, say V'c
c W' cY' with W[V’ indecomposable preinjective. Then ¢W'= V'
+ W' |V)y=—1+4 (W'[V') >0, contrary to the fact that ¥’ is tor-
sionfree. Since Y'/V' as & quotient of Y’ also has no indecomposable
preprojective direct summand, we conclude that ¥’/V’ is vegular. The
homomorphism ¢': P — Y'= Y/BX can be lifted to a homomorphism
a:P— Y. Since o is a monomorphism, also « is & monomorphism,
and, in addition, the image V of « satisfies VN BY = 0. Thus,
Y/V is an extension of the regular module (V + GX)/V ~ BY by
the regular module X/(V 4 BY) ~ X'/V’, and therefore regular.
Let U,=0. If U, is defined, with X/U, regular, but not torsion,
then we can use the previous consideration for ¥ = X[U;, and we
get U,C U,y c X such that Usy,/Us ~ P, and X/U,,, regular, If Uy
is defined for all < A, let Us= |J Uy. Then X/U, has no prepro-

u<i
jective direct summands. Assume there iy U,c WCX with W/U,

indecomposable preinjective. Let W' be of finite length with U,
+ W'= W. Since W' is of finite length, there is p < A with U, N W'=
- Uun W’. Th‘llS

(U W) Ty e W(W' O Ty) =
= W' [(W N Ua) ~ (Un+ W Ur= W[U.

shows that also X/U, would have an indecomposable preinjective
submodule, impossible. Thus, also in this case, X/U, is regular.

~ Since P is projective, it follows from Ui./U,~ P that Ui, is

the direct sum of U, and a copy of P, thus any U, is the direct sum

of copies of P. This finishes the proof.

4.4, We are going to give a complete description of the full sub-
category of torsion regular modules. In order to do so, we need some
concepts.
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A not necessarily commutative ring D will be called a discrete
valuation ring if it is a local ring without zero divisors such that the
powers B! (¢eN) of the maximal ideal M are the only left ideals
and the only right ideals. A diserete valuation ring D is said to be
complete if the canonical map D —lim D/M* is an isomorphism.

Now assume D is a discrete valuation ring with maximal ideal M.

‘We denote by H,(D) the ring

DD -+ D
2= |¥D. D

- MD

consisting of all # X n-matrices with entries in D such that the entries
below the main diagonal belong to I (note that this is a semiperfect
hereditary noetherian prime ring). An H,(D)-module is called forsion
if any element of it iy annihilated by some non-zero twosided ideal
of H,(D), and therefore by an ideal of the form

M. M
-
Clearly, when considering torsion H,(D)-modules, we may replace D

by its completion D= lim D/ M and consider torsion H,(D)-mod-
ules.

TumormM: Let B be a finite dimensional hereditary algebra of tame
representation type. Then the full subeategory of torsion regular mod-
ules of the category of all R-modules is an exact abelian subcategory,
and, it is the product of categories T, (t€ T) each of which is equivalent
“to the category of torsion modules over & ring of the form H,(D:), where
n:e N, and D, is a complete discrete paluation ring.

REMARE 1: The index set T is equal to the corresponding index
seb in the case of regular modules of finite length, see 1.D. In paxrtic-
ular, T is always infinite, and, in cage the base field is algebraically
closed, T = Py(k), the projective line over k.

REMARK 2: The number n, is equal to the number of simple
H nb(D,)—modules, and these correspond to those modules of finite length
in &, which are simple regular. Thus . is equal to the corresponding
number in the case of regular modules of finite length, see 1.D. In
particular, for all but at most three ¥ Wwe have n,=1.
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ReEMARK 3: The ring D, is constructed as follows: Let S be a
simple regular module in &, and §, the indecomposable regular module
of finite length with regular length # and Hom (§,, 8) s 0. Then
there is a chain of epimorphisms

w8, =8 =8,

which gives rise to a chain of ring surjections

.. — End (8,) = End (§,_,) — ... — Tnd (8,) .

Let D, =1im End (§,). It is clear that D, is a complete discrete
valuation ring.

The rings D,, for the various ¢ T, are not independent. We will
see later that a suitable matrix ring over D, is the completion of a
subring of some fixed division ring.

ProoF oF THE THEOREM: We know that the category of regular
modules of finite length is an exact abelian subcategory. Let X, ¥
be arbitrary torsion regular modules and ¢: X — ¥ a homomorphism.
First, we want to show that the kernel U of g is torsion regular again.
Since U is a submodule of X, it has no non-zero preinjective sub-
modules, thus we have to show that U is generated by regular sub-
modules of finite length. Let U’ be a submodule of U of finite length,
let X' be a regular submodule of X of finite length containing U,
and let ¥’ be a regular submodule of ¥ of finite length containing
@(U). Let ¢' be the restriction of ¢ to X', then ¢': X' X' is a
homomorphlsm between regular modules of finite length, thus the
kernel U’ of ¢' is regular of finite length, and by construction, U”C U".
Thus, the kernel of ¢ is forsion regular. Next, let m: ¥ — V be the
cokernel of ¢. Clearly, GV =V, since BY = Y. Thus, we have to
exclude the possibility that ¥V contains a non-zero preinjective sub-
module V" of finite length. If it does, let ¥” be a submodule of ¥
of finite length with #(¥") = V”, and let X" be a submodule of X
of finite length with ¢(X") = p(X)N Y. Note that this iy just the
kernel of the restriction z” of = to ¥”. Thus, we have a commutative
diagram with exact rows

X 5Y &YV -0
)
X' L B Y50,

Let X' be regular of finite length with X" CX'C X, let ¥ be regular
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of finite length with p(X')+ ¥'CY'CY, and let V' be the cokernel,
of the restriction ¢': X'— Y’ of ¢. Since X’ and Y’ both are regular
of finite length, also V' is regular of finite length. On the other hand,
the inclusion map V"—V factors through V', Since V" is preinjec-
tive, and V' iy regular, it follows that Hom (V”, V') = 0, thus the
inclusion V'~V is the zero-map, and therefore V'=0. Thus, we
have shown that V has no non-zero preinjective submodule, and
therefore V is torsion regular. Since the class of torsion regular mod-
qules is cloged also under direct sums, it follows that the full subcategory
of all torsion regular modules iy an exact abelian subcategory of the
category of E-modules.

Next, we note that for any torsion regular module X, there is an

exact sequence

PV —-PU->X—>0
Vel Uell

where all Tell, Ve are indecomposable regular modules of finite
length. For, let 11 be the seb of indecomposable regular submodules
of X of finite length. Then the submodules U in 1 generate X, thus

the canonical map @ U — X is surjective. Now the kernel of this
Uell
map is again torsion regular, thus we can do the same construction

with X replaced by the kernel and, in this way, we obtain the

asserted exact sequence.
Now fix some teT. Let S(i), 1<i<n =n; be the simple regular

modules in I;, such that 48(¢) ~ S+ 1), for all ¢, with S(n + 1) =
— 8(1). Denote by S(i)n the indecormposable regular module in &,

2
of regular length m such that Hom (8(é)m, 8()) # 0. Let ¥,,= D 8(E)ns

il
and let Y, — ¥, be the canonical epimorphism with kernel the
regular socle of Tppq. Then the sequence of epimorphisms

XY} —> Tgn,_'__l — T‘m " aee -—> Tl

induces a chain of ring surjections
oo > End (Tpa) — B0d (L) = o0 —> Fnd(Th),
+the inverse limit will be denoted by

H = lim End (L) -
m

‘We may lift the unique seb of orthogonal primitive idempotents of
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End (7)) to a complete set ¢, ..., ¢, of orthogonal idempotents of H
such that

¢;He; = lim End (8(¢),) .

Note that the radical J of H is the kernel of the canonical map
H —End (T}); it is generated by elements b, 1€ €, He,,, such that the
image of ;h,; in End (T,) is a non-zero map 8(i -+ 1),— 8(),. Let
D = ¢ He,. TUsing the elements My, Wwe may identify all e,He;
with D, and it is clear that in this way, we identify H with H,(D).
Let H(i),= ¢,H|e,J™, then this is an indecomposable torsion H-mod-
ule of length n, and with top composition factor H(3),. Clearly, any
torsion H-module is the cokernel of a map

D DH(E)— D DH()n

ism S4m ’l‘,m ﬂlm

With o, B being cardinal numbers. It should be clear that in this
way we obtain an equivalence between the category of torsion H-
modules, and ¥,, with H(3),, corresponding to 8(%)n.

4.56. By the previous theorem, the investigation of torgion regular
modules completely is reduced to the study of torsion H,(D)-modules,
with D a complete discrete valuation ring. Namely, any torsion regular
module X is the direct sum of ity maximal submodules belonging to
%, and this decomposition is unique (this is the precise analogue of
the primary decomposition in abelian group theory), and instead of
considering a torsion regular module in ¥,, we may consider its cor-
responding H, (D,)-module. Note that a regular torsion module X
in &, iy of finite length if and only if its corresponding H, (D,)-module
is of finite length, and the length of the H, (D;)-module which cor-
responds to X has been called the regular length of X ; clearly, it is
just the length of X when congidered as an object of the abelian
category of all torsion regular modules. The torsion regular modules.
of regular length 1 are just the simple regular modules. N ow, for any
regular torsion module X, the submodule of X generated by the simple.
regular submodules of X may be called the regular socle of X, it is
a direct sum of simple regular modules. In this way, we get an ageend-
ing chain of inclugion '

0 = Uog U]_g Uzg...g Ung Un_l_lg‘oog-X

such that U,/U, is the regular socle of X/U,, the regular socle

sequence; note that X = | U,.
neN
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We want to single out a special type of torsion regular modules
which are of grant importance. If § is simple regular, let §» be the
indecomposable torsion regular module of regular length » such that
Hom (8, 8%) 0, or, equivalently, 8 is of regular socle length n,
and its regular socle is isomorphic to 8.

There is 2 sequence of embeddings

§ = 8ic82c..chrclic..

and we denote by 8¢ = |J8» the direct limit. Since any automor-
neN
phism of §* extends to an automorphism of S+, we see that 8¢ is

(up to isomorphism) uniquely defined. The modules of the form S«
will be called Priifer modules, since they are the direct analogue of
the Priifer groups. They have been introduced in[32]. Note that
the only regular submodule of 8¢ of regular length # is 8* with its
ecanonical inclusion in 82, Thus S» has a unique chain of regular sub-
modules, and this chain is just the regular socle sequence. In partic-
ular, S« iz indecomposable.

Tt § belongs to ., then it is clear that the H,,(D;)-module cor-
responding to e is just the injective envelop of the H,(D;)-module
corresponding to §. As a congequence, we see that Ext (X, 82) =0
for any module in &;. Bub since for torsion regular modules X, ¥
belonging to different subcategories T, and $p (¢ £1'), we have always
Bxt (X, ¥) =0, we conclude:

LEMMA: Bxt(X, 8%) =0 for any torsion regular module X.

Also, we note that any non-zero orsion H ,(D)-module, D a discrete
valuation ring, has a direct summand which is either of finite length,
or the injective envelop of a simple H,(D)-module. As a consequence,

we geb

LEMMA 2: A non-zero torsion regular module has an indecom-~
posable direct summand which is either of finite length, or a Priifer

module.

The ring H,.(D), D a discrete valuation ring, is noetherian, thus &
direct sum of injective modules is injective again. As & consequence,
it follows that Ext (X, ¥) = 0 for X torsion regular, and ¥ an arbi-
trary direct sum of Priifer modules. However, also the converse is

true:

LzwA 8: Let X be torsion regular, and assume Ext (8, X)=20
for all simple regular modules. Then X is a direct sum of Priifer
modules.
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Proor: Assume there is given an H,(D)-module X' with Ext (8,
X'y == 0 for all simple H,(D)-modules 8. Then it is clear that X’
is injective. Thus, if X’ is a torsion H,(D)-module, then it is a direct
sum of H,(D)-modules which are injective envelops of simple H,(D)-
modules. The correspondence between torsion H,(D)-modules and tor-
sion regular R-modules gives the result.

4.6. A module Y will be called divisible iff Ext (S, ¥)=0 for
all simple regular modules 8. The previous section shows that a tor-
sion regular module is divisible if and only if it is the direct sum of
Priifer modules. Also, according to 3.5, any preinjective module is
divisible. However, our interest will lie more in the divisible regular
modules.

ProrosiTION: The class of divisible modules is closed under quo-
tients, extensions and direct sums. The torgion part of a divisible
module is divigible.

Proor: The first assertion follows from the fact that for an epi-
morphism ¥ —¥', and any module X, the induced map Ext (X, ¥) —
—Bxt (X, ¥') is surjective. Algo, if 0 — ¥'— ¥ — ¥"—0 is an exach
sequence, and X is a module, then there is an exact sequence

Ext (X, ¥') - Ext (X, ¥) — Ext (X, T").

Thus, if ¥’ and ¥* both are divisible, also Y is divisible. Next, any
simple regular module § is of finite length, thus for any family (¥,);
of modules we have Hxt (S, ® Y.) = @ Ext (S, ¥,). Thus, if all ¥,
are divisible, also @ ¥, is divisible. Finally, assume Y is divisible,
and apply the long exact sequence for Hom (8, H) to the exact se-
quence 0 — BY — ¥ — Y/BY —0. We get an exact sequence

Hom (8, ¥/BY) — Bxt (§, BY) — Bxt (S, X).

The last term is zero by assumption, the first is zero since Y/BY is
torsionfree. Thus, BY is divisible.

As a consequence, for any module X, there exists the maximal
divisible submodule, which we denote by DX, and which contains
any divisible submosule of X. A module X will be called reduced if
DX =0.

LemyA: For any module X, we have

JXCDXCI°X, and  DX/DX)=0.
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Proor: Since preinjective modules are divisible, X € DX, Next,
we want to see that a divisible module cannot have an indecom-
posable preprojective direct summand P. For given P, there
exists a simple regular module § with Hom (P, 8) # 0, but then also
Bxt (4-18, P)#0 by 1.4. Since with § also 4~*8 is simple regular,
~we see that P itself is not divisible, thus P cannot be a direct summand
of a divisible module. The last assertion follows from the fact that
an extension of divisible modules is divisible again.

. 4.7. PropostrioN: Let Y be divisible. If X is any module with
JX =0, then Ext (X, Y) = 0.

ProoF: First, consider the case that ¥ is preinjective. Accor-
ding to 3.7, Bxt (X, ¥) = 0 in this case, since for an exact sequence
0 >Y—% X0, it follows from J¥ = ¥, JX =0 that Z=YX,
thug the sequence splits.

Since for general ¥, JY is a direct summand of Y, we have

Ext (X, ¥) = Bxt (X, §7)@ Bxt (X, ¥/J¥) = Ext (X, ¥/IX),

and Y/JY is divisible again, we may assume bhab Y is regular.

With ¥ also 8Y and Y/BY are divisible regular. Thus, we may
assume that Y is either torsion regular or torsionfree regular, since
there iy an exact sequence

Ext (X, 6Y) - Bxt (X, ¥) — Bxt (X, ¥/BX).

We consider first the case that X and ¥ both are torsion. By the
previous ftheorem, we may consider the corresponding question for
torgion H,(D)-modules, where D i3 a discrete valuation ring. Bub if
Y’ is an H.(D)-module with Ext (§', ¥') = 0 for any simple H,(D)-
module, then clearly Y’ is injective, and therefore Bxt (X', Y'Y= 0
for any H,(D)-module, in particular, any torsion H,(D)-module.

Next, let X be torsion, and Y torsionfree. Since we want to show
that Ext (X, ¥) =0, let

0>Y5ZE5X >0

be an exach sequence, where we may assunie that « is an inclusion.
Congider the restriction f': BZ — X of f. Since TZ and X Dboth are
torgion regular, also kernel and cokernel of g are torsion regular.
The kernel of f' is BZ N Y. Since this is a submodule of the torsion-
free module ¥, we conslude that BZ N Y = 0. Thus, we have the
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following commutative diagram with exact rows and columns:

0 0
y N
©Z L wZ
5
J
0-Y% 7z &5 x o
0—>Y—>Z/7§Z—-—>X/ﬂ(‘ﬁz ) —0
y ¥
0 0

Assume the cokernel X/f(GZ) of §' is non-zero. Since this is a torsion
regular module, there is a simple regular module § and an embedding
y: 8 — X/f(6Z). Thus, we get an induced exact sequence

0—Y —7/62-L X|p(62) -0

T

0-Y— 720 &  § o0

However, according to Ext (8, ¥) = 0, we know that §” splits, thus
there is an embedding § — Z', which together with ¢’ gives an em-
bedding of the torsion module 8 into the torsionfree module Z/EZ,
impossible. Thus X/f(6Z) = 0, and therefore §’' is an isomorphism.
Thus S splits.

Alltogether, we know that Ext (X, ¥) = 0 for ¥ divisible regular,
and X torsion regular. Also, if X is the direct sum of indecomposable
preprojective modules, say X = @ P;, and ¥ ig regular, then

Ext (PP, ¥) = [ Bxt (P, T)=0,

according to 1.H, and 2.2. But if X is an arbitrary module with
JX =0, then there is a submodule U which is the direct sum of
indecomposable preprojective modules, such that X/U is regular, by
Lemma 4.2, and according to 4.3, there is a submodule UCVC X
such that V/U is a direct sum of copies of a fixed indecomposable
projective module, and such that X/V is torsion regular. By the pre-
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vious considerations, we know that for ¥ divisible regular,
Ext(U,Y)=0, Bxt (V/U,Y)=0 and Ext(X/V,¥Y)=0,

thus also Ext (X, Y) = 0.
Finally, we may apply this result to Ext (¥/BY, TY). Since BY

iy divisible regular, and ¥/BY is torsionfree, Ext (¥/TY, BY) =10,
thus BY iy a direct summand of ¥. This finishes the proof.

RuMARK: Note that the result cannot be improved. The only
modules Y with Ext (X, ¥) = 0 for all modules X are the injective
modules, thus we need a restriction on the modules X. Now any
module is the direct sum of indecomposable preinjective modules and
a module X satisfying X = 0, and given any indecomposable prein-
jective module I, there are only few modules ¥ with Ext (I, X) = 0.

ConoLLARY: Let Y be divisible. Let X be a module with o sub-
module X' such that 3(X/X')=0. Then, any homomorphism ¢': X' — ¥
has an extension g: X — Y.

Proor: Congider the induced exact sequence

0—X %5 X XX —0

0¥ 57 X/ X' -0,

where o denotes the canonical inclusion map.. Since BExt (X/X', X) =0,
the bottom sequence splits, thus there is f: Z — Y with fa’ =1y, and

therefore ¢ = Po" satisfies pu = fp'a = fa'p'=1".

COROLLARY 2: Amy module is the direct sum of o divisible module
and o reduced module. Any divisible module is the direct sum of inde-
composable preinjective modules, Priifer modules and a divisible tor-

sionfree module.

Proor: Let X be a module. Then X ~ JIX@ X/IX by 3.7. Now
Bxt (X/DX, DX/IX) =0, since HX/DX) ~ D(X/DX) =0, and DX/[IX
is divisible regular, Thus X/IX ~ DX/IX® X/DX, and therefore
X ~ IX® DX[IX D X/DX, the first two summands being divisible,
the last one reduced.

If X is divisible, then Ext (X/BX, BX/IX)=10, since X/BX is
regular, and GX/IX is divisible regular. Thus X ~ IX@ BX/IXD
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@ X/BX. Note that JX is the direct sum of indecomposable prein-
jective modules, and that the divisible torsion regular module TX/JX
is & direct sum of Priifer modules.

4.8. ProposITioN: Let X be a module without non-zero dirvect
summands of finite length. Then X ig the direct sum of Priifer mod-
ules and a torsionfree regular module.

ProOF: Since X has no indecomposable preprojective or prein-
jective direct summand, X is regular. Let BX be its torsion part.
We can write BGX as the direct sum of Priifer modules and a sub-
module U which has no submodule isomorphic to a Priifer module.
Agsume Uz£0. By Lemma 2 of 4.5, there is a direct summand V
of U which is indecomposable and of finite length. Now V is a direct
summand of GX, and BX is pure in X, thus V¥ is pure in X', How-
ever, since V is of finite length, this implies that V is a direct summand
of X, impossible. Thus U =0, and BX is a direct sum of Priifer
modules. However, a direct sum of Priifer modules is divisible, and
therefore Ext (X/GX, 6X) =0, by 4.6. This shows that X is the
direct sum of TX and the torsionfree regular module X/TX.

CoroLLARY: Lot X be indecomposable. Then cither X is of finite
length, or X 4is a Priifer module, or X is torsionfree regular.

We may use the proposition above in order to give some hints
on the structure of an arbitrary module X. If we choose for any inde-
composable module ¥ of finite length a maximal pure submodule Uy
of X which ig a direet sum of copied of ¥, then we know that X/® Uxr
has no non-zero direct summands of finite length, thus we may apply
the proposition. This shows that X ag the extension of a module
which is the direct sum of indecomposable modules of finite length
by a module which is a direct sum of Priifer modules and a torsion-
free regular module.

5. Torsionfree divisible modules.

Again, we assume that the ring R is of tame representation type.
In this section, we want to study torsionfree divisible modules, and
possible embeddings of torgionfree modules into torsionfree divisible
modules.

5.1. LmmmA: Let X, ¥ be torsionfree divisible, and A'CX, Y'C Y
submodule with X/X’' and Y/Y’ torsion regular. Then any homo-
morphism ¢': X'— ¥’ has 4 unique extension ¢: X —¥. And, if ¢'
is an isomorphism, then any extension ¢ is an isomorphism,
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Proor: Denote the inclusion by «: X'— X, f: ¥'— Y. Given
¢': X' - Y, we know from 4.7 that the map fg': X'—Y has an
extension ¢: X — Y.

The extension is unique, since the zero homomorphism X'~ ¥'
has as extension only the zero homomorphism X — Y. For, assume
we have ¢: X — ¥, with gu =0, then ¢ factors over the cokernel
X/X' of o However, X/X' is torsion, and ¥ is torsionfree, thus
Hom (X/X', ¥) = 0.

Now assume, ¢' is an isomorphism and take ¢: X — ¥ with go =
= ¢'f. Consider the following commutative diagram

0>X' S X XX —0

o

0>Y YY1 -0

Since ¢’ is an isomorphism, we know that ker p ~ ker ¢”, and cok ¢ &~
~ cok ¢". However, since both X/X' and Y[XY' ave torsion regular,
also the kernel and the cokernel of ¢ ave torsion regular. Thus ker g,
being a torsion regular submodule of the torsion-free module X, has
to be zero. Thus, ¢ is & monomorphism. However, the exact sequence

0—>X-2 Y —cokep—0

splits, since X is torsionfree divisible, and cok ¢ is torsiqn regu_la'r,,
thus ¥ has a submodule isomorphic to cok ¢. Since Y 1s.torsmn—
free, this implies cok ¢ = 0, thus ¢ is also surjective. This shows

that ¢ ig an isomorphism.
5.2. If § is simple regular, then End (8) is a division ring, thus,
for any module X, Ext (S, X) may be considered as a vectorspace.

over End (8), and we denote its dimension by

€3y = dim Bxt (Sf X )Ena )

ProposITION: Let P be indecomposable preprojective. Then there
oxists o torsionfree divisible module X with an exact sequence

0 >P—>X—>@ PS—0,

S esp

where § runs through all simple regular modules.
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For the proof, we need the following lemma:

LemmA: Let P be indecomposable preprojective, 8 simple regular.
Assume there exists an exact sequence

0>P>X->P8—0,
w

where X has no submodule isomorphic to S. Then m<eég. Con-
versely, for m <egp there exists such an exact sequence with X pre-
projective,

Proor oF THE LEMMA (Compare [36]). First, assume such a se-
quence
B0—>P>X>P8—>0
m

is given. The inclusions u;: 8 > @8 (1<i<m) give elements Hu;

m
in Ext (8, P). If m> eg, then there are endomorphisms ¢, of §,
not all zero, with

0= Hutgt = (Z'M/{tpi) = B! .

i=1 j=1

Thus, the induced sequence

O——>P--—>X—>®S-—>O

1 e

0+>P—>X'—-> 8 —0

splits, and we get an embedding of § into X’. Since (¢,); is a mono-
morphism, X’ ig a submodule of X, thus we have an embedding of §
into X.

Conversely, talke an exact sequence

B O—>.P—>.X—?—>@S—>O
m

such that the induced elements Tu} (1 <4< m) are linearly independent
in Ext (8, P)pnas). This is possible provided m<es. Let X' be an
indecomposable direct summand of X. If X' would be preinjective,
then m(X') =0 since it is a preinjective submodule of the regular
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module @ 8. Thus X’ is contained in the kernel P of X, impossible,
m

since P is preprojective. Similarly, if X' is regular, then the restric-

tion ' of m to X’ is & map between torsion regular modules, thus the

kernel of s ig a torsion regular submodule of P, and therefore zero.

MThis shows that =/ is a4 monomorphism, and consequently, X' being

an indecomposable regular submodule of (S, has to be isomorphic
w

to §. In this way, we get homomorphisms ¢;: § — 8§, 1<i<m, n0b

all zero. such that the induced exact sequence H(p,); splits. Thus
H (;0 P

m
0 = B(p)t = Y Buj ¢} gives a contradiction to the choice of Z.
i1
PROOF OF THE PROPOSITION: Let P be a fixed indecomposable
preprojective module. For any simple regular module S, let

Bs: 0P —->Xs—>PI—0

ésp

be an exact sequence with Xy preprojective. Fix an embedding of S
into the corresponding Priifer module §¢, and choose an exact se-
quence Hs which induces Hg, say

By 0>P—>Xg—>P8 -0

esp

bl

Bg:0—>P—>Xg—>P8»—0.

esp

Note that here we use that Hxt (8¢, P) maps surjectively onto
Ext (8, P). Finally, let B be the exact sequence

B:0>P>X5P P/—0

S esp

given by
B = (By)s € T] Bt (@8-, P) — Bxt (@‘S-) Do P).

esp osp

First, we show that X is torsionfree. Since P and X/P are without
non-zero preinjective direct summands, the same is true for X. Assume,
X has a submodule U of finite length which is simple regular, say iso-
morphic to 7. Thus UcX -5 X /P maps into the T.component of
the regular socle of the torsion regular module X/P. But the inverfse
image of the T-component of the regular socle of X/P under 7 is just Xp.

25




386 Cleus Michael Ringel

Thus X7 has a submodule isomorphic to T’ which is impossible, since
X7 is preprojective.

Next, we claim that X is divisible. Let T be simple regular. We
want to show that Ext (7, X) = 0, thus assume there is given an
exact sequence

0>X5YE 1750,

We form the induced exact sequence with respect to z,

0 0

\
P, p
¥ ¥

0> X—>Y5T-0

Lk
0@ Plo—Y' L7 50

8 esp

v v
0 0

Now p' splits, thus

TY=0 @@T.

8 esp

Consequently, ¥’ hag (@ _’l’) (P T’ as submodule, and we consider the
¢
corresponding induced erxf:ajct sequence

0P Y% Y 90

1

0P Y- ((—BT) Pr—0.

erp

By the previous lemma, Y’ containg a submodule isomorphic to T,
thus also ¥ has a submodule, say U, with U ~ 7. Now U cannot
be contained in «(X), since we have seen that X s «(X) is torsion-
free. Thus, the restriction ' of f to U is non-zero. Since §': U —T
is a map between simple regular modules, it has to be an isomorphism,
thus g splits.

5.3, TumorEM: There ewists ¢ unique indecomposable torsionfree divi-
sible module §).
Its endomorphism ring 48 a division ring.
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Proor: Let P be an indecomposable projective module of defect
—1. By the last proposition, there exists a torsionfree divisible mod-
ule @ with P as submodule, such that @/P is forsion regular.

Let U be a submodule of @ of finite length and defect —1. Since
Q/P is torsion regular, there exists a submodule V with U+ PcVC@Q
such that V/P is of finite length, and both V/P and Q/V are torsion
regular. Now note that

S(V/U)= 6V — 68U = 6P + §(V/P)— U =—1-+0+1=0.

Assume that V/U has an indecomposable preinjective direct sum-
mand, say V'/U. Then §V'== §(V'[U)+ 6(U)>0 shows that V' is a
submodule of @ of finite length which is not preprojective, a confra-
diction to the fact that @ is torsionfree. Thus, no indecomposable
direct summand of V/U is preinjective, and since 4(V/U) =0, we
conclude that V/U is regular. Since both V/U and @[V are ftorsion
regular, also @Q/U is torsion regular. :

Next, we show that the endomorphism ring of ¢ is & division ring.
0 % @: Q — @ be a homomorphism. Note thab o(P) 0, since other-
wise the torsion module Q/P would map into the torsionfree module ¢
non-trivially. Since (P) is a non-zero submodule of Q, its defect is
< 0, thus the kernel of the restriction map ¢': P — @(P) of ¢ has
defect >0, and therefore iy zero. Thus, ¢': P —@(P) is an isomor-
phism. Since ¢: @ — @ is an extension of this ¢', and since both Q[P
and QJp(P) are torsion regular, we conclude from 5.1, that ¢ is an
isomorphism. Thus End (@) is a division ring, and, in particular, @ is
indecomposable.

Finally, we have to show that @ is unique. Assume there is given
some other indecomposable torsionfree divisible module @". According
to 4.3, we may choose a submodule U’ of Q' which is isomorphic to
the direct sum of copies of P such that @'/U’ is torsion regular. Let
a:P—Q, p: U'—@' be the inclusions. Let ¢ P—U, 9 :U—P
be maps with 9'¢’=1,: According to 5.1, we can extend ¢ and o',
and get maps ¢: Q —@', w: Q' — @ such that gu = Bo', wf = ayp'. Then
pe: @ —Q is an extension of p'e'=1p, and therefore an isomorphism.
Thus ¢ maps § isomorphiecally onto a divect summand of @'. Since ¢’
is indecomposable, we conclude that ¢: Q@ — @' is an isomorphism.
This finishes the proof of the theorem.

From now on, we will denote by @ a fixed indecomposable torsion-
free divisible module.

5.4, LEMMA: A torsionfree divisible module is 2 direct sum of
copies of Q.
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Proor: Fix an indecomposable projective module of defect — 1.
Let X be torsionfree divisible. According to 4.3, there exists a sub-
module U of X with X/U torsion regular, such that U is isomorphic
to a direct sum of copies of P. We can embed P into @ such that Q/P
is torsion regular, thus we can embed U into a direct sum V of copies
of P such that V/U is torsion regular. By 5.1, we can extend the
identity of U to an isomorphism X — V. This proves the lemma.

Combining this with 4.7, we conclude:

THEOREM: A divisible module s the direct sum of indecomposable
preinjective modules, Priifer modules, and copies of Q.

5.5, THEOREM: Any torsionfree module X can be embedded into a
direct sum Y of copies of @ such that the quotient Y [X s torsion regular.

REMARK: Given X, the number of copies of ¢ in a direct decom-
position of such a Y is an invariant of X, and will be called the (tor-
sionfree) rank of X.

Proor: Let X be torsionfree. According to 4.2 and 4.3, there
exist submodules U'C UCX such that U’ is a direct sum of inde-
composable preprojective modules, U/U’ is a direct sum of copies
of a fixed projective module, and X/T is torsion regular. Since U/U’
is projective, U’ is a direct summand of U, thus U is a direct sum
of indecomposable preprojective modules, say U =@ P,;, with P,

iel
indecomposable preprojective. According to 5.2, we find an embedding
Py ¥; with Y, torsionfree divisible, and torsion regular quotient

Y,/P;. Let o: U=PP;—~@P Y,= Y be the canonical inclusion map.
iel iel

According to 4.7, there exists an extension f: X — Y of « to X, since

Y is divisible, and X/U is regular. Thus, in the following diagram

the left square commutes

0->U>X— X[U -0

N

0>U>>Y—Y[a(U)—0,

and there exigts ¢ making the right square commutative. Now the
kernel of § is equal to the kernel of ¢. But this kernel is torsion reg-
ular, since X/U and Y/«(U) both are torsion regular. Thus ker () =0,
since it is a torsion submodule of the torsionfree module .X. Also, the
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cokernel of 8 equals the cokernel of ¢, and therefore is torsion regular.
Thus, we have found a monomorphism f: X — ¥ with torsion reg-
ular cokernel, such that ¥ is torsionfree divisible. This finishes the
proof of the theorem, since 5.4 shows that ¥ = (D¢ for some set I.

I
In order to verify the remark, note that if X is embedded into ¥
and Y’ with ¥/X and Y'/X both torsion regular, and ¥ and ¥ direct
sums of copies of @, then ¥ ~ ¥' according to 5.1. The general
Krull-Remak-Schmidt-Azumaya theorem can be applied, since the
endomorphism ring of @ is local, thus the number of indecomposable
direct summands in any direct decomposition of ¥ = ¢ is fixed.
I

5.6. PrOPOSITION: For any preprojective module P of jintte length,
the rank of P is equal to the negative of the defect 6(P) of P.

Proop: Take an embedding P C ¥ with Y/P torsion regular, and
Y = @@, for some index set I. Since P is of finite length, P is con-

I
tained in some (D@ with I' CI a finite subset. However, Y/P has
1’

@ Q as direct summand, and since @ is torsionfree, and Y|P torsion,

NI
we conclude I'=1I, thus I is finite. Let P' be a fixed indecompos-

able projective submodule of @ of defect —1, thus @/P' is torsion reg-
dlar. Let U=@P c@PQ= Y. Since (P -+ U)/U is a submodule

I I
of ¥/U of finite length, and Y/U is torsion regular, there exists
P 4 UCVCY such that V/U is regular of finite length. Note thatb
V[P is the kernel of the canonical map Y/P — Y|V, thus, since both
Y/P, Y[V are torsion regular, also the kernel V/P is torsion regular.
We calculate defects: V/U and V/P are regular, thus §(V/U)=0=
= §(V/P), thus

8(P) = 8(P) + 8(V/P) = &(V) = §(V/U) + &T) = &(T),

and §(TU) is the product of the cardinality of I with 6{P')=—1.
The assertion follows, since the cardinality of 1 ig just the rank of P,
by definition of the rank.

5.7. We have seen in 5.3, that the endomorphism ring E of @ i
a division ring, thus we may consider Q as E-vector space zQ-

THEOREM: The veclor $pace pha@ 8 finite dimensional.
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REMARK: We will give an explicite formula for the dimension

n
of ;0. Namely, let B =@ P,, with P, indecomposable projective.
Then i=1
7

dj-mEQ:""za(Pi)°

=1

Note that this dimension is not invariant under Morita equivalence.
This is clear, since under a categorical equivalence, the absolute di-
mension of an endomorphism ring over the base field is invariant,
‘whereas the absolute dimension of the module may vary.

(]
PROOF OF THE THEOREM: Let B = @ P,, with P, indecomposable
i=1
projective. The elements of @ can be identified with homomorphism
Ry~ Qg, thus we have

@ ~ Hom (R, @) = Hom (iél’,, Q) Ry ﬁ@lﬂom (P:) Q) ,

and these isomorphisms, and the last decomposition are those of left
ZBi-vector spaces, where IJ operates on @ from the left. We will prove:

If P is indecomposable projective, of defect —d, and if (p,);<s<cat

d
P —@Q is an embedding with torsion regular cokernel, then g,, ..., ¢q
i=1

iy a basis of ;Hom (P, Q).

d

If we denote by m: (D@ — Z the cokernel of (p;);, we have the
i=1
following exact sequence

d
0—P “""wi@lg % F >0

Firgt, we show that the elements g, are linearly independent. Thus,

7
assume there are elements «; in I with Y ;.= 0. Consider the map
7 $=1
(@0):: DQ —Q, the assumption implies that it factors over m, thus
i=1

there iy «: Z —@ with (e&;);= an. However, « belongs to Hom (Z, @),
and Hom (Z, @) = 0 since Z is torsion and @ torsionfree. Thus, cz;== 0
for all 4.

Next, we have to show that the elements ¢, generate Hom (P, Q).
Thus, let ¢: P — @ be given. Since @ is torsionfree divisible, and the
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d

cokernel Z of (p,); is torsion regular, we can extend to @ ¢ along
i=1

d 2]
(@:)¢, thus there is a map (o) @Q —Q with (a, ...,oen)'(f ) = @,
¢ 7l \gy
thus @ is of the form ¢ = Y oyp; with «, in B.
=1

BxAMPLES: It seems to be of interest to study the division ring B==
= End (Q) further. Here are some examples.

In cage the base field % is algebraically closed, we obtain E=k(t),
the function field in one variable. More general, in case of type
D,, B, B, B, we always obtain E = IF'(t) with F' = End (P) for
some indecomposable projective module P, whereas in type A,, we
will get a twisted ring of the form F(f; &), with ¢ an automorphism

of I'. In bage of the ring (]g g), we obtain the function field
R(t,, 1) with 412 =—1[17].

6. Torsionfree rank 1 modules,

Again, we agsume that R is a twosided indecomposable finite dimen-
sional hereditary algebra of tame representation type. As we know,
there oxists & unique indecomposable torsioniree divisible module @,
and its endomorphism ring will be denoted by E. Recall that a
module X ig said to be torsionfree of rank 1, if X can be embedded
into Q with torsion regular quotient. Examples are the preprojective
modules of finite length and defect —1. The remaining ones are reg-
ular, since we will see that a torgionfree rank 1 module has o be
indecomposable. The regular torsionfree rank 1 modules are the ones
we are mainly interested in.

6.1. ProPOSITION: A torsionfree rank 1 module is indecompos-
able, ity endomorphism ring is a subring of X

Proor: It suffices to prove the last agsertion, since 2 subring
of B cannot contain non-trivial idempotents. Now assume X ig tor-
gionfree rank 1, say with embedding a: & — Q with torsion regular
quotient. Then, any endomorphism of X can be extended unique}y
to an endomorphism of @, according to 5.1. In this way, we obtain

a ring embedding End (X) — End (@) = B.

ProposrrioN 2: Let X, Y be torsionfree rank 1 modules, .a,n&
¢: X — Y a non-zero homomorphism. Then ¢ is @ monomorphism,

and Y/p(X) is torsion regular.
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PrROOF: We may assume that X and Y are submodules of @) such
that @/X and Q/Y both are torsion regular. Given a homomorphism
there is an extension ¢': @ — @, according to 4.8, and therefore also
an induced homomorphism ¢: Q/X — /¥

0> X -0 >0 X—0

!

0>Y—>Q—Q/Y —0.

If p 0, then ¢ is an automorphism. Thus, ¢ is & monomorphism,
and the cokernel of ¢ iy isomorphic to the kernel of ¢". However,

the kernel of ¢ is torsion regular, since both Q/X and Q/Y are tor-
sion regular.

COROLLARY: 4 forsionfree ramk 1 module has no proper torsion-
free quotient.

Proor: Assume X is torsionfree rank 1, and U is a submodule
with X/U torsionfree. According to 5.5, we can embed X/U into a
direct sum of copies of Q. If X/U = 0, we therefore obtain a non-
zero homomorphism X — ¢ with kerne] containing U. By the pre-
vious proposition, this is impossible in cage U 7 0. Thus either U =0
or U=X,

6.2. Given a torsionfree rank 1 module X, we will consider the
different embeddings of X into Q.

LEmma: Let X;, X, be submodules of @ which are torsionfree

rank 1 moduleg. If X:N X, 50, then X,NX, and X, + X, are
torsionfree rank 1 moduleg,

PROOF: Let U be a non-zero submodule of XN X, of finite length.
Let TCVCQ with V/U = 5g/U). Then, according to 3.6 and 3.7,
the submodule V ig of finite length. Now J(Q/X,) = 0, thus applying
J to the canonical epimorphism Q/U %-Q/X, shows that m(V/U) =
=n(J(Q/T)) S ¥Q/X,) = 0, thug VcX,, for i =1,2, and therefore
VEX,NnX, On the other hand, @ has no proper torsionfree quo-
tient, thus Q/V = B(Q/V), and therefore @[V is torsion regular. With
Q/V and Q/X, also X[V is torsion regular, and therefore algo the
intersection (X,/V)N (X,/V) = (X, N X,)/V and the union (X,/V) +
A (X V) = (X, - X,)[V are torsion regular.
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ReEmMARK: The assumption X; N X, 5= 0 is also necessary in order
to have X, - X, torsionfree rank 1, since we have geen that torsion-
free rank 1 modules are indecomposable. Note that it is easy to
congtruct examples of torsionfree rank 1 modules X;, X, in @ with
X,NnX,=0.

6.3. A preprojective submodule of X of finite length and defect
—1 will be called 2 peg in X.

LemMA: Let X be a regular torsionfree rank 1 module, and P
a preprojective module of finite length and defect —1. Then X hag
a peg isomorphic to P. ‘

Proor: The easiest way to obtain such a peg is by using 2.4.
Let % be the set of predecessors of P, and 8§+, §~ the corresponding
functors. Since X is regular, §~S8+X ~ X. Also, S§*X has to have
composition factors of any type. For, otherwise §+X would decom-
pose as a direct sum of modules of finite length, and then the same
would be true for X a~§~8+X, but X is torsionfree regular. Now S*P
is simple projective, thus there is a non-zero homomorphism g: S*P —
—>8+X. Applying §~, we obtain a non-zero homomorphism 8~¢: P~
~ 88D > 8-8+X ~ X. Let U be the image of §7p in X. Then
8(U)<—1, since X is regular, thus the kernel of §¢ has defect >0
and therefore has to be 0. This shows that §~p is 2 monomorphism
and therefore U is a peg isomorphic to P.

If we fix 4 peg P in @, and consider only the torsionfree rank 1
modules X in ( which contain P, then we obtain a complete lattice
with regpect to intersection and summation, and this lattice is iso-
morphic to the lattice of torsion regular modules of ¢ [P. In this way,
we obtain representatives of all isomorphism types of regular torsion-
free rank 1 modules. For, given a regular torsionfree rank 1 module,
we can choose a peg U in X which is isomorphic to P, and we can
extend the monomorphism U ~ P CQ to an embedding of X into @,
and then the image will contain P. Of course, different pegs in X
give rise to different submodules of @.

We also note that given two pegs Uy, U, in a torsioniree rank 1
module X, there exists a peg U in X with U, - U.C U. TFor, let U
be the submodule of X with U, + U, S U such that U/(U,+ Us) =
= 3(X/(U, + U,)). Then, according to 3.6 and 3.7, we know that U
is of finite length. But X/U and X/U; both are torsion regular, thus
U/U, is regular, and therefore &(U) = 6(Uy) = —1.

6.4. In order to be able to investigate torsionfree rank one modules
further, we have to consider @ in more detail.
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Given a torsion regular module ¥, let ¥ = @ ¥, with ¥, in &,,
tel

and denote by s,(¥) the regular length of the regular socle of ¥,.
Tn case Y, is in addition divisible, s,(¥) is just the number of Priifer
modules in a direct sum decomposition of ¥,. As a consequence,
given Y torsion regular and divisible, and U a regular submodule
of finite length, then s,(¥) = s,(X¥/U) for all ¢. It follows that for P
a peg of @, the numbers

6 = $,(@/P) , teT,

are actually independent of P. For, given two pegs P;, P, of ¢, there
exists a peg P with P, -+ P,C P, and then

8:(@/Py) = 84(Q[P) = s,(Q/P>) .

Recall that for § simple regular in €,, we denote by s, the smal-
lest matural number with 4™8§ ~ 8. Let &, be the set of simple
regular modules in ;.

LemmA: Let P be preprojective of finite length, and te T. Then

—1 .
& = 3‘(:?")‘ Sezg:ilm Ext (S, P)End(S) .

If § is a fixed simple regular module in &,, then

—1

“= 5

dimEnd(snt) Hom (.P, Sm) .

Proor: In order to prove the first equality, we note that both
S(P) and egp = dim Bxt (I, P)yuace) arve additive on direct sums in P,
thus we may suppose that P is indecomposable. However, then we
get from 5.2 that there exigts an embedding P C X with X torsion-

free divisible such that $,(X/P)= 3 és. According to 5.6, we know
Sei:
that X iy the direct sum of — 6(P) copies of @, thus s,(X/P) =

— 6(P)e,. This shows the first equality.
We can rewrite this formula as

04 == Z dimpyg 415 Hom (P, 4¢85),

=0

uging the fact that esp = dimpyg e Hom (P, AS), according to 1.4.
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However, the 478, 0<i<n,, are just the regular composition fac-
tors of 8™, Since P is preprojective, the functor Hom (P, —) is exact
on exact sequences of regular modules, thus

ne—1
dim, Hom (P, §*) = > dim, Hom (P, 48).

im0

The second assertion.now follows from the fact that End (8§*) ~
~ End (4:8) for all 4.

Note that we have listed e, for ¢ non-homogeneous, in the table
in section 1.D; however, the remaining ¢, may be non-trivial, also.

BXAMPLE: Lebt us consider an example in more detail. Consider
the bimodule Mg = Cr®rCc= Cc® Cs, where the right action
of C on the second summand is given by complex conjugation: if we
denote @ = (1,0), ¥y = (0, 1), then for ¢eC, wc = oz, yo =Y. Re-

presentations of the ring E = g %) can be given in the form

(U, V, &, B), where U, V are two C-vector spaces, a: U — V is C-linear,
and p: U~V is C-anti-linear. In [16], the indecomposable modules
of finite length have been determined, and we recall the description
of the simple regular ones. Let R, = {reR,r>0}, R_= {reRjr< 0},
and C,=RxR,. For acR, U {0}, let 8= (C,C,1, -a), and let
8.=(C, C,0,1). Also, for ceR_UC,, leb

g, = (CXC,CXC, 1, (3 "))

Then these modules §, with ¢e RU C, U {oc}, form a complete set
of pairwise non-isomorphic simple regular modules, and their endo-
morphism rings are as follows: End (8,) = End (8.) = C, End (S;)=R
for acR,, BEnd (8,) =H for aeR_, and End (8,) = C for ¢eC,.

Tt is now easy to caleulate the possible numbers é,. Note that the
indecomposable projective module P = (0, C, 0, 0) has defect —1, thus
6y = dimy,qs, Hom (P, §,), and therefore ¢, =1 for teR_U {0}V {co},
and ¢,=2 for teR, UC,.

In addition, we will consider the module § = (B, E, 1, -»), where
B = C(w, -) is the twisted function field in one variable: let Clz, ]
be the twisted polynomial ring with respect to complex conjugation,
its elements are the polynomials > «‘c; with coefficients ¢;€ C, with
ordinary addition, and with multiplication induced by we=¢». The
quotient field of Clz, =] is F = C(z, -), its elements are of the form
j-1g, where f, g€ Clz, -] and f#0. If Ug is a subspace of Be, let
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X(U) be the submodule X(U) = (U, U + U, 1, -2) of §. We embed C
into I as the set of constant polynomials, and therefore P = (0,C, 0, 0)
is a submodule of Q. It is clear that @ is torsionfree and that Q/P is
torsion, thus P is a peg in @, and @ is torsionfree rank one. We claim
that @ is the unique indecomposable torsionfree divisible module. This
follows from the fact that @/P is divisible and that the regular socle
of (Q/P),, for any te RUC, U {co} is of regular length >e,.

We want to describe submodules P C X,C@Q with X,/P being the
direct sum of e, copies of §,, thus X,/P has to be the regular socle
of (Q/P);. The modules X; will be of the form X, = X(U,) with U,
a C-subspace of Hu, and we will uge the symbol U;= {...> in order
to describe a suitable basis of U,.

ForaeR,,let U = {(x— a)™?, (# + a)~* ). Note that we have the
following two equalities

(@—a) e = (@—a)ta+1, (@4 a)ytiz= (@ a)ia—1,

thus X(U,)/P ~ 8.D 8..

For ¢ =0, let Uy= (&), for ¢ = oo, let U,=(1). Then, clearly
X(Uy)[P a8y, and X(U,)/P ~ 8.

For ¢ceR_, let U,= {(22— o)™, (x®*—¢)~*2). Then the equality

(w2—e) o= (*—c)le+ 1

show that X(U,)/P ~ §8,.
Finally, for ¢ceC,, let

U.= ((@*— o), (a*— o) e, (2 T)~>a, — (02— B)4E) .

We have to use besides the previous equality, the following two equal-
ities
(@*—C) @i == — (®*—E)"*iC—1C,

— (w*—T)~titw = (w®*—C)~twic ,

and therefore, X(U,)JP ~ 8., @ 8,.

We call Q multiplicity-free, in case ¢, =1 for all te 7. According
to the calculation of ¢, for ¢ non-homogeneous, we see that in case
of type (., BD,, F,, and G,,, the module @ can never be multiplicity-
free. In the other cases, it will depend on the bimodule which deter-
mineg the homogeneous component of .

ProposITION: If R is of type OD,, D,, &, &,, B, Fyy or G,
and if R/rad B is commutative, then @ is multiplicity-free. If R is
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a k-algebra of type Ay, or 4,, and Rjrad R is a product of copies
of &, then @ is multiplicity-Iree.

ProoF: For ¢ non-homogeneous, in all these cases we know that
¢, = 1. Thus, consider # homogeneous. There exists & dimodule Mg
and a full and exact embedding I” from the category of representa-
tions of zMg into My such that any simple regular R-module in &;
with ¢ homogeneous, is of the form (U, V,¢) with (T, V,yp: UR
® M — &) a simple regular representation of zMg. According to 1..D,
the bimodule M, listed in the tables of [14] satisfies

EHom (.P, (U, V, (p))p NEUF,

where P is a fixed digtinctive projective B-module with endomorphism
ving F, and B =End (T, V, ¢) =Bnd ((U, ¥, p)). Thus, it suffices to
check that dim U = 1 for any simple regular representation (U, V, ¢)
of pM, with endomorphism ring 2.

We claim that in all cases mentioned in the proposition, the bi-
module ;M is actually of the form (vF7)* This is clear for D,, Ifz,,,
and, under the additional assumption % ==F, also for A, and 4,.
In the case (D,, Fy, and @,, there exists a division ring F' con-
taining 7, such that Mg is of the form yF'por z(I/F)p. Thus, if we
assume, as we do, that F' is commutative, then again the bimodule
iy of the form (pIF)%

It remaing to determine the simple regular representations of (nlr)?,
thus we congider just simple regular Kronecker modules over the
commutative field . Besides the representation

0
e 3 T
id

with endomorphism ring T, the simple regular Kronecker modules

are of the form
id

F(x)r @ B(@)e

where F(z) is a finite extension feld of F with primitive element 2.
The endomorphism ring of this Kronecker module is just I'(z). Thus,
we see thar for any simple regular representation (U, V, @) of (pF'r)*
with endomorphism ring ¥, we have dim ;U =1. This finishes the

proof.

COROLLARY: If the base field is algebraically closed, thew Q is mulii-
plicity-free.
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Proor: Under the assumption that the case field is algebraically
closed, the only possible types are Ay, 4,, D, and E,, and R/rad R
is a product of copies of the base field.

6.5. We will need conditions in order to decide when two torsion-
free rank one modules X, and X, are isomorphie. If X,, X, are contained
in @ and contain the peg P, we will compare the quotient modules
X,/P and X,/P. These are torsion regular modules, and we will use
the following definition: the torsion regular modules Y,, ¥, will be
called equivalent, provided there exists submodules V,CY,, V,C Y,
of finite length such that dim Vy = dim V,, and Y,/V, ~ Y,/V,.

Lemma: Let X be a torsionfree rank one module with two pegs
Py, P,, with P, ~ P,, then X/P, and X/P, are equivalent torgion
regular modules.

Proor: Choose a peg U of X with P, -+ P,C U. Then
dim U|P, = dim U — dim Py = dim U — dim P, = dim U/[P,.

Thus, the submodules U/P, of X/P;, and U/P, of X/P, show that
X/P, and X/P, are equivalent,

The converse iy true in case @ is multiplicityfree. More general,
we will introduce the notion of a clean torsionfree rank one module.

Let Z=@Z, be a torsion regular and divisible module, with Z,
el

being the direct sum of ¢, Priifer modules in €, (where ¢, ¢ N). Then

a regular submodule ¥ of Z is called elean provided ¥ = @ ¥, with
teT
Y, being the direct sum of ¢, indecomposable modules of equal regular

length k., for some h;e N,U {w}. It is clear that there iy a bijec-
tion between clean submodules of Z, and functions h: 17— N,U {w}.
Such functions will be called height fumctions.

A peg P of a torsionfree rank one module X will be said to be a
clean peg provided X /P is a clean forsion regular submodule of @/P.
Note that in case @ is multiplicity-free, then any peg of a torsionfree
rank one module is clean. In particular, this is firue over an algebraically
closed base field.

TuaporeM: Let Xy, X, be itorsionfree rank one modules, with pegs
P, CX,, P,C X, such that Py~ P,. Assume one of the modules Xy, X,
has a clean pey.

Then Xy ~ X, if and only if X,[P, and X,/P, are equivalent torsion
reqular modules.
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ProoF: It remains to be seen that for X,[P, equivalent to X,/P,,
we have X, ~X,. Choose modules P,CU,CX,, P,CU,CJX, of finite
length such that dim U, /P, = dim U,/P, and X,/U; ~ X;/U,. Let,
without loss of generality, P be a peg of X, such that X,/P is a clean
torsion regular submodule of §/P. The submodule (U, + P) [P of finite
length of the clean submodule X,/P of /P can be embedded into a
clean submodule U;/P of finite length of @/P such that U,+PC U,CX,,
and then it is clear that X,/ Uy is a clean submodule of Q/ U;. Under 2
fixed isomorphism a: Xy/Uy — X/ U,, the submodule U/, will be
mapped onto some submodule a(Uy/Uy) = Uy/T, with UyC UpCX,-
Then

dim U, = dim Py + dim Uy/P, - dim U,/ U,

= dim Py + dim Uy Py -+ dim Uy Uy = dim T,

thus Ul ~ Uj. Now X, is the unique extension ingide ¢ of U, by
the clean torsion regular module X,/U;. Since U~ Up and X,/Uy ~
~ X,/U., it follows that also X, ~ X,. For, let « be an automor-
phism with «(Uj) = Uj, and consider the -component (X,/ ). It
(X,/Uy), is the direct sum of e indecomposable modules of regular
length h;, then « hag to map (X Uy); onto the unique submodule
of Qf U, which is the direct sum of e, indecomposable modules of reg-
wlar length %,, and this is just the t-component (X,/Tsp). of X/ U;.
Thus, o(X,) = X,.

REMARK: Note that this theorem gives a complete classification
of torsionfree rank one modules having a fixed clean peg P. The
isomorphism classes of such modules correspond bijectively to equi-
valence classes of height functions, which can be described completely
combinatorially. Call two height functions &, h': T — N, equivalent,
provided the following three conditions are satisfied.:

(i) h(t) = oo iff W'(t) = oo,
(ii) the set 4 = {8|h(t) == W(})} is finite, and

(@) S ogp dim S0 =3 65p dim ¥,
Se, SeG:
tEA teA

It is also clear that oue can similarly decide when two torsionfree
one rank modules with different clean pegs are isomorphic.

6.6. ProposITION: Let P be a clean peg of & torsionfree rank
one module X. Let PCX'CX be the submodule with X'/P being
the divisible part of X/P. Let ¢: P— X be a homomorphism. Then
@ extends to an endomorphism of X if and only if p(P)C X',

i
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For the first part of the proof, we need the following auxiliary
result:

Lemma: Let te 7. Let UCV be two preprojective modules of
finite length with defect —1, such that V/U~ @ @87, for some x.

8eB; esy

Then, for any homomorphism ¢: V — 8%, with €&, we have o(U) =0.

Proor: By induction on n. Let » = 1. By assumption, there are
given ¢y linearly independent elements ¢f, ..., ¢, in gy o Hom (¥, 8),
for any Se€&,, thus dim 4 gHom (V, 8) < sy However, according
to Lemma 6.4, we have both

E bsy = €:,
SeE,
and

z dim End(S)Hom (V’ S) = Zdim End(AS)Hom (V, .AS) = 2 by = €,
BeSe SeGe )

and therefore, for all S¢@,, dim maHom (V, 8)= esy. Thus, the
elements ¢f, ..., ¢f form a basis of znd (syHOm (V, 8). Thus, given
¢: V — 8, there are endomorphisms , of § with ¢ = > o, and
thus the kernel of ¢ containg the intersection of the kernels of the 75
thus it containg 7.

Now assume we know the assertion for n—1. Let U’ be the
inverse image of (P @ 8 under the given epimorphism V- P P8,

8eB; esy 8eB, esv
thus V/U'~ @ @ (A-28)**. There ave given gy linearly independent
8eG; esv
elements in p,4 gy Hom (U7, §), thus esy < dim 5, @Hom (T, 8)=6 415 5.
In order to see that we have equality, we argue as in the previous
case: According to 6.4, we have both

z Csy = €, and z GA'IS,U’ = @;.
SeC: 8eC:

Now assume there is given ¢: ¥ — 8%, Let z: §7 — 8*/8 be the can-
onical projection, thus we can apply induction to the map

ap: V — 878 = (4-1) 8y,

and conclude that 7mp(U’) = 0. If we denote by ¢’ the restriction of ¢
to U', then we see that ¢' maps nto the kernel § of . However,
2pplying the case n=1 to the inclusion U C U’ with U [U~@ @S,

Se@: esy

and the map ¢': U'— 8§, we see that o(U) = @'(U) = 0.

o
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PRroOr or THE PROPOSITION: First,let « be an endomorphism of X.
We want to show that «(P)C X',

Thus, let X¢ be the submodule with P C X*C X such that X¢P =
= (X[P),, for any ¢ T. Given o, consider the map «, given by

XicXx -2 X/tZtX*' ~ (X/P); .
"

If h(X/P) is finite, we can apply the lemma to a,, and obtain
o(P) = 0, and thus «(P)C > X?¥. Denote by I the set {{ € T'|h, finite}.
Then we get that v

aP)S) SX'=X".
tel V#t

This proves the first part of the proposition.

Conversely, assume @: P — X maps into X', and we may assume
p=0. If we embed X into @, there exists an automorphism « of @
with «|P = ¢. We want to show that «(X)CX. Since P and o(P)
are contained in X', we can choose a peg U of X' with P+ «(P)C U.
Now consider («(X) + U)/P. This is an extension of U/P by («(X) +
+ U)/U. For the first module we have (U/P),=0 for tel= {feT|
|, finite}, since U/P is a submodule of X'/P. The second module

(«(X) + U)/U ~a(X)(@(X) N T)

iy an epimorphic image of w(X)/a(P) ~ X/P, thus we see that for
te I, the indecomposable direct summands of ((cx(X) + T)/ U), have
a length <h,, and then the same is also true for the indecomposable

direct summands of ((oc(X) + U)/P)t. This shows that for ¢,
((«(X) + U)/P).C (X/P),.

But for 1 ¢ I, we have the similar inclusion, since (X [P)s = (Q/}’)t in
this cagse. Thus, we conclude that «(X) 4 UC X, and, in particular,
(X)) C X.

COROLLARY 1: Let P be o clean peg of a torsionfree rank one mod-
wle. Lot PCX' CX be the submodule with X'[P being the divisible
part of X|P. Then, for any endomorphism « of X, we have a(X') € X',
and the restriction map End (X) — End (X') 48 an isomorphism.

PROOF: We may consider both End (X) and End (X') as sub-
rings of End (Q) by choosing a fixed embedding of X into @ and

26
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extending the endomorphism of X and X' to endomorphisms of Q.
Then, we have to show that End (X) = End (X').

Let « be a non-zero element of End (X). By the previous pro-
position, «(P)C X'. Applying now the proposition to the clean peg P
of X', we see that «|P is the restriction of an element §e End (X'),
but then o« = B since they coincide on P. This shows End (X)C
C End (X'), and similarly, one gets also the other inclusion.

COROLLARY 2: Let X be torsionfree rank one, with endomorphism
ring D. Let P be a clean peg in X and asswme, X[P is divisible. Then
the D-module ,Hom (P, X) is free of rank one, generated by the inclu-
sion map P X.

ProoF: Let u: P — X be the inclusion map. Define
»D — pHom (P, X) by a = au .

Then this is 2 monomorphism, since with « also o is a monomorphism,
and therefore non-zero. By the proposition, this map is also surjective.

6.7. THEOREM: Let X be a torsionfree rank one module with endo-
morphism ring D. Assume, P is a clean peg in X. If X[P is reduced,
the D is a division ring which is « finite dimensional k-algebra. If X|P
s not reduced, then End (X) is o left order in K.

Proor: First, assume that X/P is reduced. Let o be a non-zero
endomorphism of X. Then Proposition 6.6 shows that «(P)C P. Thus,
the restriction map End (X) — End (P) exists, and it is clear that this
is & monomorphism. Thus End (X) is a subring of the finite dimen-
sional k-algebra End (P) which is a division ring, and therefore itself
a finite dimensional k-algebra and a division ring.

For the converse, we fix an embedding of X into @, and identify
End (X) with the subring {pe Blp(X)C X} of the endomorphism
ring B = End (§). By assumption, X/P is not reduced, thus there is
toe I with Xb/P = (X/P), = (@/P);,. Let § be simple regular in T, ,
and assume the dimensgion type of 8%, is dim 8%,= 8,h. Also, we
agsume that for ¢ e T, the indecomposable direct summands of (X/P):
are of regular length By

Now, let « be a non-zero element of X, Ohoose a peg U of ¢ con-
taining P 4 «(P). Note that we may assume that dim U/P is a mul-
tiple of s,-h. For, any indecomposable regular submodule of Q/P is
of the form 8™ for some simple regular module § in some Ty, and
if we choose some natural number m' with m<m's, ny, then §™C
c §'maem' and dim §'™% ™' iy obviously a multiple of s, k. Thus, we
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can replace the indecomposable direct summands of U/P by some
larger regular submodules of @/P, and, in this way, we obtain a larger
peg U'2 U such that dim U'[P is a multiple of s,-h.

Since dim U/P is a multiple of s,-h, there iy some peg V of X
with P CV C X% such that dim V/P = dim U[P. Then also dim V =
= dim U, and therefore V ~ U. Thus, there exists an automorphism
f:Q —@Q with B(U)= V. We claim that f(X)CX, and fa(X)C X.

In order to show that B(X)C X, consider S(X -+ U)/P. This is
an extension of V/P by §(X + U)/V. Now f induces an isomorphism
from (X 4 U)/U onto (X + U)/V, and (X 4 U)/U ~X[(XNT)
is an epimorphic image of X/P. Thus, for ¢ € T, with ¢+ ,, it follows
from (V/P);=0 that

(B(X 4 U)/P). ~ (B(X 4 U)V): ~ (X[(X N T))s

is an epimorphi('z image of (X/P),, and therefore the indecompesable
direct summands of (f(X -+ U)/P), have regular length <#;, con-
sequently, (8(X -+ U)/P), G (X/P),. But the last inclusion is trivially
valid also for ¢ =1,, since in this case (X/P), = (§/P);. Thus we
conclude that f(X + U)C X, in particular, f(X)C X.

In order to show that fx(X)C X, consider (fu(X) V)/P. This
is an extengion of V/P by (fa(X)+ V)|V ~ po(X)/(f(X)N V). The
last module is an epimorphic image of fa(X)/fa(P) ~ X[P, since

Ba(P) € o X) 1 (D) = Pou(X) NV .

Then, again, for te 1 with 24, it follows from (V/P)y=10 that
((Bx(X) + V)/P), is an epimorphic image of (X/P),, and therefore the
indecomposable direct summands of ((fu(X)~+ V)/P), are of regular
length <h,, thus ((fa(X) -+ V)/P):S(X/P).. Again, we use that the
last inclusion is also valid for f=1,, since (X/P); = (@/P),, thus
pu(X) + ¥V € X, and therefore fau(X)C X.

Thus, we have ghown that o= f-(fa) with § and fo two ele-
ments of F satistying (X) € X, and fa(X)C X, and therefore belong-
ing to Bnd (X) = {pe Elp(X)CX}. This shows that End (X) is a left
order in B,

6.8. THEOREM: Let te T be a fized element. Let P be o peg of @,
and let X be torsionfree rank one module with PCXC@Q such that
(X/P), =0, and (X[P)y= (Q/P); for all 521, We may consider
Bnd (X) as a subring of End (@). Then, the canonical map End (X) —
— BEnd (@/X) is an embedding and is the completion with respect to
the powers of the radical of End (X).
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Proor: Let F = End (X)C End (Q). First, we note that the can-
onical map F — End (@/X) is a monomorphism. For, if «€ E, then
the induced map in End (@/X) is zero if and only if «(Q)C X, bub
this is possible only for « = 0.

Let U, be the submodule with PC U;C @ such that U,/P is the
i-the regular socle of (Q/P),, and let X;=X -+ U,, for 1€ N,. Note
that X = X,. According to the Corollary 1 of 6.6, the endomorphism
rings End (X,), considered as subrings of End (@), all coincide with B.
In particular, for any «€ B, we have a(X,;) CX;. Lebt n;: X;— X;/X
be the projection.

We claim that for all ¢, the map D — End (X,/X) with ¢« —&
such that &m; = m,a, is surjective. Now U, is a clean peg of X, with
X,/U;~ X|P divisible, thus according to Corollary 2 of 6.6, the left
D-module ;Hom (U, X,) is free with generator the inclusion u,: U, —
— X ;. The exact sequence

0 >X—>X,2X,/X -0

gives rise to an epimorphism Hom (U, X,) - Hom (U,, X,/X), since
Bxt (U;, X) = 0. Note that this is a left D-module homomorphism,
thus Hom (U, X,;/X) as a left D-module is generated by the image
stth; of u, in Hom (U, X,/X). Thus, any ¢: U,—X,/X is of the form
@ = Gm ;= w00, with ee D. Now, let § be an element of End (X ,/X).
Then frz,u; belongs to Hom (U;, X;/X), thus there exists «cD with
P, = mou;. The map Pm,—m;0: X, — X,;/X vanishes on U,, thus
it induces a map X,/U;— X,/X. However, X,/U; and X,/X are tor-
gion regular modules, X,/X belongs to €., and (X,;/U,);==0, thus the
only homomorphism X,/U;— X,/X is the zero map. This shows that
pr;—mioe =0, thus f=a.

Next, let I, be the kernel of the map D —End (X,/X), let I = I,.
We claim that I is the Jacobson radical of D. On the one hand,
D[I ~End (X,/X) is a finite dimensional semi-simple algebra, thus
rad DCI. In order to see the converse, let acl, thus «(X;)CX.
Since & is'an endomorphism of @/X which vanishes on the regular
socle X,/X of Q/X, it maps the i-th regular socle into the (7—1)-th
regular socle, thus «(X,) € X, 4, and therefore « -+ 1 induces the iden-
tity endomorphism of X /X, ,. Let f= (x - 1)~ in End (Q). Assume
p(P)¢ X. Then we can choose ¢eN with S(P)CX,, f(P)¢X,,.
However, since o + 1 induces the identity on X,/X; ,, we see that
(«+ 1)B(P) ¢ X4, contrary to the agsumptions (x4 1) =1 and PC
cX,CX, . This shows that f(P)C X, and therefore § belongs to D.
Thus, any element of I is quasi-regular, and therefore the ideal I is
contained in the Jacobson radical of D.
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PFinally, note that the subset {peEnd (Q/X)|p(X,/X) =0} is some
power of the radical of End (@/X), say rad” End (@/X). Then rad” D,
maps into rad’ End (Q/X), and therefore rad” DC1,. Bubt conver-
sely, one also sees easily that I,Crad’ D, thus the ideals I, are
powers of rad D. '

It follows that

End (Q/X) = lim End (X,/X) ~ lim D/I;= lim Dfrad? D
is the completion of D with respect to the powers of the radical of D.

ReMARK: Let te T, and choose some simple vegular module S
in ¥, and let S be the Priifer module with regular socle 8. We always
can choose a peg P in @ such that for the torsionfree rank one module X
with PCXCQ and (X/P),=0, (X/P)y=(Q/P)u, for #' 51, the factor
module Q/X is the direct sum of e, copies of §¢, and therefore

End (Q/X) = M, (D), where D, = End (8%).

This shows, that the various complete discrete valuation rings D,
which determine the category & of torsion regular modules, are related
to each other in the following way: for any t, there exists a subring
of B = Bnd (Q) such that its radical completion is just M, (D).

6.9. TEmorEM: There cvists an infinite set {X|ie I} of torsion-
free rank one modules with the following properties:

(¢) End (X)) is @ division 1ing, finite dimensional over b.
(b) Hom (X;, X,) == 0 for i+ .
(¢) Bxt (X, X;)5£0 for all .

Proor: As index set I, we choose any infinite partition of the set
of homogeneous types, such that all iel ave infinite subsets of T.

Pet P be a fixed peg in @, and let ¥ = @ Y. be the regular socle
e

of Q/P. If i is a subset of T, let X, be the submodule of @ with P C X,
such that X, /P =@ Y,. By construction, any such module X, is

tei .
torsionfree of rank 1, and satisfies the condition of Proposition 6.6,

thus (a) is satisfled.

Let 4, j be disjoint infinite subsets of T, and assume there is &
homomorphism ¢: X;—X;. Then (p(P)+ P)/P is contained in some
@ Y, with j' a finite subset of j, thus (P) is contained in Xy ¢ X;.

tej’
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The induced homomorphism X,/P — X,/X, has to be zero, since
.Xz/.P = @ Yt, .X,'/.Xy N@ :Yﬂ &nd ’I;ﬁj= @. Thus (p(.Xi)g.X,'l. How-
, tei teiNg’
ever, this implies that ¢ = 0, since X, is torsionfree regular, and X,
is preprojective. This proves condition (b).
Next, consider the exact sequence

0>P—->X,->Y,—0,
for j a subset of T. It induces an exact sequence
Hom (X,, ¥,) - Bxt (X,, P) — Ext (X,, X,) .

Let us assume that ¢, j are disjoint infinite subsets of 7. Then, we
want to construct an exact sequence as follows: Let 4 = 4, U 4,, with
%, and 4, both being infinite. Then, denoting by « the various inclu-
sion maps, the following sequence

U
0 >PO ¥ DX, @, x, 0

is exact, and therefore belongs to Ext (X,, P). Assume it lies in the
image of Hom (X;, ¥,), then there is a commutative diagram

0 "+.P—>Xil®.Xiz'—>Xi—>0

N

0>P—» X, —X,—0.

However, by the previous consideration, any homomorphism X, — X,
and X, —X; is zero, thus u'=0, a contradiction. Thus Ext (X,,
X,)# 0 for disjoint infinite subsets of 7.

Finally, we want to show that Ext (X,, X,) 0, where ¢ is infi-
nite and contains only homogeneous elements e 7. Construct X
with P ¢ X;CQ such that X;/P is the second regular socle of () (Q/P)..

fei
Then X,CX;, and, since any y €4 is homogeneous, we have Xj/X, ~s

~ ¥;. The exact sequence 0 —P —X,— ¥,—0 gives rige to the
exact sequence

Hom (P, X,) — Bxt (¥,, X,) - Bxt (X;, X,).

Now, we have an element in Ext (¥, X,), given by the module X,
Assume it lies in the image of Hom (P, X,). Thus, there is a commu-
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tative diagram
0—P —>X;—>X;—0.

R

0>X;,—»X;—>X;—0.

" Now there is » finite subset &' of ¢ with p(P)C X . Let m: X;—X /Xy
be the projection. Then myp = 0, however, the sequence induced from
0 — X;—> X’ —> ¥, ~0 by @ does not split. This shows that there is
an element in Bxt (¥, X;) which is not in the image of Hom (P, Xs),

and therefore Ext (X, X;)# 0.

OorOLLARY: There exists o finite dimensional hereditary k-algebra
R of wild representation type, and o full and exacs embedding of Ma

ProoF: We work with the set {X,ieI} of torsionfree rank 1
modules with the properties stated in the theorem. In fact, we need
only a subset of I with six elements, say {0,1,..,8; I For iel.
let I, = End (X;). Now Bxt (X,, X,) is an I'-F-bimodule, thus &
left F;® Fymodule. Since F;,® T, is a finite dimensional k-algebra,

k k
we see that Ext (X;, X;) has a simple P, F;-submodule Ey, and By
is Anite dimensional over k. Let B} = Hom; (By, k), this is an PPy
pimodule. Now consider the species with underlying graph

N

and bimodules B (1<i<B). According
and exact embedding of the category of
into Mg, Or, if we denote by B’ the
then R' is a finite dimensional here-
full and exact embedding of My
and therefore the ring R’ is of wild

[ J
5.

Yy

division rings F; (0<4<3),
to [31], 1.5, there is a full
representations of this species
tensor algebra over this species,
ditary algebra, and there is a
into M,. However, this species,
representation type.

encé, we see that there is & finite extension

REMARK: As & consequ
tegory of modules over the free associative

feld K of k such that the ca
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algebra K{x,y)> in two variables over K can be embedded as a full
and exact subcategory of MMy, and thus the category of modules over
any K-algebra which is generated over K by less then ¥, elements
(N, the first strongly inaccessible cardinal number), see [31].

In fact, as the proof reveals, one may choose for K an extension
field of %k which is contained in one of the division rings End (P,),
where P, is an indecomposable projective R-module.

This behaviour may be brought in the following suggestive form
« tame finite dimensional hereditary algebras are Wild », (the small « ¢ »
in tame refers to tameness with respect to modules of finite length,
the capital « W» in Wild refers to wildness with respect to arbitrary
modules which are not necessarily of finite length).

Note that this is in sharp contrast to the situation in abelian groups
or, more general, in principal ideal domains, as considered in [11].
There it was shown, on the one hand, that all kinds of pathological
behaviour can occur. However, in dealing with modules over an
integral domain E with quotient field I, a ring as simple as F x I
cannot occur as endomorphism ring of an Z-module, as was pointed
out by Corner [13] in the case of F = Z.

Added in proof.

In this paper, we have shown that for a twosided-indecomposable
finite dimensional hereditary algebra R of tame representation type,
one particular infinite dimensional R-module is of great importance
and seems to dominate the whole structure theory of R-modules:
namely the unique indecomposable torsionfree divisible R-module Q.
This module ean be characterized in a different way: it is the only
infinite dimensional R-module with endomorphism ring & division ring
which is finite dimensional as a vector space over its endomorphism
ring. (C. M. RINGEL: The spectrum of a finite dimensional algebra, to
appear in: Proe. Antwerp. Conf., Marcel Dekker). Note that this
characterization does not refer to any technical notion such as « tor-
sionfree» or « divisible», For any ring R, the set of isomorphism
classes of B-modules with Bnd (My) a division ring and mnaqary M finite
dimensional should be congidered as the «spectrum » of R (this seems
to be an appropriate generalisation of the notion of the prime spec-
trum of a commutative ring to not necessarily commutative rings).
The result mentioned above shows that for o finite dimensional here-
ditary algebra of tame representation type, one has a complete knowl-
edge of its spectrum.

Algo, the endomorphism ring ¥ of the unique indecomposable tor-
sionfree divisible module @ incorporates a great deal of information
about the category of E-modules. At the end of section 5, we have
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given some examples concerning the structure of E. Note that it

follows from sgction 5 gf [14] that one only has to consider the bi-

module cases 4,, and 4,,. The algebras of type A, are of the form
F M . . . ) .

(O G)’ with My a bimodule with dim M = dim M, = 2. If rM,

is not simple, then F = @ and M = M(s, ) for some automorphism &
of P and some ¢-1-derivation (see [31]), and then B = F(t; ¢, d), the

quotient field of the twisted polynomial ring It; & 6]. In particular,.

for M — F@® F, with canonical bimodule action, B = F(;). If I, &
are commutative, F2 H, G2 H, with [F.H] =[G H]=2 and pMg=
=TI @ G, then F is the quotient field of the free product F % ¢

(note that E is uniquely determined since F 2«{ G satisfies a polyno-

mial identity). Finally, let us consider the case 4,,. Then we have
division rings G c F with dim ¢F = 4, and the algebra is given by
(g ﬁ . For example, if ¢ =R, F = H, then we have noted that B
is the quotient field of R{w, y]/(@*+y*+1), and therefore commuta-
tive, whereas for @ = Q, F = Q(v/Z, v/3), we obtain the (non-com-
mutative!) quotient ring of Q(z, y>/(xy + y@, ¥* -+ 2y°*— 3) (see a forth-
coming joint paper with V. DLAB: Homogeneous representations of tame
species).

Tt has been asked frequently whether the structure theory developed
in this paper is restricted to finite dimensional hereditary algebras or
whether it may earry over to other finite dimengional algebras. Let us
single out two other classes of finite dimensional algebras of tame
representation type which have a similar structure theory: the tame
algebras with radical square zero and the algebras corresponding to
the «crucial» quivers with commutativity relations as studied by
M. Louruss (Indesomposable represeniations of finite ordered seis, in:
Representations of Algebras, Springer Lecture Notes, 488 (197 5), 201-209)
and others. For brevity, let us call the algebras of the second type
Loupias algebras. It is easy to see that for any Loupias algebra &,
there exists & tame finite dimensional hereditary algebra R, a finite
number of finite dimensional S-modules X5, ..., X,, and a finite number
of finite dimensional B-modules ¥y, ..., ¥, such that the eategory of
S-modules without direct summand of the form X, is equivalent to
the category of R-modules without direct summand of the form Y.
This of course shows immediately that the infinite dimensional S-mod-
ules behave in the same way as the infinite dimensional R—modulleef;
in particular, we have again a unique module @ with End (@s) 2 d:nfl—
sion ring 'and guaq@ & finite dimensional vector space. Of course, 1n
all cases it is easy to construct this module directly.
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Similarly, in the case of a tame finite dimensional algebra § with
radical square zero, there exists a tame finite dimensional hereditary
algebra R such that the category of S-module and the category of
R-modules are stably equivalent (that is, equivalent modulo maps
which factor through projective modules). Here again, the structure
theory developed for infinite-dimensional FK-modules carries over to
the infinite dimensional S-modules. Note, however, one important
change: the S-module corresponding to our favorite E-module @ may
no longer belong to the speetrum of 8§, since it may have non-zero
nilpotent endomorphisms. For example, consider the 3-dimensional
local commutative algebra 8 = k[w, ¥]/(»* 9% ay). The category of
S-modules is stably equivalent to the category of modules over

2
R= 73 ;Z) The indecomposable torsionfree divisible R-module cor-
responds under this stable equivalence to the S-module @ = k(f) @ k()
with (a, b)2 = (0, @), (a, )y = (0, at). Note that End (@) is not even
artinian (but a local semiprimary ring with radical square zero), how-
eVET, a0 I8 @ module of finite length.

It is easy to construct other finite dimensional algebras of tame
type for which the representation theory essentially reduces to the
study of modules over a tame finite dimensional hereditary algebra.
However, there do exist tame finite dimensional algebras which behave
rather different, even ones which correspond to & quiver with com-
mutativity condition. For example, the quiver

o\./{o\.;{c
AN

with commutative square is tame, but has (at least) a countable family
of infinite dimensional modules M with End (M) the field of rational
functions in one variable, and gygn M finite dimensional. The repre-
sentation theory of this commutative quiver does not seem to be
dominated by any one of these modules.

Finally, let us come back to the question why we are interested
in infinite dimensional representations when dealing with finite dimen-
sional algebras. We gave several reasons in the introduction of this
paper, but we should mention one additional situation where these
modules occur rather naturally. If we assume that the given finite
dimensional algebra R is not of finite representation type, then the
study of finite dimensional R-modules will mainly be the study of
continuous series of R-modules, according to the positive answer to
the second Brauer-Thrall conjecture. Of course, one would like to
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reduce the problem of studying series of R-modules to problems con-
cerning individual modules. The usual device is to.replace K by an
extension ring, say B® R[{], which however no longer is artinian, (see
for example Drozp: Tame and wild mairiz problem (Russian), in:
Maitrix Problem, Kiev (1977), 104-114). However, there is another
possibility, namely to consider suitable infinite dimensional R-modules
which, in some sense, parametrize the given series of finite dimen-
sional R-modules. An account of this approach is outlined in the
Antwerp paper mentioned above. :

Testo pervenuto il 6 marzo 1978,
Bozze licenziate il 9 giugno 1979.
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