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P.M. Cohn [16] once has proposed to consider the set of
epimorphisms from a ring A into simple artinian rings as the
"spectrum" of A, in this way generalizing the very useful notion
of the prime spectrum of a commutative ring to arbitrary rings.
Here, "epimorphisms" means the categorical notion, which includes
besides the onto homomorphisms also, for example, localisations
with respect to Pre sets. As in the commutative case, this spec-
trum can be considered as a topological space by means of a suit-
able partially ordering (given by the notion of specialisation),
however, we note that it no longer has to be a compact space.

The interest of this spectrum for the representation theory of A
1ies in the fact that we can identify the elements of the spectrum
with the isomorphism classes of those A-modules AX for which the
endomorphism ring End(AX) is a division ring such that X, con-

sidered as an End(AX)-module, is a finite dimensional vector space.
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HWe therefore will call these modules "points" (of the spectrum),

In this survey, we will be mainly interested in the case of
a finite dimensional k-algebra A over some (commutative) field
k. Our aim is two-fold: On the one hand, we would like to point
out the importance of this spectrum in studying finite dimensional
representations of A, since it turns out that certain large points
of the spectrum give rise to infinite families of finite dimen-
sional points: one should consider them as parametrizing these
families. On the other hand, in due course of our report, there
will turn up a strong interrelation between various parts of ring
theory: we will see that the questionof construding finite dimen-
sional modules over finite dimensional algebras leads to problems
concerning finitely generated (but not finite dimensional) Pl
rings as, for example, rings of generic matrices, and even tgo prob-
tems concerning free associative algebras. The free associative
algebras k<x1,...,xq> made their first appearance in the theory
of finite dimensional algebras in the development of the notion of
wild representation type, when one considered full exact embeddings
k<xl""’xq> M &> M of the module categories, and such embeddings

seem to be a very typical situation which one has to consider.

The main result of this paper will be the determination of
the spectrum of a tame finite dimensional hereditary k-algebra A.
We will show that in case A is twosided indecomposable, there
exists a unique epimorphism from A into a simple artinian ring

which is infinite dimensional over k. As a consequence, the
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spectrum of A 1is the disjoint union of countably many one-point

sets and a connected partially ordered set

LR R4

with one generic point and max(};Jk|) remaining points.

The proof of this result is given in section 6 and presup-
poses the structure theorems for infinite dimensional modules over

a tame finite dimensional hereditary k-algebra derived in [36].

Sections 1 to 4 of this paper develop a general theory
of the spectrum of a finite dimensional algebra. In section b5,
the typical situation in case of a wild finite dimensjonal here-

ditary k-algebra over an algebraically closed field is exhibited.
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1. The Spectrum

We consider only rings with 1, and ring homomorphisms are
supposed to preserve 1. We denote by Mn(R) the nxn matrix
ring over R. The Jacobson radical of R will be denoted by
rad R, If k 1is a (commutative) field, a k-algebra R 1is, by
definition, a ring R with a fixed embedding of k 1into the
center of R. We denote the free associative k-algebra generated

by XqaenesX by k<x1,...,xm>.

m

1.1. Recall that a ring homomorphism ¢ : A+ B 1is called
an epimorphism provided for any ring homomorphisms g,8' : B + C,
satisfying eB = eB', we may conclude B = g'. Examples of epi-
morphisms are onto ring homomorphisms, but also certain inclusions
as Z<> Q. Two epimorphisms e : A>B and ¢' : A+ B' will be
called equivalent provided there exists an isomorphism g : B -+ B’
with e = ¢'. Note that for given A, the cardinality of B
with epimorphism A - B 1is bounded [28], thus the equivalence
classes of epimorphisms A + B, with A fixed, form a set. The
set of all equivalence classes of epimorphisms A - Md(D), with D
a division ring, will be called the spectrum of A. In fact, we
will consider the spectrum of A as a partially ordered set using

the notion of specialisation: The epimorphisms & : A - Me(E) is

called a specialisation of the epimorphism ¢ : A -+ Mq(D) provided
there exists an epimorphism ¢ : A +~ R, where R s a subring of
My(D), with inclusion 1, and where R/rad R 1is isomorphic to

M (E), with projection 7 : R » M(E) such that the following
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diagram commutes

Proof: Since reflexivity and transitivity are obvious, we
only have to check that there is no non-trivial specialisation of

6 : A~ Md(D) into itself. But given the commutative diagram

with ¢ an epimorphism, we conclude 1 = m.

1.2. Examples: a) Commutative rings: Let A be commuta-

tive. In this case, we obtain precisely the prime spectrum (the set
of prime ideals of A with partially ordering given by inclusion).
For, given an epimorphism A >R with A commutative, one knows
that R is commutative [39]. Therefore, for any epimorphism

§ : A>My(D) with D a division ring, we have d =1 and D fis
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a field. The kernel of ¢ 1is a prime ideal and depends only

on the equivalence class of &. Conversely, given a prime ideal
p, of A the canonical map A -+ Quot(A/p) 1is an epimorphism. It
remains to note that a specialisation from A -» Quot(A/p) to

A + Quot(A/p'), with p,p' prime ideals of A, exists if and only
if p'sp.

b) Direct products. Let A be the product of two rings,

A= Al X A2. Then the spectrum of A is the disjoint union of

the spectrum of A1 and the spectrum of A2. For, given an epi-
morphism A - R, the orthogonal idempotents (1,0) and (0,1) are
mapped to orthogonal idempotents with sum 1. However, these idem-
potents are central and the image of the center of A 1lies in the
center of R, thus if R is twosided indecomposable, one of the
elements (1,0) and (0,1) goes to zero. Thus, any epimorphism
A+ My(D) with D a division ring factors over one of A1’A2’

and also there can be no specialisation between epimorphisms which

factor over different Ai'

c) Semi-simple rings: In order to determine the spectrum of a

semi-simple (artinian) ring A, we only have to consider the case
of a full matrix ring My(D) with D a division ring. We claim
that in this case, any epimorphisms § : Md(D) +~R with R not
the zero ring, is an isomorphism. For, using the images of the

matrix units of My(D)s we see that R is of the form My(RY)

for some ring R', and ¢ = Md(a'), for some ring homomorphism

¢' ¢ D+R'. Also it is easy to see that &' is an epimorphism.
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However, this implies that &' (and therefore &) is an isomor-
phism. This shows that for a semi-simple ring A the points of

the spectrum correspond bijectively to the maximal ideals of A.

d) Artinian rings: Next, let A be an artinian ring. There

are some obvious epimorphisms A +-Md(D), with D a division ring,
namely the projections A -+ A/m, with m a maximal ideal. Clearly,
these epimorphisms only depend on the semi-simple ring A/rad A,

and there is only a finite number of equivalence classes of such
epimorphisms. Also, conversely, every epimorphisms A +;Md(D)

with d =1 is of this form (for, its kernel is a prime ideal and
therefore maximal). On the other hand, for certain A there do
exist non-trivial epimorphisms A - Md(D), D a division ring, with
d > 2. For example, let A = (g t), the ring of upper triangular
2x2 matrices over the field k. Then the inclusion map A + Mz(k)

is an epimorphism. (This is well-known {281, but it will follow

also easily from the considerations in Section 2).

e) Given a bimodule M., one may consider the ring (5 g)

of all matrices (| ") with feF, geGmeM. Let F.G be
division rings, and assume A = (g g) is a finite dimensional
k-algebra for some field k. It has been shown in [35] that for
any d € N there exists an epimorphism A +-Md(D) with D a

division ring, provided dim Mo dim M, + (dim M) (dim Mg) 2 12.

£) Consider now the bimodule k° where k is some field,

3
and let A = (g t). Let R be any k-algebra which is generated
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over k by x,y. Then the canonical map

A = (g k+kﬁ+ky) My (R)

is an epimorphism. Also, if R 1is a k-algebra generated by
XpseeesXps then there is an epimorphism A - M2n+4(R) given as
follows:

Consider in M o(R) the unit matrix E = (1\\1), and the matrices

0
01 1
I = \\§> , J = \\\\\\\ » and define an embedding
1
0

xl...xm 10

1
A~ M2n+4(R) by the rule that the elements (0

o O

)s (9

(8 (180)), (8 (Oéo)), (8 (Ogl)) are mapped onto

Go» 0D Q5. ¢

respectively ([13]).

This shows that any finitely generated k-division algebra
D can occur in an epimorphism A - Md(D), with A a suitable
finite dimensional k-algebra. For, let D be generated (as a
division algebra) by Xps+-+sX> and R the subalgebra generated

by XpsevesX .+ Then Res D, and therefore also M,(R) <> M,(D)

is an epimorphism.

1.3 PROPOSITION. let A be a finitely generated k-algebra,

and ¢ : A » Md(D) an epimorphism with D a division ring. Then
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D 1is a finitely generated k-division ring.

Proof: First we note that the center of A is mapped

into the center of Md(D), a known property of an epimorphism [39].
Thus the image of k in Md(D) lies in the center of D with

D embedded into Md(D) as the set of scalar matrices. This

shows that D is a k-algebra. Next, let a;,....a, be gene-
cators of A asa k-algebra, and §(a;) = (al)g, With agy €D,
i<s,t<d, 1 <is<m Let D' be the k-division subring
generated by the elements “Zt' Then ¢&(A) =M (D'), and D' s
a finitely generated k-division ring. We claim that D' = D.

This follows from the fact that the embedding Md(D') < My(D) s

an epimorphism, thus the identity (see 1.2.¢c).

1.4. Assume now that A is a finite-dimensional k-algebra
over some field k. We fix a complete set fl,...,fn of primitive
idempotents (thus, there are primitive orthogonal idempotents

f l1<s<n,1<te<m with 1= }f, suchthat the Teft
) T s,t

st? S
A-modules  Af. and Afst are 1somorpﬂic if and only if 1 = s;
we call m, the multiplicity of fi)' Given an epimorphism

§: A~ Md(D), with D a division ring, we define its dimension
vector dim 6 € Q" as follows: suppose the jdempotent G(fi) of
Md(D) can be written as the sum of b, primitive orthogonal

idempotents of Md(D), then
. b
(dim §); = 3
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with a; = dim [e;Re,/e;(rad A)e.]. It is clear that dim s

only depends on the equivalence class of §. The equality

shows that the dimension vector of & : A »-Md(D), together with
the datas m.,a, (which only depend on A) determines the num-
ber d. In contrast to d, the dimension vector is a Morita in-

variant.

1.5 PROPOSITION. Let A be a finite dimensional k-algebra,
let D,E be division rings and assume there exists a specialisa-
tion from the epimorphism & : A - Md(D) to the epimorphism

&::A—>Me(E). Then Q@ dim § =  dim ¢.

Proof: By assumption, there exists a subring 1 : R & Mg(D)>
an epimorphism ¢ : A+ R, and a ring surjection 1 : R~ Me(E)
with kernel J = rad R such that § = M, € = Qr.

Given an idempotent f of R, let p(f) be the number of
sunmands if we write f" as a sum of primitive orthogonal idempo-~
tents of Mo(E). We claim that any idempotent of R can be writ-
ten as a sum of primitve idempotents and that for any two primitive
idempotents f,f' of R, we have P(f) = p(f') and Rf ~ Rf' as
left R-modules. The first assertion follows from the fact that
R/J s of finite length and that for any non-zero direct summand

U of RR, also U/0U is a non-zero direct summand of R/J.
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Next, let f,f' be primitive idempotents of R, and assume
p(f) < P(f'). Then Rf/Jf 1is isomorphic to a direct summand of

Rf'/df', thus there are maps
U : Rf/JF = RFYJIF', v : RF/IE' -+ RfNIT

with Gv = id. We can 1ift u to a right multiplication by some

u € fRF', and v to a right multiplication by some v € f'Rf.

Then uv € fJf, thus f-uv is invertible in fRf. This shows that
W : Rf = RF' is a split monomorphism, and, since Rf' 1s inde-
composable, even an isomorphism. Thus Rf ®Rf' and p(f) = p(f').
Denote by P the common value of P(f), with f primitive idem-
potent of R.

Now write 1”1-‘p as the sum of, say di’ orthogonal primitive
idempotents of R. Then fie = fiqm is the sum of Pdi ortho-
gonal primitive idempotents, thus (dim e); = Ddiai"l.

On the other hand, assume 1 € R s the sum of s primi-
tive orthogonal idempotents. Let f be a fixed primitive idem-
potent of R and S = fRf. Then RR% ? Rf, thus R s
isomorphic, as a ring, to MS(S). As a consequence, we have in R,
and therefore in M,(D) elements which correspond to the matrix
units of M.(S). This shows that M,(D) is of the form M. (S")
for some ring S'. Clearly d =sq for some q €N, and
S' = Mq(D). Thus, we see that any primitive idempotent of R can
be written in Md(D) as the sum of q orthogonal primitive idem-

-1

potents. Thus (dim §). = qd;ay” This finishes the proof.
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1.6 EXAMPLES. We give two examples in order to show that,
in the situation of 1.5, not necessarily one of dim & and dim e

is an integral multiple of the other.

a) Let k(t) be the field of rational functions over k
in one variable, and consider the k-algebra R generated by the

01, ,00
)

elements (0 0)> (t O) in Mz(k(t)), thus

R = {(g B) € My(kIt]) | will a-dsc € tk[t]} :

Let & : R +My(k(t)) be the inclusion, e : R~k the projec-

tion with kernel {(2 ®) | asc.d € thIt, b€ k[t]}. Then there

is a specialisation from 6 to e given by the inclusion

®: R~ {(i g) € Mz(k[t] | a-c,c € tk[t](t)} .

b) Consider the algebra R = k<x,y> / (xy+yx). The center

of R is the subalgebra generated by x2 2

and y~, thus R is
a Pl-algebra without zero divisors, and therefore an Ore domain,
say with quotient field D. Let & : R+ D be the embedding.

On the other hand, there is an epimorphism ¢ : R + M, (k(t))>

given by x r» (2 é), y = (é _?). It is easy to see that ¢

is a specialisation of &, using the localisation ¢ : R = Rm

with respect to the maximal ideal m = <x2,y2~1> of the cenhter
of R.

In both cases a), b), the ring R was a 2-generator

k-algebra, but not finite dimensional. However, using the epi-
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3
morphism A -» MZ(R) of 1.2 f), where A= (g t ), we obtain

corresponding specialisations of epimorphisms & : A » Md(D) and

e A~ Me(E), with A a finite dimensional k-algebra.

1.7 Historical remark. As was mentioned in the introduc-

tion, it was P.M. Cohn in [16], who proposed to consider the set
of equivalence classes of epimorphisms A + Md(D), with D a
division ring, as the spectrum of A, after having dealt with, in
several papers, the "field spectrum", the set of equivalence clas-
ses of epimorphisms A + D, D a division ring. Also, in this
last case he introduced the notion of a specialisation [15].

In [9], G. Bergman pointed out that also a more general concept
than that of a single specialisation, namely the so called support
relation, deserves to be studied in dealing with the field spec-
trum of a ring; a similar concept can be introduced in the case of
the spectrum itself. Of course, there are many other possible
generalisations of the spectrum of a commutative ring to the non-
commutative situation, and recently, P.M. Cohn [18] made some
investigations into the union of the field spectrums of all matrix
reduction rings of A, and, changing the view of [16], has called

this the spectrum of A.

There do exist several papers concerning epimorphisms of rings
[10,28,30,39]. Recall that G. Bergman [10] had conjectured that
for a k-algebra A of dimension n, and any epimorphism A + B, the

k-algebra B should be of dimension g (n-1)2 +1; so that, for A
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finite, there should exist only a finite number of equivalence

classes of epimorphisms A->B.

hold. (See for example 1.2.f)).

Clearly, these conjectures do not
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2. Large Modules

There is a well-known criterion [39] which asserts that a
ring homomorphism A -~ B 1is an epimorphism if and only if the cor-
responding forget functor BM -+ AM is a full embedding. Here, AM
denotes the category of all (left) A-modules. This criterion can
be used to give another interpretation of the spectrum of A in
terms of certain indecomposable A-modules.

2.1 An  A-module ,X will be called a point provided its

A
endomorphism ring D = End(AX) is a division ring, and XD is
finite dimensional (in [35], this had been called a "finite point"),

Note that points always are indecomposable. We recall from [35]:

PROPOSITION. The spectrum of A can be identified with the

set of isomorphism classes of points.

Proof: If 6 : A~ Md(D) is an epimorphism, with D a di-

vision ring, consider the canonical Md(D)—module Dd as an
A-module. Since the embedding M (D)M “r AM is full,
d o
d
End(A(D )) = End(Md( )(D )) = D, and dim (D )p = d, thus A( )
is a point.
Conversely, let AX be a point, with D = End(AX),
d = dim Xp, and B = End( XD) = My(D)- There is a canonical map
§ : A->B, with 8(a) being the Teft multiplication by a on X,

for a € A. In order to see that & is an epimorphism, note that

any B-module is of the form G)BX, with I some index set.
I
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This follows from the fact that BX is the unique simple module
of the simple artinian ring B. Now, any A-homomorphism
@ X -+ @X (with I,J index sets) is of the form (fij)
&ith fijJE (AX) =D = End(BX), thus (fij) is in fact a B-homo-
morhpism, and therefore, the embedding BM s AM is full.

It is clear that this correspondence establishes a bijection
between the isomorphism classes of points and the equivalence

classes of epimorphisms A - Md(D).

Corollary: Let A be a local artinian ring. Then the

spectrum of A consists of a single point.

Proof: Only the simple A-module has no non-zero nilpotent

elements in its endomorphism ring, thus it is the only point.

2.2 In the sequel, it will be convenient to consider the
elements of the spectrum both as being (equivalence classes of )
epimorphisms and as (isomorphism classes of) points. One may
reformulate the concept of a specialisation in terms of modyles.
We only note the following: Let AX be a point with correspon-
ding epimorphism § : A -+ Md(D), and AY a point with correspon-
ding epimorphism ¢ : A » Me(E), and assume there exists a spe-
cialisation from s to e, say given by the diagram
"

(E)

A 0> R

1
T
\
Me
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with epimorphism @. Then we can consider both AX and AY as
R-modules. Note that RY is the unique simple R-module. If we
consider the R-submodules Xi of RX’ we see that for every

0 $ x € X, there exist R-submodules Xj c X; of X with

X € Xi ~ Xj and Xi / Xj N RY. In particular, this means that
the A-module AX is "covered" by factors of the form AY. Also
note that in case & and e are not equivalent, the R-module
RX cannot be of finite length. For, if RX is of length 1,

then X =~ RY, therefore AX%* AY, and thus &,e are equivalent,

R
whereas if X is of finite length > 1, then End(RX) would
have non-zero nilpotent elements, which is impossible since

End(RX) = End(AX) = D, a division ring.

2.3 PROPOSITION: If A {s an artinian ring of finite re-
presentation type, then the spectrum of A is a finite discrete

set.

Proof: Assume A ds artinian and has only a finite number

of indecomposable (left) A-modules Ml""’Mm of finite length.
One knows ([381, see also [4]) that any A-module is a direct
sum of copies of these modules M.. Thus the only possible points
are those modules Mi with End (Mi) a division ring (in fact,
in this case this implies that M. is finite dimensional as an
End (M;)-module, see [4]). However, since all M; are of
finite length, there can be no proper specialisation. This proves

the proposition. Since in case A is even a finite dimensional
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k-algebra, any End(Mi) is also finite dimensional over k, we

have established alsc the following assertion.

Remark: If A is a finite dimensional k-algebra of finite
representation type, and A + Md(D) is an epimorphism, with D

a division ring, then D dis a finite dimensional k-algebra.

2.4, In Section 1, we have introduced the dimension vector
for an arbitrary element of the spectrum of a finite dimensional
algebra A, thus for any point. The extra factor a}l may have
appeared curious, however, in this way we obtain an element of
Qn which is (in case of a point which is of finite length) a
multiple of the usual "dimension vector" defined in terms of num-

bers of composition factors:

LEMMA: Let A be a finite dimensional k-algebra, and let
g% be a module of finite Tength with D = End(AX) a division
ring. Then AX is a point, and if & : A - Md(D) is the corres-
ponding epimorphism, then (dim 5)1 . dimkD is the number of com-

position factors isomorphic to Afi/(rad A)fi in L X.

A

Proof: The number of composition factors of AX isomorphic
to Afi/(rad A)fi is equal to the length 11 of the fiAfi—module

Note that in terms of the module AX’ we have

dim(f.X)
N i®/D
;= ““;;;-—— s thus

(dim 5)
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1l

(din 8); dimD = a3 dim(f;X)y - dimD

-1 .. _
a1 d1mkfiX = 11.

If AX is a point with corresponding epimorphism
§: A~ Md(D), we set dim ,X = dim §. (Note that this differs by
a scalar from the use of the symbol "dim" in [19], whenever it
was defined there; also note that dim ,X depends on the k-struc-
ture: a change of the base field leads to a change of dim X,
again by a scalar - this together with the result 1.5 shows that
one should concentrate mainly on the element @ dim ,X of P10

instead of the point gjg_AX in Qn.)

2 5. Assume now that A s finite dimensional and hereditary.

The main working tool in this case are the Coxeter functors and the
reflection functors ("partial Coxeter functors"). For the finite
dimensional modules, two rather different constructions for the
Coxeter functors are known: the original kernel-cokernel construc-
tion at least in case of a tensor algebra ([11],[19]) and the
dual-of-transpose-construction ([61,[14]). If we want to deal
with infinite dimensional modules, we have to use the first con-
struction, since the usual dualities only work for finite dimensio-
nal vector spaces. We indicate the proof for tensor algebras, but
note that a similar construction is possible in the general case

(see [20] and [37]).
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Let A be the tensor algebra of the k-species
S = (Fi’iMj)l <ij<n thus the A-modules correspond to the re-
presentations (iv’j@i) of S, with 1-V a left Fi-vector space

and 195 ¢ itha jV -+ 1.V an Fi-linear map. (This means that

we assume that A is basic, that we choose primitive orthogonal
idempotents f1 and set Fi = fiAfi’ and that we assume that there

. 2 .
exists a complement 1-Mj of the fi(rad A) fj in the Fi'Fj'

bimodule f,(rad A)f R A

j* Given an A-module V, let i

and 39 the corresponding multiplication map). We call t a
sink, if 1Mt =0 forall 1< < n. Note that there always
will exist a sink, since the tensor algebra A s assumed to be
finite dimensional. Now given a representation V = (1V’jwi) of
8, and a sink t, S{V is defined by §(STV) = Nofor §4t,
and the exact sequence

(twj)j (jwt)j

>?th ] J-V — ¥

(*) 0+ L(S{y)

with the ol1d maps 195 for 1 % t, and the maps

* + . *
(th) ()t(StV) - jV adjoint to £ where (th) = Hom(th,k)
denotes the Fj-Ft-bimodule dual to th. In this way, we obtain
a representation of the species S; which is obtained from S
by removing the bimodules th, l1<Jjs<n, and inserting the

. *

Fy-Fi-bimodules (th) . Incase t isa source (that is, My =0
for all 1), there is the dual construction Sz. We can consider

Ft as a simple representation of §. If we assume again, that

t dis a sink, then Ft is projective and S:Ft = 0. On the
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other hand, we recall from [19] that for any representation V
of S without direct summand of the form Ft’ we have

SESIV RV, and  End(V) = End(S{V). MNote that this is valid even in
case V s not finite dimensionall

For finite dimensional representations, an additional dimen-
sion formula was derived in [19], and we claim that a similar
formula holds for arbitrary points. Recall that for given
S = (Fi’iMj)’ the reflection s, on Q" is defined by

(sp0) = %y for B4ts (5yX)y = =xg + ) dimg ()% -

for x =(x;) € Q"

PROPOSITION: Let A be the tensor algebra of the k-species
S, and t a sink. Let X,Y be A-modules which are points.

(a) Either AX is simple projective, isomorphis to Fy,

or else S:X is a point and dim SIX = s, dim X.

(b) If there exists a proper specialisation from AX to
AY’ then S;X and StY are points and there exists a proper

specialisation from s:x to S:Y.

Proof: Note that the exact sequence (*) 1is a sequence of

Ft-D-bimodu1es, where D = End(V). For, by the definition of a
representation, 9 is Ft—linear, and, by the definition of an
endomorphism, the canonical operation of D on the different ;V

commutes with i@ Thus, the right map is an Ft—D-bimodule map,
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and therefore the kernel t(S:V) is again an Ft—D-bimodu]e.
Now assume V = X is a point, and not isomorphic to Ft‘ Then the

right map of (*) is surjective, and using the equality

a; dim F1.(T.Mj) = dim (1) = 2; dim (1-MJ-)FJ,

with a; = dim k(Fi)’ we obtain

ot -1 ..
(dim Stx)t a," dim tXD

-1 . . .
a; (Z dim (th)Fj dim Xp - dim .Xp)

1
d1m F (4 M )edim XD dim *p

I3
J
= ) dim F ) (dim X) - (dim X), = s, dim X.
J

This proves (a).

In order to prove (b), assume there is given an epimorphism
@ : A+ R with a proper inclusion 1 : Re Md(D) and a projec-
tion = : R » Me(E) with kernel rad R such that ¢ : A » Md(D)

is the epimorphism corresponding to the point ,X, and

A

or A > Me(E) is the epimorphism corresponding to the point AY.

Using the forget functor RM-+ AM, we can identify RM with a full
subcategory A of AM which contains both AX and AY’ with

AY being the unique simple object in the category A. MWe claim
that no object of A has a direct summand of the form Ft'

Since A is closed under direct summands, Ft would otherwise be

an object of A, and therefore the unique simple object Y.

A
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However, every object U of A s covered by factors ismomorphic
to .Y, thus ;U=0 forall i + t, and therefore U is the
direct sum of copies of Ft‘ As a consequence, AX being an in-
decomposable object of A, would be isomorphic to Ft’ and thus

to ,Y, contradicting the fact that we have a proper specialisa-

A
tion. This shows that the category A 1is mapped under S:
isomorphically to a corresponding subcategory At of the cate-
gory of representations of St' Since AR is a progenerator in

A, we see that SI(AR) is a progenerator in A, with endomorphism
ring End(Sy(,R)) ® End(4,R) ® R. Thus if we denote by A the
tensor algebra of Sy then the canonical map At -+ End(S:(AR)R)

is an epimorphism which defines a specialisation from S:(AX) to

2.6. Again, assume that A is finite dimensional and here-
ditary (or even a tensor algebra for a k-species). An indecompo-

sable module P is called preprojective ([191,[361) provided

there exists a sequence tq,...,t. such that st...st P s
1 S t t1

S
defined and = 0. It is clear that in this case P has to be

of finite length and that its endomorphism ring is a division ring,
thus it is a point. Also, it is uniquely determined by the num-
bers of the various composion factors. In fact it is the only
indecomposable module X of finite Jength with dim X € Q dim P.
This shows that there is no other point with a specilisation from

P to it. By the previous result 2.5 we see that also no other

point can have a specialisation to P, thus the isomorphism class
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of P forms a one-element component of the spectrum of A.

Similarly, an indecomposable module I is called preinjective

provided there exists a sequence tyoeenty such that

g e SE I is defined and = 0. Again, any preinjective module
s 1
is a point of finite length, and its jsomorphism class is a one-

S

element component of the spectrum of A.

Now, if A is of finite representation type, then we know
already that the spectrum of A is a finite discrete set, and we
remark here that in fact all indecomposable modules are prepro-
jective, and also preinjective [19].

If A is not of finite representation type, then there are
countably many different preprojective modules, and countably

many different preinjective modules. This shows:

PROPOSITION: Let A be a finite dimensional hereditary
k-algebra which is not of finite representation type, then the
spectrum of A has countably many one-element components. In

particular, it is not compact.
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3. Families of Modules

Our interest in the spectrum of the finite dimensional
k-algebra A stems from the fact that the points of the spectrum
seem to parametrize certain families of indecomposable modules of
finite length. In particular, we will be interested in epimor-
phisms A -+ M,(K), where K is a commutative field. We know that
K 1is finitely generated over k, thus it has a geometrical mea-
ning. More general, we will consider epimorphisms A - Md(D)
where D is a division ring which is finite dimensional over its
center. At least in the case when k is not algebraically closed,
this more general situation is definitely of importance, as the
case of tame finite dimensional hereditary algebras shows (see

6.4).

3.1 PROPOSITION: Let A be a finitely generated k-algebra,
and & : A +-Md(D) an epimorphism, where D 1is a division ring,
finite dimensional over its center. Then there exists an order R
in D such that §(A) = My(R) and such that the induced map

A~ Md(R) is an epimorphism, with R finitely generated as k-algebra.

Proof: We can assume that A s a subring of M,(D), with

§ the inclusion. Let A be generated by a;,...,8 and let

(o] : i ' -
a; = (og4)gt with o, €D. Let R' be the k-subalgebra of D

generated by the elements agt. Then A g:Md(R') and, as we have

seen in the proof of 1.3, the division ring D is generated
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(as a division ring) by R'. Note that D being finite dimen-

sional over its center, implies that R' is a prime PI-ring,

lr, with r € R',

thus every element of D is of the form ¢~
and 0 § c € C, the center of R' ([31], VIII, 1.4). Since
A < My(D) is an epimorphism, every element of M (D) satisfies
a zigzag over A [28, 30] in particular this is true for the
matrix units &5 of Md(D). Let e = €5 be such a matrix unit,
and take a zigzag, say e = szT, with X = (xl,..,xu),

11 Yy
Y = E E s 2 = (21,...,2

yul T yuv

where Xg 22

v)

¢ € My(D),

u
Yot € A; for all s,t, and xY € A", zYT e A (here, T denotes

the transpose). The elements XgsZy are in Md(D), thus they are

1 -1

- _ 1 1 !
of the form X = ¢C x;, Zy = C Tzy for some XYy € A, and a

fixed element 0 % c € C. Thus e = c'z(xi,...,xd)Y(zi,...,z&)T.

To every matrix unit eij we obtain, in this way, a non-zero

element Cij € C, and we denote by R the k-subalgebra of D

generated by R' and the elements c}j . Let us determine the
"dominion" B of A in Md(R), that is the set of elements of
Md(R) determined by zigzags over A. Note that B is a subring.
By construction, the matrix units belong to B, and therefore also
the matrix entries of the elements of A, thus My(R") <= B.
However, with the scalar matrix Cij also its inverse c}% be-
longs to B, thus B = Md(R). As a consequence [28, 30], the

embedding A<~ Md(R) is an epimorphism. It is clear that R is

an order in D.
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3.2 Note that for an epimorphism A - Md(K), where A is
a finite dimensional k-algebra, and K a commutative field, the
induced map A -~ Md(R'), with R' being the ring generated by the
matrix entries of the elements of A, does not have to be an epi-
morphism.
kK3 . .
EXAMPLE: Let A = (5 ), and K = k(x), the field of ratio-

nal functions in one variable. Consider the embedding

§ 1A~ M4(K) which maps the elements

10 00 100 0 (010 0 (001

(0 0) s (0 1): (8 ( 0 ))9 (0 ( 0 ))s (0 ( 0 )) onto
EO 0 0 E 01 0 X
G0 0g o> oo (0o

with E= (5 0)s 1= @y, x= (o). Then R =KIxl.

Now it is easy to see that the embedding A - M4(K) is an epimor-

phism, whereas, however the canonical map
A —— M4(k[x]) — M4(k)

with x - 0, is not an epimorphism. Thus A + M4(R') cannot be
an epimorphism. An example of a finitely generated k-subalgebra
R of K with §(A) c M4(R), and such that this is an epimorphism,

is given by R = k[x,x_l]-

3.3 An important consequence whould be stressed: Again,
let A be a finitely generated k-algebra. We have seen that any
epimorphism & : A = My(D), with D a division ring which is

finite dimensional over its center, gives rise to an epimorphism
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A+ Md(R), with R a finitely generated k-algebra which is an
order in D. Now R is a finitely generated k-algebra which is
a PI-domain, and therefore we can use the Hilbert-Procesi-Null-
stellensatz ([31], V, 1.2): any simple R-module is finite dimen-
sional over k, and the Jacobson radical is zero. This shows that
in case D 1is infinite dimensjonal over k, we obtain an infinite
family of simple R-modules (all of which are finite dimensional
over k), and thus we obtain an infinite family of finite dimen-
sional A-modules which are points.

Also note that we may replace R by the Tocalisation with
respect to one additional non-zero element o in the Formanek
center, and thus we may assume that R, and then also Md(R) is
an Azumaya algebra ([311, VIII, 2.2.(1)). This then has the fol-
lowing consequence: If m is any maximal ideal of Md(R), then
there exists a specialisation from the epimorphism § : A » Md(D)
to the epimorphism ¢ : A » My(R) ~ Md(R)/m. For, in an Azumaya
algebra, we can localise at the maximal idea] m, and thus we

obtain an epimorphism A - Md(R)m through which both § and ¢

factor in the appropriate way.
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4.

The Universal Construction Of Families Of Modules

Let k be an algebraically closed field, and A a finite

dimensional k-algebra. Since k 1s algebraically closed, the

dimension vector of a point X with endomorphism ring D 1is

given by the simpler formula

where fi is a primitive idempotent with Afi/(rad A)fi being

the simple A-module with index 1i. In particular, dim X belong

to WN". According to 1.5, we may restrict our attention to points

with dimension type in some fixed Q@ d, with d = (dl""’dn) eq",

and we may assume that the entries di are natural numbers, not

all zero.

Let us sketch a well-known construction which gives a

universal ring Ud corresponding to the dimension type d.

4.

1

Since k 1is algebraically closed, there exists a sub

algebra S with A =S@rad A, Choose a complete set fl,...,f

of primitive idempotents; 1in this way, we also have indexed the

simple modules. Now fix an algebra homomorphism o : S + Md(k).

Then kd becomes an S-module, let di be the multiplicity of

the i-the simple S-module. Note that the multiplicity vector

d = (d

My(k).

d ) determines o up to an inner automorphism of

15.-., n

We call an algebra homomorphism ¢ : A > Md(R), with R

a k-algebra, to be of type o provided o(S) =M (k) and

@S

0.
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S

n

fim

iisii
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LEMMA: If ¢ : A > Me(E) is an epimorphism with E a divi-
sion ring, and dim e =md for some m €N, then there exists an

isomorphism ¢ : Mo (E) Md(Mm(E)) such that ea 1is of type o.

Proof: MWrite 1 =7 fij with fij Primitive orthogonal
idempotents in S such that A fij/(rad A)fij is the i-th simple
A-module. Let Y = E®, considered as an A-E-bimodule. Then
d1m(fij
l<sc< d; such that dim(Y JS)E m and fi Y--G)Y1JS We

Y)E = (dim Y). = md., thus we may choose E-subspaces Yijs’

may identify E"d((Yijs)E) with M,(E) as a k-a]gebra, and then
End((ﬂ)Yijs)E) with Md(Mm(E)). It is clear that in this way we
obtain an isomorphism o' : Mo(E) + My(M_(E)) such that S&°

Ties 1in My(k) My(M(E)). Applying an inner automorphism o",
we can achieve that the restriction of ea's" to S is equal to

g.

4.2. let A bea k-algebra. S a semi-simple subalgebra
and o : S » Md(k) an algebra  homomorphism. Consider the free

product A ; Md(k), that is the pushout, in the category of
k-algebras (see [8,311)

N
\/
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Note that the images of the matrix units of M,(k) in A ; My (k)

make A 3 Md(k) into a matrix ring, say
A § Md(k) = Md(Ug)'

Now, given any algebra homomorphism ¢ : A ~ Md(R) of type o,

there axists a unique commutative diagram of the form

A
/ \\i
=t
My (k) /

and since @' preserves the matrix units, we see that it is of
the form Md(ﬁ) with @ : UO + R a ring homomorphism. In par-
ticular, given any epimorphism ¢ : A » Me(E) of dimension type
a multiple of d, and using an isomorphism o : Me(E) -+ Md(Mq(E))
such that ea is of type o, we determine an epimorphism £a

U0 - Mq(E) (with ea also (ea)' 1is an epimorphism, and then

also ea).
It is clear that U0 only depends on the dimension vector

d = (dy,...,d ), thus we will denote it also by Uj.

4.3. The following proposition is essentially due to G.

Bergman (here, we do not assume that k 1is algebraically closed):
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PROPOSITION: Let A be a finite dimensional hereditary
k-algebra, Tet S be a subalgebra of A such that A=S@rad A,
and let ¢ : S » Md(k) be an algebra homomorphism. Let

A : My(k) = Md(Uo)’ then U0 is a free ideal ring.

Proof: Without loss of generality, we may assume that o
is an embedding. For, let ker ¢ be generated by the central idem-
potend e, then A > My(k) = (l-e)A(l-e)cﬁ My(k)s with o' being
the restriction, and with A also (1-e)A(l-e) is hereditary.
Now, [7] 2.5 asserts that A o Md(k) is hereditary, again, and
[71 2.6 determines the structure of the projective A * Md(k)-
modules: they are direct sums of modules obtained in the following
way: Tlet Ry = Ss R1 = A, Ry = My(k)s Tet P1 a projective
R;-module, and consider Pi%? R, where R =A : My(k). Since any
Pi is the direct sum of indeéomposable modules, we can assume that
P= Pi itself is an indecomposable projective Ri-modu1e. Thus,
We can assume that there exists an idempotent e € My(k) such that
P =eR, thus P 1s the direct sum of copies of the standard column
module Ug. On the other hand, R has a ringhomomorphism into a
simple artinian ring, namely (mo)' with = : A » A/rad A =S

being the canonical projection
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thus R s projective-trivial. The result now follows from

(151, 1.4.2.

4.4 The basic finite dimensional hereditary k-algebras
over an algebraically closed field are precisely the tensor alge-
bras over quivers [25] without oriented cycles. In this case,
we show that the corresponding universal rings UG are free alge-
bras. Let r be a quiver, say with point set T = {1,...,n}
and arrow set Iy Given a € Iy denote by o' its source, by
o' its sink, thus o'-%»o". Let d = (dys....d) eN". Then we
denote by k<r,d> the free associative k-algebra generated by
the variables Xy st with o € Ty, 1<szs da., 1<tz daua
by k[r,d] the corresponding polynomial ring generated by the
same set of variables, and by k(r,d) the quotient field of
kir,d].

If one considers the set of representations (Vi’qh) with
V, = kdi as the variety T Hom(V .V u), then k(r,d]l is Jjust its
ring of regular functions.a Note that in the following proposition

we allow the quiver to have oriented cycles.

PROPOSITION: Let T be a quiver, and A its tensor alge-
bra over k, with semi-simple part S. Let d = (dl,...,dn) en",
d = Z di’ and ¢ : S » Md(k) the corresponding diagonal embedding.

i
Then A § Md(k) = Md(k<r,g>).
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Proof: Let us define an algebra homomorphism

v ¢ A+ M, (ker,d>), and verify the universal property, The diago-
nal embedding o : S = Md(k) + My(ker,d>) defines a block struc-
ture for these matrices, the blocks being di X dj-blocks, with

1 <i,3<n. Now A is generated over by the elements

o €Tr;. For o with i=4qa', j=a" Tet of be the matrix with
zeros outside the 1i-j-block, and the following 1i-j-block

(Xast)st' This defines vy. Now assume, we have given algebra homo-
A

a///////;y \\\Ql\\\a

S B

\ rd

Md(k)/

with commuting diagram. Using the images of the matrix units of

morphisms

My(k) under y, we see that B is of the form My(B'), with B!

a k-algebra, and op defines a block structure with dixdj-b1ocks

for 1<4,3j<n.

Also, let e be the idempotent of $ corresponding to the

vertex i € Ty thus e? is the matrix with zero outside the

i-i-block, and the d1Xdi identity matrix in the i-i-bTock, and

similarly e?w. Then, for o ¢ Tis With 4 =a', j = o", we

have in A the relation o = ei'“'ej’ thus under ¢ we get
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©_ 0 0.9 _ o0 0 o
o e_i [¢2 ej e_i o Ej

3

and therefore all blocks of o but the i-j-block are zero.
Let the i-j-block of o® be (bast)’ with 1 ¢s<diy 1t dj,

and define the algebra homomorphism @ : k<I,d> ~B by

% .
xast - bust'
looking for, and that it is the unique solution.

It is clear that this gives the factorisation we are

4.5. Let us study in more detail points with commutative
endomorphism ring. In particular, given any finite dimensional

point, its endomorphism ring being a finite dimensional division

ring over the algebraically closed field k, has to coincide with k.

Now, given an homcmorphism ¢ : A - Md(K) say of type

g: S~ Md(k), with K a commutative k-field, then the factorisa-
tion through A * My(k) = My(U ) gives us a map ® : UK which
vanishes on the comnutator ideal I, thus it induces an algebra ho-
momorphism U; = UU/I s+ K. In particular, in case we consider the
tensor algebra A of the quiver T, and o is of dimension type
d, then U; = k<r,d>/commutator ideal = k[r,dl. Note that U;

is a finitely generated commutative k-algebra, and its maximal
ideals correspond bijectively to the algebra homomorphisms

A - Md(k) of type o, thus the affine variety corresponding to

U; can be considered as parametrizing the possible representations

of A of type o (but not their isomorphism classes!).

In a similar way, we may consider homomorphisms ¢ : A + Md(D)
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of type o , such that the k-algebra D satisfies the polynomial
identidies of all qxq-matrices over commutative rings ,for some
fixed q € N. This is of interest when we consider together with
the dimension type d of o also representation of multiple di-
mension type md, with m € N. The induced homomorphism

Q : U, ~D factors over the universal factor ring Uc,q of U,
satisfying the polynomial identities of gxg-matrices over commu-

tative rings (see [31]); note that U; =U 4. Incaseof a

quiver T and dimension type d, we obtain U0 = k<r,g>q,

»q

the ring of generic gxg-matrices in the variables Xyst"

Let us come back to the finite dimensional representations
@ A=My(k) of type o : S~ My(k). Such a representation gives
K an  A-module structure. Also,to ¢ corresponds a unique
k-homomorphism @ : U;'+ k, thus a maximal ideal. If we start
with a maximal ideal m of U; » the corresponding module struc-

ture on kd obtained via the canonical algebra homomorphism

AT Md(U;) — My (U )/m = My(k)

will be denoted by Xm. Note that different ideals p may give

isomorphic module structures ,and also note that not ali modules

Xm are points. Thus there are two problems: determine the set

of maximal ideals m such that Xm is a point, and determine

when two modules Xm and Xm' are isomorphic. We want to re-

formulate these questions in terms of the operation of a reductive

algebraic group operating on the affine variety spec U;
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4.6. Again, assume A = S@vrad A is a finite dimensional
k-algebra over an algebraically closed field k, and o : S » Md(k)

an algebra homomorphism. Let
G = {g € G14(k) | s% = gs° for all s €5},

the centralizer of the image of S in G]d(k). It is clear that
G0 = q G14 (k)s where d = (dl""’dn) is the dimension type of
ag.

Note that GU operates on Md(Uc) in the following way:
any ¢ € GG gives rise to a unique algebra endomorphism g' of

Md(Uc) making the following diagram commutative

\\*\>

s ---%- -7

Nl T Ml

where 1g denotes conjugation by g.

PROPOSITION: There exists a (unique) algebra automorphism
g of U such that g¢' = igMd(g) = Md(g)ig, with 1g the con-
Jugation of My(U,) by 9.

Proof: The restriction of g' to Md(k) is the conjuga-




572 C. M. Ringel

tion by g, thus this restriction has 1 _, as inverse. This

shows that g'i , and 1 _,g' both preserve the matrix units

A
~ ~

g g .
of Md(Uo)’ and therefore g'ig_l = M4(9)» 19_19' = My(g) for
some automorphisms §, 3 of UO. However, the restriction of

Md(§) and Md(g) to scalar matrices shows that § = é, since

i _q commutes with all scalar matrices.
Y

The operations of GG on U0 via ¢, and on Md(Uo) via
igg are of greatinterest, in particular one should determine the
rings of invariants in both cases. If we factor out the commuta-
tor ideal of U > and go over to the quotient field QU;' of U,

(o}
the group GG operates also on QU;. In general, the invariant

ring Md(QU;)GG is an algebra over the field QUOGO, and the
canonical map A — Md(QU;) maps into Md(mI;ﬁU. Let us show
that the action of GG on U0 coincides in the case of the ten-
sor algebra of a quiver with a well-known operation [25, 26].

Let T be a quiver, and A its tensor algebra with semi-simple
subalgebra S. Let d a dimension type, and o : S »~Md(k) a
corresponding embedding. We know that U, =k[r,d], and

Y: A *'Md(U;) is given by the rule that for an edge o with

%' = 1,0 = j, the matrix oY is zero outside the i-j-block, and
with 1i-j-block (Xust)st‘ Now let G0 = ? G1d1(k) operate on
U; as follows: given g = (91)1’ with g; € G]di(k)’ and ¢ € ry»
with o' =1, (xust)st and

A _ -1 .

gxust)st - gi(xast)stgj . In this way

we obtain an operation of ¢
)

o' = 3> consider the d1de matrices

-1
9i(Xyst)s95 > and Tet |

on Kk[r,d], which satisfies
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yigMd(a) = v, and therefore coincides with the action of G0 on

U; denoted in the same way.

4.7. We come back to the questions asked in 4.5. Recall
that we have defined there for every maximal ideal m of U; an

A-module Xm which is d-dimensional over k.

PROPOSITION: Let m, m' be maximal ideals of U;.
Then &nﬁs Xm. if and only if m and m' belong to the same
Go—orbit. And Xm is a point if and only if the stabilizer of

m in Go is kx, the diagonally embedded multiplicative group.

Proof: Given g € GO, and a maximal ideal m of U;} the

commutative diagram

M)  ——T— (T /)

7
A \\\\\>\ i Md 1g
—"—-'—“‘—"'?Md(U /am)

Md(Uc
with the canonical epimorphisms =, n' shows that the represen-

tations given by yr and vys' are isomorphic via the base change
g. Conversely, assume there are given maximal ideals m, m' such
that the corresponding representations yr and the yr' are iso-

morphic. Then, there exists g € GI(d,k) such that for all

a € A, we have g'laY"g = a Y In particular, for s €S, we

I

e SR A L T S ST S
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1

have ¢ s’g = s%, since yr and yr' both are of type o.

Thus ¢ € GG, and it follows that m' = gm.

On the other hand, Xm is a point if and only if its endo-
morphism ring is the base field, and this is true if and only if
its automorphism group is k*. But the automorphism group is

given by the stabilizer of m 1in Gd.

COROLLARY: The set of maximal ideals m with Xm a point

is open in the affine variety corresponding to U;.

Proof: This follows from the fact that the stabilizer di-
mension is semi-continous, and, as we have seen, Xm is a point
if and only if the stabilizer dimension of m is 1, the smal-

lest possible value.

Of course, the main problem now is to determine the inter-
section of the maximal ideals m such that Xm is not a point
- that is, the ideal defining the closed subvariety of all i,
with X~ not a point. In the case of a one-point quiver with
some arrows (that is, A is a free associative algebra) this

ideal has been determined: it is the radical of the Formanek

center ([311,VIII, 2.1).

4.7. REMARK: The universal ring UE for studying d-dimen-

sional representations of a k-algebra A was considered by

various authors [1,8,31,32], here UE = Ud/commutator ideal, and
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A * Md(k) = Md(Ud). 0f course, in case A has a semi-simple sub-
algebra S, it seems reasonable to refine the construction by fix-
ing a representation o : S-e-Md(k), that is a dimension type,

and considering A * My(k) = Md(Uo)’ as we have done it here,

Note that Cohn's new approach to consider a "spectrum" of a non-

commutative ring, referred to in 1.8, uses these matrix reduction

rings Ud'

P T e

e

TSRS

T e v S BB Wl S R R e S S

Tid
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5. Typical Situations

Let k be an algebraically closed field, T a quiver, and
A the tensor algebra of T over k. As we know, the spectrum of
A is the disjoint union of the subsets given by all points with
dimension type in a fixed @ d, with d eN". Thus, Tet us con-
sider such a subset. Of course, we can assume that the elements
dl""’dn do not have a proper common divisor. We will denote
by dim X both the dimension type of a point as well as the usual
dimension type of a finite dimensional represention of r; note

that they coincide in case both are defined.

5.1 Let k<x1,...,xq> be a free associative algebra, and
fast € k<x1,...,xq> with o € Tys l<se da" l1<ts< da". Then
these elements fast determine a functor T:

k<x1,...,x >M M AM

as follows: Let M be a k<x1,...,xq>-modu]e, then

T(M) = (T,(M), T, (M), with T:(M) =§9M, and

ToM) = (Fasdse © Ty o) > T (M), ATS0, i @ : Mam {s 2
homomorphism of k<x1,...,xq>-modu1es, Tet T(g) = (Ti(W))i’ with
T.(0) =?§m @ M +?M'. Functors of this kind have been con-
structed by vaf%ous ad%hors [13, 25, 27, 351, in order to show
that certain quivers are of infinite representation type, or even
wild. The typical situation to be considered seems to be the
following:

(i) The elements fast are linear polynomials,

thus belong to k@ éé k xs3
i=]
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(1)  The functor T fqs full, and

_ ) 2
({11) q= 2 d.d. - Ddy+l
aEPl 1

In this case, we will call T a typical functor. Of course,
such a functor can only exist in case q > o (note that
q = -Q(d) + 1, where Q is the usual quadratic form associated

to the quiver T, see [24, 25, 26]). Note that such a functor

is a full exact embedding and the dim T(M) = m-d, both for finite

it

dimensional modules and for points, with m dimkM in case M
is finite dimensional over k, and with m = dim MEnd(M) in case

M 1is a point.

Let T be a typical functor. Consider first its restric-
tion to KLXpse oo ]M. The simple k[xl,...,xq]-modu1es are
1-dimensional, thus their images under T correspond to modules
with dimension vector d, and all are points. This gives us a
family of points of type d indexed by the q-dimensional affine
space AY. In fact, we may consider the set of representations
of I of dimension type d as an affine variety RY, with
V= I da.da“, whose coordinate ring is kI[r,d], on which the

ok i
group Gd= T GLq, (k) operates in such a way that the orbits cor-
i i

respond to the isomorphism classes (see 4.6). Then, A9 embeds

as a linear subspace,

into A with respect to (x;).h (f

1)1 ast)ast
and the image consists only of points with stabilizer k*, and it
hits every orbit in at most one point. (The first assertion fol-

lows from the fact that the endomorphism ring T(S), for S a
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simple k[xl,...,xq]—modu1e, is k, the second assertion from
the fact, that T(S) = T(S') for S,S' simple k[xl,...,xq]-
modules, implies S~ S',) As a consequence, the induced map

A% x G/k* +pY, given by ((%;),9) » 9(f ;) ¢ i injective.
Since both varieties have the same dimension, we see that the
image is a dense subset ([12]1). Also, it follows that
k(xl,...,xq) gan be identified with the field of rational 1'nva-G
riants k(r,d) d » thus the field of rational invariants k(r,d) d
is a rational extension of k. If we consider the partially ordered
sets of all points of the spectrum of A with commutative endomor-
phism ring and dimension type d, then we see that it has a unique
maximal element, namely T(k(xl,...,xq)) and its endomorphism ring

is precisely k(xl,...,xq).

Next, Tet m €N, and consider the ring k<x1,...,xq>m of

generic m x m matrices (that is, the factor ring of k<x1,...,xq>

modulo the ideal of all polynomials which vanish on m x m matri-
ces over commutative rings). If we Tocalise this ring with respect
to non-zero element in the Formanek center, then all simple mo-

dules are m-dimensional [31], and conversely, every simple

m-dimensional k<x1,...,xq>-modu1e is k<x1,...,x > -module. Under

q'm
T, the m-dimensional k<x1,...,xq>-modu]es give representations of

I of dimension type m d, and again, it is easy to see that the
set of representations of T isomorphic to one of the form T(S),
with S a simple m-dimensional k<x

. ny
the affine variety A

1,--.,xq>-modu1e is dense in

of representations of dimension type m d.
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Again, there is a generic one, namely T(Qk<x1,...,xq>m), the image

of the quotient division ring Qk<x1,...,xq>m of k<x1""’xq>m
(see [2, 311). Whether the corresponding invariant ring

k[T,md] md js rational is an open problem (see [23, 27, 31]).

Finally, note that there are additional points of dimension
type in @ d. In fact, as in 1.2 , it is easy to see that for
any finitely generated k-division ring D, there exists a point
with dimension type in Q d and endomorphism ring D. Of particu-
lar interest seems to be the image under T of the universal field

of fractions of k<x1,...,xq> (see [151).

5.2 Let us consider one example in more detail. Consider
B
the quiver © :e%3e > o, and the dimension type (1,3,2) = d.
Y
Let k[r,d] = k[xi’yij’zij | 1<1i<3,1<]<2], where

the Xi’yij’zij are the following coordinate functions

Y11 Y12
Yo1 Y22
Y31 Y32

g
!

X = (XqsXp5X3)

~
I
N
[
—
N
o
™

A maximal ideal of k{r,d] is of the form Xi70gYi37By402457Y457 T

with elements o8 € k, and corresponds to the representation

15°7ij
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11 B12
Bay Boo
By1 B3y

k3 S —— k2

Y11 Y12
Y21 Y22
Y31 Y32

We want to determine an ideal I of k[r,d] whose zero set V(I)

(070505)
k ———s

in Als is the set of all representations which are not points.

Let I1 = <det (g%g} N <x1,x2,x3>

If m 1is a maximal ideal, then I1 cm 1if and only if

det (g%g) SMoOF <XisXs.Xg><cm . The first condition

det (gég) cm 1is equivalent to the fact that the restriction of

B
Mm to e« =z e« decomposes, the second condition XpsXpsXg> S M
Y
is equivalent to the fact that the restriction of Mm t0 o o
is the zero representation. Thus, I, ¢m 1is equivalent to the

fact that Mm = (ai’Bij’Yij)’ the map o = (al,uz,a3) is a mono-

(Bij)
morphism and ¢ 2 =+ is indecomposable.

(ij)
If meml® < V(I), then it s clear that Mm is a point, and the
orbits of IA15 N V(I) under the canonical action of the group
Gygp = GLl(k) x Gl3(k) x G]Z(k) form a projective space ]Pz(k).
Namely, consider the subset in ML
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TN
OO =
O = O
S————

(Glaazgas)
—_— pR—
0 0
10)
( 01

with  (ay509,05) $ (0,0,0). Then we obtain representatives of all

orbits outside V(I), and two such representations given by

(ags00503)5 (agsa5,03) are isomorphic iff k(al,az,as) = k(ai,aé,aé).

Thus, we obtain in this way also typical functors, for example

T: M — AM given by

k<xl,x2>

OO
OO
~——

(Xlsxg’l) (

———
®  ——t > *

(5 2)

Next, let I, = <det (§:§)> n <3x3 minors of (YZ)>. Note
X-Y

that for a maximal ideal m, the condition det (X-Z) c m means

QOO
-0 G

that the images of o and oy are linearly dependent, whereas
the fact that all 3x3 minors of (YZ) are contained in m means
that the intersection of the kernels of g and y 1is non-zero.
Since a representation of type (1,3,2) which contains an indecom-
posable submodule of type (1,1,2) is indecomposable if and only
if it does not split off a copy of (0,1,0), it follows that for

a maximal ideal m, we have I, &m if and only if Mm is inde-
composable and contains an indecomposable submodule of type

(1,1,2). Applying the Coxeter functor C~, we see that the inde-
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composable modules of type (1,3,2) containing an indecomposable
module of type (1,1,2) correspond to the indecomposable modules
of type (2,3,4) containing an indecomposable module of type
(0,3,4), thus they form again a projective plane Pz. Also all

these modules are points.

let I =1, +1,, thus V(I) = V(I,) n (V(I,) 1is the set
1 2 1 2 3
of maximal ideals m such that M, the restriction to . 4
Y
decomposes and the images of op and ay are linearly dependent,

and this is equivalent to the fact that Mm is decomposable.

oYz XeZ
We have I, cm for a maximal ideal m if and only if either

Consider finally IO= Il” 1 - <det(YZO)> n <det(X'Y>>.

g

* 3 - decomposes, or the images of o8 and ay are linearly
Y

dependent (or both). Note that representatives of the orbits in

V(I;) ~ V(I,) = V(L) ~ V(I,) are given by the representations

Wt (apepsng) £ (0,0,0) such that aja, = o2, since this is
the condition for the fact that the images of o and ay are
Tinearly dependent., Thus, we obtain in the orbit space ]P2 of
V(Il) under 6132 the quadric V(x1x3-x§). Similarly, we

see that the representations Mm’ with m ¢ V(IZ) ~ V(Il), are
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6. The Spectrum Of A Tame K-Species

6.1. In this Tast section, we assume that A s a finite
dimensional hereditary algebra which is twosided indecomposable.
Given such an algebra A with n simple modules, consider the
vector space Q" = K {A) @0, where K,{A) is the Grothendieck
group of A (the free agz1ian group genereated by the simple
A-modules), and given an A-module M of finite length, let [M]
be the corresponding element in Q". Since we assume that A is
hereditary, the function b(IM],[M'1) = dim Homy (M,M')-dim, Ext!
(M,M') s bilinear, and therefore defines a quadratic form qp
on Q" It is well-known that A is of finite representation
type if and only if ap is positive definite, and A is called

tame provided 4y 1s positive semi-definite.

THECREM: Let A be a twosided indecomposable, finite dimen-
sional hereditary k-algebra which is tame. Then there exists a

unigue point Ak with dimkx infinite.

Equivalently: there exists a unique equivalence class of

epimorphims ¢ : A + Md(D) with [D:k] infinite.

6.2. The theorem abave allows us %o determine completely

the spectrum of a tame k-species. Denote by %q the partially

ordered set
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of cardinality ¥ with a unique element which specialises into

all others.

COROLLARY: Let A be a twosided indecomposable finite dimen-
sional hereditary k-algebra which is tame. Then the spectrum of
A is the disjoint union of a countable number of one-point-sets

and a component of the form %f with X = max(*OJkl).

Proof: By 1.5, we know that the spectrum of A is the
disjoint union of the sets Spmd of points with dimension type in
Qd. If @4 contains neither a_Wey1 root nor a null root, then
Sp@g =f@. If Qd contains a Weyl root, then there exists a unique
indecomposable module with dimension type in Qd, thus either
Spu}El is a one-point-set (in case this moedule is a point) or is
empty. It is easy to determine all dimension types with Sp@é a
one-point-set, in particular, there are a countable number of such

types (2.6). For d a null root, Spﬂ)d is of the form Py

6.3. A point was defined to be a module with endomorphism
ring a division ring and being finite dimensional over its endo-
morphism ring. If we drop the last condition, then the situation
is completely different: It has been shown in (35, 36] that
given any finite dimensional hereditary k-algebra A which is not
of finite representation type, there exists a finite extension
field k' of k such that any k'-algebra B which is generated
over k' by less than hi (the first strongly inaccessible car-

dinality) elements, can be realised as the endomorphism ring of
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an A-module. In particular, this applies to any division ring
which is a k'-algebra and generated by less than }ﬂ_elements -
of course, we see from theorem 6.1 that the corresponding

A-module usually will be infinite dimensional over its endomor-

phism ring.

6.4. Assume from now on that A s a twosided indecompo-
sable, finite dimensional, hereditary k-algebra of tame represen-
tation type. Denote the unique infinite dimensional point by AQ’
let D = End(AQ), and d the dimension type of AQ' Note that
the existence of such a module has been shown in [36], 5.3 and
5.7, the unicity will be proved below. The division ring D and
the vector d are interesting invariants of the algebra A; the
vector d (or, at least, the line Qd) depends only on the type

of A and has been determined in [36] (see 5.7, and the column

denoted ("Gpi)i in the table in 1, D),

Let us give some remarks concerning the possibie structure
of D. It follows from section 5 of [19] that one only has
to consider the bimodule case 511 and ﬂ12‘ The algebras of
type 512 are of the form (g g), with FMG a bimodule with
dim FM = dim MG =2, If FMG 15 not simple, then F = G and
M =Me,6) for some automorphism ¢ of F and some e-l-deriva-
tion & (see [361), and then D = F(t;e,6), the quotient field
of the twisted polynomial ring Fltie.8]. In particular, for
M=F@F, with canonical bimodule action, D = F(t). If F,6 are
commutative, F 2 H, 6 o H, with [F:H] = [G:H] = 2 apng
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M =I’$?G, then D 1is the quotient field of the free preduct
F*G (note that D 1is uniquely determined since F * & satis-
figs a polynomial identity). Finally, let us considerche case
ﬁll' Then we have division rings G < F with dimGF = 4, and

the algebra is given by (g F) . For example, if G =R, F =H,
then D s the quotient field of RIx,y] / (x“4y%+1), and there-
fore commutative, whereas for G = 0, F = Q(vZ,/3), we obtain the

2 2_3),

(non-commutative!) quotient ring of Q<x,y> / (Xy+#yx,x“+2y

see [211.

6.5. Let us recall from [36] certain notions and results
concerning A-modules, with A a twosided indecomposable finite
dimensional hereditary algebra of tame representation type. In
2.6, we have seen the notions of an indecomposable preprojective
or preinjective module. Given any module M, the sum  I(M) of
all preinjective submodules is a direct sum of indecomposable
preinjective submodules, and I(M/I(M)) =0 ([361,3.3).

A module M s called regular, provided it has no indecomposable
direct summand which is preprojective or preinjective; equivalently,
Hom(M,P) = 0 for P indecamposable preprojective and

Hom{I,M) = 0 for I <indecomposable preinjective. The regular

modules of finite length form an abelian category, the simple
objects in this category are called gimple regular. Given a mo-
dule M, the sum of all submodules of finite length.which are
either preprojective or regular, is called its torsion submodule

T(M). We have T(W/T(M)) = 0, [36] 4.1. If T(M) = M, then M
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is called torsion; if T(M) =0, then M 4is called torsionfree.
Note that the torsion regular modules Form an exact abelian sub-
category ([36]. 4.4). Besides the indecomposable reqular modules
of finite length, there are additional indecomposable moduTes

which are torsion regular, the so-called Prufer-modules ([36],

4.5). Of importance is the following result: any indecomposable
moduTe which is not of finite length, is either a Priifer module,

or torsionfree reqular ([361, 4.8). Finally, we mention that a
module X s called divisible if Ext!'(s,X) = 0 for all simple
regular modules, and this is equivalent to the fact that

Hom(X,S) = 0 for a1l simple regular modules §. It has been shown
in [36], 5.3 that there exists a unique indecomposable torsion-
free divisible module Q, this is an infinite dimensional module,
and it is a point [36], 5.3 and 5.7. We will show bé]ow that

Q s characterised by the property of being an infinite dimen-

sional point. For this proof, we will need two auxilliary results.

6.6 LEMMA: let S he simple regular, and Y a direct sum
of copies of S. Let X be 4 submodule of Y which has no non-

Zero preprojective direct summand. Then X is a direct sum of

copies of S,

Proof: Let Z = yyx, with epimorphism ¢':v o Z, First,

assume that Z s a direct sup of indecomposable preinjective

modules. We want to shoy that Z = 0. 1f not, let zZ=z'gz",

with Z' indecomposable Preinjective with projection 7 : 7 » 2’
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We claim that Y = Y'@® Y", where Y' is a finite direct sum of
copies of S, and Y" s contained in the kernel of the projection

e=ce'n : ¥Y=>2Z'. For, let Y= & Y;s with ¥, the image of an
i€l
inclusion vi ¢S+ Y. Now End(S )Hom(S,Z ) is of finite length

thus there is a finite number of maps Yy€s SaY 1 <3 <m, such

that any other Yi€ is a linear combination with coefficients Yij

in End(S), say vi;e = I yiyyse. For 4 ¢ (1,....m}, Tet YY be

\J._]f"u

the image of 9 T1JTJ= and Y" the direct sum of

=

all Y& with ¢ {1,... m}. we denote by Y' = GD Y, then
i=1
Y=Y'@Y", ¥Y' ds a finjte direct sum of copies of S, and

Y' < ker ¢,

Take now a decomposition Y = Y' @Y" with Y" < ker ¢

and Y' of minimal length. Consider the diagram

0 + X - Y547 + 0

| ||r

A A

with the canonical projection ' and the induced map ¢". We
denote the kernel of ¢" by W. Then, W cannot have a non-zero
regular direct suymmand. For, we can identify Y/Y" with Y', and [
an indecomposable regular submodule of Y' would be a direct sum- .
mand of Y', thus if it Ties in the kernel of ¢, then we can use
it to enlarge V", impossible. Thus W s a direct sum of inde-

composable preprojective modules., Now X' < ker &" = W,

However, since X has no indecomposable preprojective direct sum- i

e e
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mand, Hom(X,W) = 0. Thus #' can be factored through €' and
gives rise to amap «" : Z -+ Y/Y" with e'n" =x'. Since Z s
a direct sum of preinjective modules, and Y/Y" 1is regular, we
conclude that =" = 0, and therefore x = x"¢" = 0. This contra-

diction shows that Z = 0.

Next, consider the general case, let I[(Z) be the submodule
of Z generated by the indecomposabie preinjective submodules.

We obtain the following commutative diagram with exact rows and

columns
0 0
} }
0— Xeu»r V — I(Z) — 0
[
0 — Xt ¥ — Z — 0
} |
L/T(Z)==17/1(1)
} |
0 0

Now, Z/I{Z) 1s regular. For, I{Z/I(Z)} = 0 shows that it has

nc non-zero preinjective direct summand, and being a quotient of
Y, it cannot have a non-zero preprojective quotient. Also Z/i(Z)
is generated by the images of the indecomposable summands of Y,
thus it follows that Z/I(Z) is torsien regular, Now, V 1is the
kernel of a map Y~+Z/1(Z), and therefore also torsion regular,
and in fact then a direct sum of copies of S. This shows that we
can apply the previous considerations to X considered as a sub-

module of V, and conclude that I{Z) = ¥/X = 0. This finishes
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tha proof.

6.7 LEMMA: Let S be simple regular, and X a submodule
of Y with Y/X a direct sum of copies of S. Then, if Y s

regular, alsec X 1is regular.

Proof: If X contains a non-zero preinjective submodule,
the same is true for Y. Thus, it remains to consider the case
that X maps onto a non-zerc preprojective module P, say

a ¢ X —=+ P, Consider the induced exact sequence

0= X Y —=Y¥/X—0

-

0 = Pe~+Z = Y/X—0.

Let T(Z) be the torsion submodule of 7, that is the sum
of all submodules of finite length which are either regular or pre-
injective. We claim that Z/T(Z) is of finite Tength, and there-
fore a direct sum of indecomposable preprojective modules. Now
the canonical map T(Z)¢— Z— Y/X has torsion regular kernel
and kokernel. The kernel is a submodule of the preprojective mo-
duie P, thus zero. Denote the cokernel by W. Since it is a
quotient of Y/X, it is again a direct sum of copies of §, say

W=&S., We have the following commutative diagram
I

0 —+P8-uarZ—>Y¥YX—20

I 4

0 — P = Z/T{L)>» W — 0 .
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If |I| s infinite, or even » dimEnd(S)Extl(S,P), then it is
clear that we obtain in Z/T{Z) a submodule isomorphic to S, but
this is impossible since T(Z/T(Z)) = 0. Thus W, and therefore
also Z/T(Z), is of finite length. As a consequence, we see that
Y maps onto an indecomposable preprojective module, and therefore

it also has an indecomposable preprojective direct summand.

6.8 Proof of the theorem: Let pX be a point which is in-

finite dimensional over k. We want to show that X is torsion-
free and divisible, it follows then from [36], 5.3 that X s
uniquely determined. Now since X is indecomposable and not of
finite length, it is either a Priifer module or torsionfree regqu-
lar. But the endomorphism ring of a Priifer module is a proper dis-
crete valuation ring, thus a Priifer module is not a point. This

shows that X 1is torsionfree regular. It remains to be seen that

X is divisible.

Assume there is a simple regular module S with

Hom(X,S) # 0. Let xl be the intersection of all kernals of maps
X +S. Note that X/X1 is embeddable into some 1S, with I an

index set. However, since $§ is a point, say with corresponding
epimorphism e : A + M o(E)> we may consider S, and &S as mo-

[
dules over M ofE)s thus we can rewrite 15 = G)S for some index
I

set J. Note that X/Xl, as a quotient of the regular module X,

has no non-zero preprojective direct summand, thus according to

6.6, X/Xy itself is a direct sum of copies of S, and therefore
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according to 6.7, the module X1 is reguiar again. As a sub-
module of the torsionfree module X, it is alsoe torsionfree. Aiso,

the exact sequence
0—»X1—+X—+$S—>O

shows that Extl(S,Xl) # 0. This shows that X, satisfies proper-

ties similar to X = X, ¢ namely, it is torsionfree regular, and
1
(

there exists a simple regular module S with Ext™(S,X) = 0, and

therefore, there exists a simple regular module S1 with

Hom(xl,sl) # 0. By induction, we obtain in this way a chain

X=X =X

0 p 2K

2 + v e

of proper submodules, with Xi/X being a direct sum of copies

i+l ’
of some simple regutar module Si’ and xi+1 the intersection of

the kernels of all maps Xi > Si' Let D = End(X}, a division

ring. Then, it is clear that all Xi are finvariant with respect

T LT TR T

to D, and consequently, XD cannot be finite dimensicnal. This

finishes the proof.

a L
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Let R bea complete DVR with quotient field K, and A a
hereditary R-order, Brumer [1] and Harada [6] independently showed that

A is conjugate to an order of the form

partitioned into n, X n:i blocks, all of whose entries belong to the indicated
symbol (either d or m = radd), where & is the unique maximal R-order
in D, afinita~dimensional, central skewfield extension of K, and Dn is
the quotient ring of A (e.g., see Reiner [13] or Roggenkamp [15]}). Sub-
sequently, Michler [9] extended the above to semiperfect HNP rings,
and Jategaonkar [7] obtained a further generalization to pseudo-Dedekind
rings,

A natural question to ask at this point is, can we find a2 ""reason-

able" canonical form for an arbitrary semiperfect order having finite
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600 J.H. Cozzens
global dimension? In a different but related direction, if A is a semi-
perfect HNP ring, A is 2 finite intersection of a unique set of maximal
orders, with each maximal order I' DA quasilocal (i.e., [/radT simple
Artin) and finitely generated projective over A (also see Eisenbud-Robson
[6]). Moreover, for each maximal ideal M,l of A, there exists a unique
maximal order 1"i DA such that trace PiA+ M,L = A, This observation was
pointed out by Silver [16] for the classical case and incorporated into the

following definition,

Let A be a semilocal ring (i, e. , A/rad A semisimple Artin) with

maximal two-sided ideals M, 1=1,...,n A complete set of finite left

localizations .fo_r_ A (in the senge of Silver) is a set {A- Fi’ i=1,,..,n}
where each map A~ I, 1is a finite left localization of A at M, i.e., each
map A- 1"i is a ring epi, P’u’k is finitely generated projective, and

Ly EA A,/.'Mj =0, Vi#i, A is s2id to be {{initely) localizable if each I

Al
is also finitely generated projective, As Silver shows, each l“,l is neces~
n
sarily quasilocal and A= Pi’ Thus, semiperfect HNP rings are local-
i=]

izable with each localization quas tlocal, and hence, a maximal order JA
To further delineate the problems related to the earlier question,
and, at the same time, to suggest a plan of attack, we ask:
1. Which semiperfect orders A are localizable ?

2. Canwe find a canonical form for the class of localizable,

semiperfect orders?

The answer to 1 is unknown (to me at least! ); however, there is

some evidence to suggest that a reasonably large class of R-orders may

indeed be localizahle, Specifically, when glbA=n (expressed as A is

n-dimensional or 4 ig finite-dimensional) and A ig semiperfect and
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R-free, if each maximal order A is quasilocal, A is localizable. More
generally, if n =2 and AC Dm, A is localizable whenever m< 7,

On the other hand, a partial answer to 2 has been obtained by
Keating [8], who has shown that whenever AC D_ is a semiperfect local-
izable R-order, each Pi. JA is quasilocal and A is micely! tiled, i, e,,
A= (Aij) where Au = d, Vi, a fixed local R-order, and Aij is a d-invert-
ible, d-ideal, V1i,].

The purpose of this note is to announce several recent results of
the author on the structure of finite-dimensional, localizable, semiperfect
algebras which provide a solution to question 2 in the spirit of our earlier
question, As succeeding sections will show, such algebras admit a rather
transparent canonical form and a structure theory very reminiscent of
the Brumer-Harada-Michler theory for semiperfect HNP rings,

Detailed proofs of all of these results will appear elsewhere.

Finally, I wish to express my thanks to the organizer of this
conference, Professor Van Oystaeyen and his able assistants, for their “
generous hospitality, and to Ken Fields and Mark Ramras for many prof-

itable conversations,

§l. THE SELF~BASIC CASE

Throughout this section and the next, all rings considered will be

prime, Noetherian, semiperfect algebras, By an algebra A, we mean a

ring A, finitely generated as a module over a subring R (with the same

identity) contained in the center of A, The symbol D will always bhe re-

served for a division ring,
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Recall that when d is a maximal order over a complete DVR

and p= radd,

is the canonical form for a self-basic hereditary order, More generally,
if d isn-dimensional and p is an invertible ideal of d with d/p Mm-1)-
dimensional, it is easy to see that A above is an n-dimensional localizable
algebra, However, as the following simple example shows, we shall re-
quire a broader class of algebras for our purposes:

Let R beany Z-dimensional regular local ring with quotient field
K, d aZ2-dimensional, local R~order, and D the guotient field of d, If

p and g are distinct height 1 primes of d, then

d dd d

{9 dgd
A"ppdd
pq paq d

is a localizable R-order in £ = D4 which is 2-dimensional iff prg =m =
radd, Clearly, A is not conjugate to any triangular order in T since
each maximal ideal of A is idempotent,

Motivated by the above example, we shall now degcribe a clags of

algebras which is broad enough to represent all algebras that we shall

consider,

DEFINITION, For an integer k> 1, we shall call any sequence of integers

61, vees 6n satisfying



Localizable algebras 603

a) 6 =1 and & =k,
n

1
b <6 <i<n-
b) . i.+1’l~L~nl’
<i<n-
c) 6i|61+1’ 1<i<n-l,

a divisor sequence for k and denote it by the symbol & = (61, .. ,Bn),

Next, let pl,.. fr Py be (prime)ideals of d. For a positive

integer n with divisor sequence & = (8 ’am-!-l)’ we inductively define

TR

a class of subalgebras of dn' denoted A(n, B;pl, cens pm), as follows:

d...d

m=1 :A(n,g;pl)zAn(d,pljz .

P d

Assuming that A(n',8';p),...,p,) has been defined Yar, &

and { < m, we define

1l
.
-
-

A(naéjpl: s ,Pm)

pmAm ot 1:’m&m Am
= An/a (Aml Pm) ?
o

= : 1 = (& .
where a A(ﬁm. ,E"Pl"”'pm-l)’ 5 { 1....,6m)

EXAMPLES, (a) n=6 and 6= (,2,6)

Al :EiprQ) =
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(b) n=6 and 6=A,3,6)

dddlddad

q dd:qd d
A(E’ngﬂlrp)" E_E_{;_?..E_f .

ppp;ddd

pappiqdd

PApe p;q q d

DEFINITION. If A is any finite-dimensional quasilocal algebra, A isg

called a regular algebra,

Before stating the main results of this section, we shall pause to
record the following important result due to Vasconcelos [L7], which under-
scores the role of maximal orders in the structure of localizable algebras,

Specifically, the quasilocal algebras associated with these algebras are

maximal orders.

THEOREM. (Vasconcelos), Any regular algebra is a maximal order in

a simple algebra,

Many pertinent properties of the aforementioned class of algebras

are summarized in the following:

THEOREM!L. Let d be local, PprecesP s invertible ideals of d, n a

positive integer > 1, E a divisor sequence for n, and
A= A0,8p),...,p_). Then,
are distinct maximal invertible

l. A is localizable iff the P,
1

ideal s;

2. glbAa =t iff
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b, p, isinvertible mod Z p, Vi<i< mel,
> i
m
c. glbd/ = P = t-1m,
i=]

In particular, whenever glbA =1t, the p, are distinct invertible primes

of d and each rl/pi is a (t-1)-dimensional regular local algebra,

That A is indeed the appropriate canonical form for finite-

dimensional, localizable, semiperfect algebras follows from:

THEQREM. Let AC Dn be a self-basic, t-dimensional, localizable,
semiperfect algebra, Then, there exists a t-dimensional regular local
algebra d(C D, distinct invertible primes Ppreesr Py of d with m< t,

and a divisor sequence & of n, such that A is conjugate to

Al Bipp e ap )

§2. THE NON-SELF BASIC CASE

1 AC D is no longer self-basic, since A is always Morita
equivalent to the basic ring of A, A is Morita equivalent to
A(m,é;pl,. - ,pk) where m< n, However, when A contains a self-basic,
finite-dimensional, localizable, semiperfect subalgebra, we can proceed
a8 in the hereditary case and explicitly determine a canonical form for A.

To this end, let A be an arbitrary semiperfect ring.

k n

l. DEFINITION. A is of type k (on the left) If A= X ® N, with
=1
AN'L indecomposable, Vi, and AN,L %’ANJ,, YVi#i

2, DEFINITION. For alocalizable algebra A, ri(A) will denote the

number of localizable algebras of type i which contzin A, and
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n{A)= Z ri(A), the total number of localizable algebras containing A.
i>1
i AC d_, v} (A) will denote the number of localizable algebras A' of
type i which satisfy AQA‘ gdn, and n'{(A) = = r; (A).
i>1
If A isl-dimensional and R a complete DVR, ri.(A) = (]::) if

A has type k, and n{A) = Zk-l.

THEOREM. Let A be a self-basic, t-dimensional localizable algebra

Cdn with canonical form

Am - [ ] L] [] Am
A= A(H:EJP]_:---,Pm) = ", .
pmﬁm. - Am

where & Cdk and n = £k, Then,

£

L, .= 3 7
g-

2, L = !

3. n(A) s (21-1)11(%)
£-1

4, n'(A)=2 n! (Am).

In particular, if m = 2,

£,k
L r.= 2 (M)
. di/d
] d|"_| J/
L-1 k-l
2, 1= X ( 5{. )
&1/ .

3. n(A) = 2 yekay

4wy = et hpk,

If n={fk, (e +£_) 18 any partition of {, d a subalgebra of D,

A=d i i i
K’ and p a prime ideal of d, Ai(ﬂl, vy Er) ig the subalgebra of
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Z = Dn consisting of all matrices in A = dn of the form

!

A A L, . . . A
pA A . . . . A
pA pA A A
pA pA . . . . A

partitioned into ii. X fj blocks (of pA's).

THEOREM. (Same hypotheses as the preceding), If Anll, 1<i<k, are
the k distinct maximal orders :)Am, then for each (ordered) partition of
‘!! (Ell'--.!'er)i
AL ) = A e )V AY) Ca
)y f) =8y ek me="n
is a t-dimensional localizable algebra JA. Conversely, if A' is any
t-dimensional localizable algebra JA with N C dn’ then there exists an

integer i with 1< i<k and a partition ({,,.., ,11_) of ¢ such that

1!

' At

k --c,fr)a

1’
THEOREM, Let A be a t-dimensional localizable algebra contained in
%= Dn' Then A contains a t-dimensional localizable algebra of type n
if and only if there exists a positive integer k with k|n, an integer i
with 1< i < k, and a partition of £ = n/k, (Il,. ‘e ,!r), such that A is

conjugate to All{(ﬂl, veny fr)-

Actually, given a fixed, self-basic, finite-dimensional localizable
algebra A, the intermediate algebras /' (described above) which qualify

are precisely those A' for which AJ'.’S. is reflexive,

i

i1
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PROBLEMS

l. If d is a finite-dimensional, (quasi)local, prime Noetherian ring, is
d a maximal order in its quotient ring?
Remarks: a., What Vasconcelos showed was that if d is an algebra,
the answer is always yes!

b, By Ramras [12], if d is local, d is a domain,

¢, Since reflexive ideals are projective whenever
glbd < 2 (see Cozzens [2]), d is necessarily maxi-
mal,

d. If the answer is yes, then all of the above results ex-
tend, mutatis mutandis, to arbitrary finite-dimensional
localizable, semiperfect, prime Noetherian rings,

2. Same assumptions as inl, Is each reflexive (prime) ideal of d pro-
jective?
Remarks: a. By Cozzens-Sandomierski [4], yes to2 => yes tol,
b, By Ramzas [11], if R is a2 3-dimensional regular local

ring, A is an R-free, maximal R-order with gibA =3,
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then reflexive ideals of A are projective.

3, If A is an arbitrary finite-dimensional, localizable algebra, is
A ?A.l XAZ' where Al is semisimple Artin and A,, a (finite~dimen-~
sional, localizable) semiprime algebra?

Remark; a, Whenever R isa DVR and A is an R-algebra, the
answer is yes by Silver [16].

4, If A is an arbitrary 2-dimensional maximal order, is A p-connected,
i.e., are finitely generated projective A-modules generators?
Remarks: a, By Riley [14], if A is a quaternion order, the answer

is yes,

b, See Cozzens [3] for generalization of Riley' s resuylt,

c. If the answer to 4 is yes, then by a trivial modifica~
tion of the proof given in Ramras [12], AR Mn(d) where
d is a maximal order in a division ring,

5. If A is 2-dimensional and R-free with R a complete 2-dimensional
regular local ring, and I' DA a maximal R-order, is I' quasilocal?
Remarks: a. By Ramras [10], 3.5, T" is finitely generated projective

over A on both sides and hence, a finite localization of
A. Inparticular, glbT'=2 as well,

b, As remarked earlier, if AC D _ and m<7, the
answer is yes,

6. Same as 5 with 2 replaced by a,

7. I A is as described in 6 and Fl and 1"z are hoth maximal orders

DA, is 1"1 Morita equivalent to I‘z?

Remarks: a. By Ramras [10], if glbA =2, the answer is yes,

b, For n> 2, tany partial results have been obtained,

e.g., see Ramras [11], 2.2,

(1YY
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1. INTRODUCTICN

A right module M over a ring R is said to have a unimodular
element (UME) if there exists ue M such that vR is a direct summand
of M canonically isomorphic to R, Thus, M has a UME iif there is an
epimorphism M- R. In general, a module M generates the category
mod-R of all right R-modules iff there is an epic M - R for some integer
n> 0; equivalently, Mn has a UME . In this case, we let y(M) dencte
the infimum of all such integers n, and call this the genus of M. If M
does not generate mod-R, we set y(M) = . The (little) right genus of a

ring R will be denoted by gr(R) and is defined to be the supremum of
viM} < o for M finitely generated in mod-R. The big right genus Gr(R)
is defined similarly without restriction on finite generation of M, Clearly,
g, (R) < Gr (R), and eguality holds when R is a2 right Noetherian ring.

A family F = {Ri}iel of rings is generic of (with) bound B if

there exists a function B ; Z' —+ ZT such that for all modules M if
V(M) € o is the minimal number of elements in any set of generators of M,
B{v(M))

then there is an epic M + R, The product theorem states that any

product of a generic family of rings of bound B is a ring which is generic
of bound B ({considering a ring as a family with one member) (see Theorem
6). For example, 2 family of rings each of genus < g is generic with

bound € g, where g also denotes the constant function. Moreover, any

613
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family of commutative rings is generic of bound lz+ , The 2 X2 theorem

(Theorem 15) states that if R is a commutative ring of genus 1, then for
any faithful module M with v(M) = 2, the product M2 has a unimodular
element, Thus, by the product theorem, the 2 X2 theorem holds for any
product of such rings,

A ring R is right {F)PF ([4]-[7]) if every finitely generated
faithful module M generates mod-R; equivalently, y(M) < w. A corollary
of the product theorem is that any product R = |—|-.LG IRi of generic family
right FPF rings is right FPF. (In particular, the product any family of
commutative FPF rings is FPF.) This implies that any product of self-
basic right FPF rings, in particular, any product of self-basic right PF
rings is right FPF,

Another corollary to the product theorem states that if {Ri}isl
is any family of commutative rings each having the property P(n,g)
exist integers n> 0 and g> 0 with the property that for all i¢ I every
finitely generated Ri-module of free rank > n+l has genus < g, then their
product R also has property P(n,g). The FPF theorem is the cage (0, 1).

The product theorem depends on Lemma 9: the only finitely gener-

ideal of the product containing the direct sum is the unit ideal,

Z. PRELIMINARIES AND EXAMPLES

If M is a right R-module, let VR(M), or v(M), denote the
least cardinal of any generating set, Thus, EI RV(M) - M, but
_fﬁ R¥ - M for any cardinal u< v({M), If M is a generator of mod-R,
then for some integer n> 0, 3 Mn--—R, and we let y;{' (M), or \(r(M),
denote the least such n, When M is understood to be a right R-module,
let y(M) denote this, and MeGen R denotes that M is a f, g. generator,

EXAMPLE, It may happen that a ring R fails to have the invariant basis
number (IBN), thatis, RR™ in mod-R for integers n ¥ m, If R’f'u"Rz
in mod-R, then RzzEndRRzrgEndRRﬁR as rings; also, Ra.-'Rn for every
integer n7 0, so every £, g, right module is ¢yclic, If M is any right R-

n n r R 4
module, then M 2cM @RRQM®RR AM, s0G (R)='G (R,) =1,

Suificient conditions for IBN are for R to have a nonzero ting map into a
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a (skew) field, e,g, when R is local, or commutative, or Noetherian,
Among the various equivalent conditions for a generator is that
the trace ideal of the module M must be the unit ideal, where the trace

ideal is defined to be the image traceRM of the canonical map

i
M @aM-+R {1)

P
where M = HomR(M, R) is the dual module, In the special case of a
cyclic right module R/I,

traceR(R/I} = J'l‘R @)
where
"I'I={ae R!ax:O,Vxe I}. (3)
To prove (2), use the canonical isomorphism
%
®/D" )
and then
* L 1
(R/1) ®R/I~"10R/-~"IR. {5)

Consider any generator M of mod-R, and write M =R O X,
3 i "
Then the dual module (M <)n =R ® x" {taking R =R canonically), so

H
Y2y ) ©)
where yz( ) is the right-left symmetry of yr( ), and clearly,
r ! P
M reflexive => vy (M) = ¥ (M ). (7)
Thus (7) holds, e,g., for any {.g. projective module M.
I am indebted to W. Vasconcelos for the next result,

l. THEOREM. If R is a commutative ring, ther vy(M)< v(M) for any

f. g, generator M.,

NEi.
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Proof, Let Mrl —+ R, Then there exist elements xl, e ,xn « M,

% .
fiseeesf € M such that zf’lf,(x_)=1. if t=v(M), and if m,...,m

1 t

generate M, then xl—z‘] lmJaJ for some a.Jc R, i=1,...,n. However,
n

fl=2fa,, eM,_]-l,...,t is such that E f'(m)~l go that M~»R

i i=1 7 ij

holds, that is, y(M) < t=v(M),

2. GOROLLARY. I M isaf, g, faithful projective over a commutative
#*
ring R, then (M generates mod-R and) y(M) = Y(M ) < v(M).

Proof, M generates mod-R by a theorem of Azumaya [1].

A ring A is said to be a local ring provided the equivalent

conditions hold;
A has a unique maximal right ideal J(A). (8)
The set J{A) of nonunits is closed under subtraction, (9)

The radical J(A) defines a field A/J(A) (not necessarily

(10)
comimutative).
m
3A. DEFINITION, A ring R is semiperfect if R= @ e, R, where
» i=l
e = el € R and eRe is a local ring, i = L,...,n, Let e R,...,e R
denote a full set of representatwes of isomorphy classes for {e. R} (Th“s

each eRHtooneandonlyone e R for i<m,) Then B-e.lR@... @e R

is the basm module of R, and RO = eORe0 is the basic ring of R, where

Ozel+‘l'+enl

3B. PROPOSITION, Every semiperfect ring R is Morita equivalent to

its basic ring, Moreover, B is a direct summand of every generator of
mod-R,

Proof, (See, e.g., [4], 18.26.), R is seli-basic provided that &g =L

that is, R = Ry or equivalently, R/radR is a (necessarily finite) product

of fields, The basic ring RO of a semiperfect ring R is self-basic {loc,

cit.}. (The basic ring R{) is also the left basic ring of R, since also
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m
R = @ Re,, ete,)

' 1

i=l
4, THEOREM. If R is a semiperfect ring, then G(R)= y(X) where X
is the basic module, If R is self-basic, then G(R) =1,

Proof, Trivial corollary of Proposition 3,
5. EXAMPLES

5,1, If R= Fn = Mn(F) is the n Xn matrix ring over a local ring F, then
X = euR is the basic module and y(X) =n, so G(R) = n.

5.2, I R= Tn(F) the lower triangular matrices over a local ring F, then

R is self-basic, so G(R) =1,

5.3, If R is a semiperfect ring, then R/radR = I_l-:_an (D,) for fields

1
t
Dl" . Dn, and the basic module is X = Ei—leiR’ where e? = e,1 maps onto

the (1,1) matrix unit of Mn (Di) under the canonical map R -+ R/radR,
i
i=1,.,.,n, Clearly

yiX) = max{n.l}. {13)
This generalizes 1 (where t=1)and 2 (where each n, = 1),

5.4, The product R = -IT:Lan(F) of the rings of 5,1, one for each n, has
genus «, since gr(Mn(F)) =n, Clearly, Gr(R) or gr(R) =n for a product
R = TTi.e IRi. of rings implies Gr(R.l) < g (resp. gr(Ri) < g) for every i

(See Theorem 6, also Lemma 17, for the details, )

5.5, Moreover, any product R = |_I-,lE IRi. of rings of genus < g has g(R}< g.
(See, e.g., Corollary 8,) Thus, any product of self~basic rings has genus 1,

Moreover, G(Za} = 1 for any cardinal .

A ring R is right pre-FPF if every £, g, faithiul right ideal gen-

erates mod-R. A commutative pre-FPT ring is characterized by the re-
quirement that finitely generated faithful ideals are projective {{7], Section 2,

Corollary 1D,)

Lilg,
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5.6, If R isa prime right pre-FPF ring, then
r r
g (R} = sup{v (0|0 # 1CR].

For if M« GenR, then there ig a nonzero map f: M—+ R, and since for a
prime ring every nonzero right ideal is faithful, then f(M) generates

mod-R, hence, sodoes M, Moreover, y(M) < y{f(M)).

5.7. EXAMPLES OF PRIME RIGHT PRE-FPTF RINGS

5.7.1, Any simple ring R, TFor if L£0, the T = traceRI is an ideal # 0;
hence T = R,

5.7.2. Any right pre-Priifer ring, This designates a ring in which any
f.g. (two-sided) ideal # 0 generates mod-R, Now a f.g, right ideal I# 0

generates an f,g, ideal RI=J, Let f: I(R) -~ J be the canonical epic of
the direct sum of |R| copies of I Then an epic h I r implies an
epic hf : I(R)-» R, s0 I is a generator, and R is therefore right pre-
FPF,

Refer to [5] for other results on (pre)-Pritfer rings,

5.7,3. Any Prilifer ring is FPF, This is 2 Goldie prime ring (GPR) in

which every ideal # 0is invertible in the quotient ring Q = ch (R) is the
sense that

fH=1f1=R.

I is the fractional ideal consisting of all q ¢ Q@ such that ng R,
Clearly

-1
I T=R<=>1 generates mod-R;

-1 s o
II " =R<=>1 is finitely generated projective in mod-R,

I R is a commutative
Prtfer domain, then R is special if every f. g, ideal 1 can be generated

by 1% elements in the sense that givenany a #0 in I, then there exists
be R such that T = (2,b);

5.7.4. Special Priifer domains have genus < 2,

that is, any nonzero element can be specified

as one of the two generators, Not every Priifer ring is special (as Heitman

and Levy [8] showed); however, it is unknown in a Priifer ring whether
vi}<2 forallf.g, 1
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A special Priifer ring has genus < 2 since given any f,g, ideal I,
we have I2 ~#~R @ J foranideal J (8,11]).
5.7.5. If R is a Dedekind prime ring (DPR), then G(R) < 2; moreover,
G(R) =1 iUff R isa PIR,

This follows from the fact that if M is any generator, and
0#fe M, then f{(M) =1 will be a right ideal # 0 and I2 #R @ J, where J
is a right ideal, (See, e.g., [9-10].)

If I is any essential right ideal, then Q = E(I) = E(R), where
E(M) denotes hull of a module M over R, Thus, G(R)=1=>I~R QX =>
Q =Q @ E(X). Therefore, E(X) # 0 is impossible because O is IBN, So
X =0, and I ®#R, Thus I is principal, and hence so is every right ideal. 1

5.7.6, A semifir R has genus 1, In R f.g. right ideals # 0 are free of

unique rank. (The latter holds if R is an IBN ring.} If Me GenR and if
0Ffec M, then M f.g => £(M) is free, so there is an epic M- R,

Semifir is right left symmetric; that is, f,g. left ideals # 0 are
free of unique rank (Cohn [3]). So semifirs have right and left genus 1, and
hence by the product theorem (cited in 5,5), any ring R which is a product
of semifirs has g(R) =1,

A right Bezout domain is a semifir in which every f, g, right ideal

# 0 is free on one generator ( = rank 1),

A right fir is a ring in which every right ideal is free of unique rank,
A right fir R is a (left) semifir, but R need not be a left fir [3].

A principal right ideal domain is a right fir and every right ideal
# 0 is free on one generator,

In the next example, the torsionfree rank of M is the least t

such that Rt embeds in M and is denoted by tfrk M, (By definition
tfrkM > 0, i.e., tirkM=0 if tirkM 1_1.)

Let £-k-dimR denote its left Krull dimension., Let r-K-dimR
denote the right Krull dimension, and K-dimR =n if the right and left
dimensions equal n,

5,7.7. A Noetherian Asano order R of K-dimn has genus < n+3, and

G(R) = sup {y(M}|0 # M&+ R},
sfesle

s
If X is an essential left ideal, then one shows that K& R, hence K&K &~ R,
that is, R is also a principal left ideal ring,




An Asano order is a Noetherian Priifer ring, 80 5. 7.3 and 5.6

! apply. If M is torsionfree (t,f,) and tfrk M2 n+3, then y(M) =1 by

I Stafford's theorem ['9, Theorem 7.2] Mt f, => Y(M) € n+3 since

tf vk Mn'{'3 2 n+3 . Since every right ideal M is t,f,, this proves that

g(R) < n+3.

5.7.8. If R is a simple Noetherian ring of £-K-dimn, then g‘e(R) < nt2,

If n>2,then g‘e(R)ﬂmax{g,n], where g = sup{y(M)]tfrkM'i_ 1}Sn+ 2,
Stafford' s theorem asserts a t.f, finitely generated left module

M of tirk> nt2 is a generator and y(M) =1, Then the argument employed

in 5, 7,5 shows for any generator M that YM)<n if tfrkM>2 and n> 3,

| since then tfranf_an_ n+2,

The free rank of M, denoted frkM is the smallest integer ¢
such that MP has a free direct summand R;: for every maximal ideal P,

Here, and for the rest of this section R is a Noetherian commutative

in
LINg,

Let spec(R) be the space of prime ideals of R in the Zariski topology
i SCR, let V(S) = [PEspec(R) | P25 ], and decree that the closed sets
ir spec(R) are those of the form V(S). Then the dimension of R, ditn R, 15

Thus

the dimension of the resulting lattice of open sets of gpec(R). Clearly, the

lattice of open sets is Noetherian (= satisfies the a, c,¢,) iff the lattice of

closed sets is Artinian, so dim R is finite iff spec(R) is both Noetherian and

Artinian, Dim R is also referred to as {classical ) Krull dimension of R,

and,

dim R[tl,'“,t ]=n+dimR
n

where R[tl, e ,tn] is the polynomial ring in n variables. This implies

that any finitely generated commutative algebra A over R has finite dimension

Provided that R does, In particular, any finitely generated commutative ring

has finite dimension, (See, for example, (2], pp.101-102,)

We let max(R) denote the subpace of spec(R) consisting of maximal

ideals, Thus, max(R) consists of the closed points of spec(R), Clearly, max{?

is Noetherian if spec(R)is, and

dim max(R) < dim spec (R)

/ :
Serre's theorem is more general than the following (see [2], pp. 172-%]
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5.8 THEOREM (Serre) Let max({R)be a disjoint union of 2 finite number

of subgpaces each of dimension< n (e.g., dim R< n), and let M be a direct

summand of a direct sum of finitely presented modules (e.g. M projective or

finitely generated). Then, if f rk M > n, then M has a unimodular element.
Tor the corollary, we need a lemma that R, Wiegand showed us.

5.9 LEMMA, I R is a right Noetherian ring, then G(R} = g(R).

Proof, ILet M be a generator of mod-R, so there exist finitely many fie M*

and m €M such that 5 f (m) =1, The image of M 8, MR is thus R,

and the image of M ™ @ M—R" is R’ If £= collf,..., 1) M, then

fm) = (£ (m), ... ,fn(m)) V mEM, and the image F of M under { generates

1
mod-R, (If p.L:Rn—--'? R is the ith projection, then p.l(f(m.l) = fi(mi)’ so the
fact that Z_f,(m,) = 1 shows that the trace ideal of F is R.) Since F is

a submodule of a2 Noetherian module, F is finitely generated, Since F is

an epic image of M, then y(M)Zvy(F), and we have what we want,

5,10 COROLLARY, If R satisfies the hypothesis of Serre s theorem, then
G(R) % maxin, gl}in +1

where g, = sup{¥(M) | £ rk M= 1}

Proof, Iffrk M > 2, thenf rk Mn > n+ 1, Since we may assume that M

is finitely generated by the lemma, then \,v(Mn) = 1 by the theorem, hence

¥(M}<n, IffrkM=1, thenfrk Mnﬂ »n+1l, so y(M)& n+1, hence g]_i i,
Added December 1978 Wiegand and Vasconcelos have sharpened a

result of [12], namely Theorem 2,1, Assume R hag dim n, and suppose for

modules M and N, with N finitely generated , that for ¢ach maximal ideal P

there is an epimorphism MPu-'}NP. Then, there is an epimorphism M—=»N,
Thus, when M is a generator, then y(M)< n + 1, This removes the hypothesis
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that R be Noetherian in Corollary 5,10, that is, G(R)< n +1 for any
commutative ring R of dimn, {Unpublished),

In addition, an unpublished result of D, Eisenbud states that for
R = k[x, v], the polynomial ring in 2 variables over a field k, G(R) = 1.

R. Wiegand has asked which commutative rings have the property that

every generator has a faithful direct summand,

3. GENERIC RINGS

Let Ths {Ri}iel be a family of rings, and assume there exists
a function B : Z" -~ Z¥ such that any f, g, generator Mi of R,L satisfies
the inequality

y(M.l) ‘_i_B(v(Mi)), for all i, {14}

Then ':Jc‘ is said to be right generic and bounded by B, or right B-generic

for short, Theorem 1, any family of commutative rings is generic and
bounded by id z*’. If ¥ consists of a single ring R (or a class of rings
all ®R), hen we say that the ring R is right generic and bounded by B

(or right B-generic) if F s, {In the parenthetic statement, R is right
generic and bounded by B iff F is,)

6. PRODUCT THEOREM. A family {R } of rings is right B-generic
iff the product R = _T R is B-generic, 'I‘hus, for every M«¢ GenR,

with V(M) =n<w we have:
= <
¥(M) = sup{y(M,)) iep B (.1)
where Mi = Mei, and e, ¢ Ri. is the identity element, Vi ¢ I,

Proof, Ms¢ GenR => M, ¢ GenR, for each ie I; hence there are epics

M -+ R, (r in mod- R where Y= sup\( < Bfn); hence epics h_; M' - R.l in
1
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mod-R., The image H of the product morphism h : MY~ R satisfies

He, = R,, Y ic I hence H contains their direct sum, and Lemma 9 (foll owing)
asserts that H = R, Thus,

V(M) < y< B(n) = B(v(M)).

t
However, y(M) = y since any epic M —+ R implies an epic Mt-—R.l, Viel,
Conversely, assume R -'_T R B-generic, choose i¢ I, and

Me £, g, Gen R.. Let n=v {M), and let M _»R where = YR (M). Also

let N = Tffl . Then N@® M =R = N(-B'R and hence (N(JBM) -+ R, s0
YN ® M)<t, Note however that (N @ M)" -+ R would imply M - R, 80
actually y(N @ M) = t, Moreover, vR(N &M = VR. (M) = n, since:

R =R g ™ (N@R)@Rn1~N€BR?-—»N®I\lfI(using R+N@R =R,

and R -+ M), Therefore, since R is B-generic, we have

Vg (M) = v (M) S Ble) = vy (),
that is, {Ri.} is B-generic,
It is clear from the proof that {rom the statement that
R = e IR ig a generic product of rings we may deduce either of the two
equivalent properties:
(1) R is a generic ring (bounded, e.g,, by B).
@) F = {Ri}iel is a generic family (bounded, e,g., by B),

7. COROLLARY. If M is an{.g. module over a product of rings

R = Tl- R, if M, Me generates mod- R, where e :R+R, ls the
PI‘DJectLon. Ldempotent, and if Bup{Y(Mi)}ieI = y< 0, then M generates
mod-R and vy(M)=vy, Thus

Y(M) = Bup{YR.(Mi)}iGI' (7' l)
1

Proof, That M generates mod~R follows from the proof of the theorem

Which shows that if there exists y o guch that

S S = Y o 15
ViGI—lMi R.Lﬂlean R. (15)
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Moreover;
MY R => Miy-» R (16)

hence (7.1) holds,
8. COROLLARY. Let R=T[, R. Then

g (R) = suple"® )}, 8.1
Proof, Follows from the corollary and the proof of the theorem

The next lemma completes the proof of Theorem 6
9. LEMMA,

The only f.g, right ideal H of a product Tl- R of rings
which contains the direct sum @, IR is the unit ideal,

Proof, Let H be generated by elements ml, e ,mt, and for any x ¢ R,
write xJ -xe VJ e I,

Since eJc H,V je¢ 1, there exist a‘]e R,
i=1,...,t, suchthat

t .. t ‘ ,
=Zma’ = g m a.l'] {17)
i=] =1 ) J
i . ‘s
Let b ¢ R be such that b; = a;J, Vijel Then, clearly, the element
t i
m=3m'b e M (18)
i=1

is the unit element 1 of R since by (1)

t .
i1
m.=Emhb =e =1, 19
J =1 JJ J J 1)

for any j, Thus, M is the unit ideal,

10, EXAMPLE

10,1, 1f F be the n Xn matrix ring over a local ring

uct R = +F, 18 not generic, since Y(M) = w0 for the eyclic module
ne Z

M = eR, where ¢ = ez

F, then the prod-

is the idempotent the j~th component of which is
the & ~matrix in F |
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10,2, An infinite product of right PF rings is never right PF since a
semiperfect ring contains no infinite sets of orthogonal idempotents. Fur-
thermore, by Example 5. 4, a product of P¥ rings is not necessarily FPTF,

e.g, R= W +Fn is not, Nevertheless, any product of right PF rings
ne Z

of right genus < g is right FPF of genus £ g, according to Lemma 17 in the

next section, For example;

10,3, Let R= ﬂ_EIM (¥, ), where F is a self-hasic rlght (F)PTF ring is

right FPF of genus n, accordmg to Lemma. 17, since G’ (M (F )) =n,

Yie I, by Example 5, L,

1, COROLLARY. Let R= Hle & be a product of commutative rings
such that there exists an integer n> 0 such that each R, satisfies Serrels
condition P(n,g); that is, any f{initely generated R,L-rnodule of frk > n+tl

has a unimodular element, Then, R satisfies P(n,g).

Proof, Let M be any finitely generated R-module of f rk> ntl, If P,
is any maximal ideal of R'i’ then P = P.l @ R; , where R; = Tl—j,-J.‘LR'j’ is
maximal in R, and (Mi)P = MP has rk 2 nt+l, so M.1 has a unimodular
element, that is, y(Mi) = 1; hence y(M) =1 by Corollary 7,

APPLICATIONS TO FPF RINGS
A ring R is right PF  provided that each faithful right R-

module generates mod-R, IBr the background to the next result, consult [4],
12. THEOREM. {Azumaya et al) A ring R is right PF (pseudo-Frobenius)

iff R is a semiperfect right self-injective ring with essential right socle,

These include the QF rings, the Artinian (right and left} PF

rings, Any semiperfect right self-injective ring with nil radical is right PF [6].

The FPF rings include all finite products of rings each of which
are Dedekind prime rings (DPR's) or QF, Also, any semiperfect ring in
which every f, g. ideal is a generator (both sides). Such a ring is prime
and = Mn(D),, where D isa right and left valuation ring and right duo [5].
A commutative example would be any Priifer domain,

A ring R is CFPF if every factor ring R is FPF, e. g., any

DPR. A commutative local ring R is CFPF iff R is an almost maximal

TS
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valuation ring (AMVR) [7], or equivalently, every £, g, module is a direct
sum of cyclic modules,

A commutative local ring R is FPF iff every faithful module
M with V(M) =2 ig a direct sum of cyclics [7]. This is generalized to
arbitrary products of commutative rings of genue 1 in Theorem 15 and

Corollary 16. Any self-injective commutative ring is FPF [7].

13, PROPOSITION. If R is any ring and M is a generator such that
v(M) =1 and 2< V(M) =n< w, then

M~R @ B/K (13,1
where B isanf,g, projective such that
n
R"~R @B, (13,2)

Eroof v(M)=1=>M~R®X, and v(M) sn => M~ R /K in mod-R;
hence there exist submodules A4 and B of R® such that AMB = K,
R"= AtB, A/K~ R, and B/K~X, Since R ic projective, K splits in A.
Write A = K (BRl. Then Rl =R, and
R = A+B = K4R +B = R 4B = R
178 = &y

1 @3B (22)

since leBgAﬂBﬁngKﬁr{l:o. Moreover,

M:Rn/K=R1@B/KmR@B/K.

14, COROLLARY, If R is commutative, then in the proposition, B i5 a

progénerator (= f,g, projective generator),

Proof. By Azumaya's theorem, all that is required is that B be faithful.

But R” = R @B
and

=>R"2 = (Ra) R~ R & for all a ¢ R which annihilates B,

this mehes n =1 since R,la is cyclic contrary to the assumption,

15, 2x2 THEOREM. If R is FPF
every faithful module M with v(M) =2
M#~R @R/K.

and commutative of genus 1, then

18 a direct sum of two cyelics:
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Proof. y(M) =1 so the corollary applies: M=R @ B/K, where Rz & R & B,
and B generates mod-R, Then BrRR @Y so Rz Y R2 @ Y which means
that Y, = 0, Y maximal ideals J%.; hence Y=10, and B=R, so M=R ®R/K
is a direct sum of cyclics.

We shall abbreviate the conclusion of the 2 X2 Theorem by the

terminology: Every faithful 2-gened module is 2-cyclic, In this case, we

say the 2 X2 Theorem holds,

16, COROLLARY. Any product of commutative FPF rings of genus 1 is
FPF, and hence the 2 X2 Theorem holds,

Proof, R is FPF and g(R)=1 bythe n=1 case of Lemma 17 (following),
80 Corollary 15 applies,

17. LEMMA. Any right generic product of right FPF rings is FPF,

Proof, If M is f, g faithful in mod-R of Corollary 7, then M.L = Me, is
f. g, faithful over Ri.' hence generates mod-R,l, and therefore M generates

mod-R by Corollary 7.

18. COROLLARY. Any product of commutative FPF rings is FPF.
Similarly for products of right FPF self-basic rings,

Proof, Both are generic families,

19, COROLLARY. Any right generic product of right PF rings is right
FPF.

20, EXAMPLE

20,1, As stated in Example 10, R = -IT o is not generic, where F
ne Z

is any field, and R is not FPF even though F_ is PF, Vn,
20.2. The product R = {Fn)a for any cardinal a, and fixed n, is FPF

since {Fn} is generic,

20.3, R=%Z> is FPF for any cardinal a.

21, THEOREM. Let {R,}ieI be a family of rings such that R, is a
L

s ~

o AR Tt ekt n 27
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commutative ring of one of the following types:
(i) a Bezout domain,
{ii) alocal FPF ring (e. g., any AMVR, or any self-injective
local ring),
(iii) an FPF ring of genus 1,
(iv) any product of rings {Ri} where R, has type (i)-(iv),
Then: R = TrieIRi' is. FPF of genus 1; hence the 2 X2 Theorem holds,

Proof.  The rings (i)-(ili) are all FPF of genus 1; hence by Corollary 16,

80 are the rings in (iv); hence sois R = _lTie IRi'

A ring R (commutative) is said to be guotient-~injective if its classical

quotient ring QC!(R) is a self-injective ring, ¢quivalently, an injective R-module,

Then R is said to be fractionally self-injective (F81) if every factor ring of R is
quotient-injective, Every FPF commutative ring R is quotient-lnjective, hence
every CFPT commutative ring is FSI, Conversely, every FST ring R is CFPF,
{See [7,13] for these results, and the background), Now the FSI rings have been
completely characterized by Vamos [4]: R is FSI iff R is a finite product of
rings of the following three types: (1) AMVR ; (2) Almost maximal h-local
domain; (3) Almost maximal torch ring, Here, almost maximal means that
every local ring of R is an AMVR; h-local means that every prime ideallis
contained in only finitely many maximal ideals; and a torch ring signifies that
R is directly indecomposable (= has no non-trivial idempotents), has a minimal

prime ideal P such that P ig a wniserial R-module #0, with 1-"z = 0, and R/P
of type (2},

This shows that no infinite product of rings can be CFPF, thatis,
that product theorem for Fpy rings fails for CFPRF rings, (Finite products
of CFPF rings are CFPF however, )
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COLOCALIZATION AT IDEMPOTENT IDEALS
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Haifa, Israel

My intention here is to present a short introduction to
the recent efforts to define a meaningful and usable notion
of "colocalization" of associative rings with unit element and
modules over such rings. These efforts were motivated, on one
hand, by the fruitfulness of the notion of "localization" at
a hereditary torsion theory and, on the other hand, by the
hope of coming up with an additional tool which, when used
together with localization, would allow us to preserve
information concerning the structure of such rings and modules
which is lost under localization alone. Thus arose, for
example, the feeling that colocalization and localization,
appropriately defined, should constitute an adjoint pair.

The various approaches to colocalization which have been
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considered are based on dualizations of one facit or another
of the notion of a hereditary torsion theory. They can be
grouped as follows:

(1) Colocalization via cotorsion radicals. This approach

was initiated by Beach [71] and has been since investigated
in several papers, among them Ramamurthi [73a], Katayama [74],
Ramamurthi and Rutter [76], and Goel [77].

(2) Colocalization via cokerne} functors. This approach

was initiated by Bronn [73].

(3) Colocalization at projective modules. This approach

was initiated by McMaster [75], which is based on the general
approach due to Lambek. (See, for example, Lambek [73].)
This approach was also used in GoTan [74].

(4) Colocalization at jansian torsion theories or,

equivalently, at idempotent ideals. This approach was
introduced independently and more~or-less simultaneously by
Kato [ta], Ohtake [77], and Sato [76] on one hand and by
Golan and Miller [ta] on the other. It is based mainly on
the work of Miller [74, 76] and on the attempts to generalize
Morita equivalence as exemplified by Onodera [77].

Since the last-mentioned approach essentially subsumes

all of the others, it is the one which I will present here.



Colocalization at idempotent ideals 633

0. Background and notation. Throughout the following R

will denote an associative (but not necessarily commutative)
ring with unit element 1. We will denote the category of
unitary left R-modules by R-mod and the category of unitary
right R-modules by mod-R. Morphisms in module categories
will be written as acting on the side opposite scalar
multiplication. A1l other maps will be written as acting on
the left. If M 1is an R-module then the injective hull of M
will be denoted by E(M) and the Jacobson radical of M will
be denoted by J(M).

The complete brouwerian lattice of all (hereditary)
torsion theories on R-mod will be denoted by R-tors. In
dealing with R-tors, we will follow the notation and termi-
nology of Golan [75]. In particular, if N s a submodule of
a left R-module M and if t € R-tors then N will be called
t-dense [resp. r-pure] in M if and only if M/N is t-torsion
[resp. t-torsionfree]. With every left R-module M we can
associate the largest element of R-tors relative to which M
is torsionfree, denoted by (M), and the smallest element of
R-tors relative to which M is torsion, denoted by &(M).
The unique maximal element of R-tors is x = x(0) and the
unigue minimal element of R-tors is & = g{(0).

With each 1 € R-tors we have an associated localization
endofunctor QT(_) of R-mod which is idempotent and left

. T
exact. Moreover, we have a natural transformation X~ from
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the identity endofunctor on R-mod to QT(_) such that for

every Teft R-module M, ay: M -Q (M) is the Tocalization

morphism. (In Golan [75] this is denoted by TM.) If R

is the endomorphism ring of QT(R) then every module of

the form QT(M) is canonically a left RT-modu1e and

R-homomorphisms between such modules are also RT-homomorphisms.
Among the important types of torsion theories are the

stable torsion theories, namely those torsion theories for

which the class of all torsion modules is closed under taking

injective hulls. These torsion theories were first studied

by Gabriel [62]; information about them is collected in
Section 11 of Golan [75].
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1.

Jansian torsion theories. A torsion theory = €

R-tors

is said to be jansian if and only if the class of all

r-torsion Teft R-modules is closed under taking direct

products.

(Such theories are often called TTF-theories in the

literature; they were first studied by Jans in [65].) The set

of all jansian torsion theories on R-mod will be denoted by

R-jans.

The following results are proven, among other places,

in Golan [79].

(1.1) PROPOSITION: If 1 € R-tors then

(1)

(2)

= is jansjan if and only if R has a unique

minimal t-dense left ideal L(t).

If <« is jansian then a left R-module M is

r-torsion if and only if L{t)M = 0.

L(r) is an idempotent (two-sided) ideal of R.

Indeed, the function * | L{r) is a bijective

correspondence between R-jans and the set of all

idempotent ideals of R.

If 7 € R-jans then set W(t) = L{x) B L{t). Then W(x)

is both a left and a right R-module and we have a canonical

R-homomorphism (Teft and right) from W(tr) to R given by

Ta; @ bi b zaibi the image of which is precisely L(r).

(1.2) PROPOSITION: If = € R-jans then the following

conditions on a left R-module M are equivalent:
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(1) Mis r-torsion;
(2) HomR(H(T),M) =
(3) W(r) 8, M= 0.

PROOF: (1) « (2): Assume that M is r-torsion and let
a:W(z) - M be a nonzero R-homomorphism. Pick w = I, a, ﬂ bi €
W(t). Since each a; € L(z) = L(T)z, we can write as =

z. C]JdTJ where the i and the d.. are elements of L(z).

Therefore we have wo = (212J c”d1J 8 b; Jo =

E1ZJ CiJ( . @ b, Ja. But M is t-torsion and so by Proposition
1.1 we have L(t}M = 0. Therefore wa = 0, proving that
HOmR(W(T),M) = 0. Conversely, assume that M is a left
R-module satisfying HomR(w( )M} = 0. If meM then we
have an R-homomorphism from W(T) to M defined by
fa; @ bi b (Eaibi)m. By assumption, this must be the O-map
and so L(c)m=0 for every m € M. Therefore L(t)M= 0 and
and so M 1is <-torsion.

(1) « (3): Let M be a t-torsion left R-module and
assume that Iy a; @b, @ m; € W(r) Gy M. Then each bi ¢an
be written as z C.;d::s where the c.. and the di' are

Uiy’ 1]

elements of L(T). Therefore I, a, @ bi @ m =

Y- ZJ a. @ c”d1J iy =L, ZJ a, @ C; ﬂ d..mi. But dijmi = 0

for each i and each j since d € L{tr) and since M is

t-torsion. Therefore W(r) By M = 0. Conversely, assume (3).

Then the R-homomorphism a:l() ﬂR Mo L{t}M given by
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o Ia g bi & m b Zajbim is an epimorphism and so, by

;
assumption, we have L(t)M = 0. By Proposition 1.1, this

implies that M is t-torsion. o

A Teft R-module P is said to be pseudoprojective if and

only if for every diagram in R-mod of the form

P

|

4+
N SN 50

with exact row and with 8 # 0 there exists an R-endomorphism
8 of P and an R-homomorphism ¢:P + N for which 0 # 68 =
vo. See Bican, Jambor, Kepka, and Nemec [75] and Bican [76].
Any jdempotent ideal of R is pseudoprojective as a left
R-module. Zelmanowitz [72] has defined a left R-module M to
be regular if and only if for any m € M there exists an
R-homomorphism « € HomR(M,R) satisfying m = {me)m. Such
modules are easily seen to be pseudoprojective. Similarly,

the 1ocally projective modules defined by Zimmerman-Huisgen

[76] are both flat and pseudoprojective.

(1.3) PROPOSITION: The following conditions on a left

R-module P are equivalent:

(1) P is pseudoprojective.

(2) There exists a jansian torsion theory n{P) € R-jans

defined by the condition that a left R-module M is

n(P)-torsion if and only if HomR(P,M) =0 and

v et er




638 J.S. Golan

moreover having the property that L{n(P)) =

I{Pe | a € Homg (P,R) 1.

PROOF: (1) = (2): Let P be a pseudoprojective left
R-module. Then the class of all left R-modules M satisfying
the condition that HomR(P,M) = 0 1is closed under taking
submodules, direct products, isomorphic copies, and extensions.
Thus all we are left to show is that this class is closed
under taking homomorphic images. Let a:M +M" be an R-
epimorphism and assume that HomR(P,M) =0. If 0f#BE€
HomR(P,M") then by the pseudoprojectivity of P there exist
an endomorphism 6 of P and an R-homomorphism P+ M
satisfying 0 # 6 = ya. This implies, in particular, that
B # 0, contradicting the choice of M. Thus we must have
HomR(P,M") = 0, proving that n{(P) exists.

Now Tet H=2Z{Pa | a€ HomR(P,R)}. Since L(n(P)) is
n(P)-dense in R, we have HomR(P,R/L(n(P)))= 0 andso He
L(n(P)). Assume that this inclusion is strict. Then we have
an R-epimorphism v:L(n(P)) + L{n(P)}/H. MWe claim that
L(n{P))/H is n(P)-torsion. Indeed, assume not, If 0# B €
HomR(P,L(n(P))/H) then by the pseudoprojectivity of P there
exists an R-endomorphism ¢ of P and an R~homomorphi sm
¥:P > L(n(P)) satisfying 0 # Yv = 88, But Pp <R implies
that Py cH and so Py = 0. This yields a contradiction
which establishes that indeed L(n(P})}/H is n(P)-torsion.
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From the exactness of the seguence

0 = L{n(P})/H + R/H = R/L(n(P}) + 0
we then conclude that R/H s n{P)-torsion, contradicting the
definition of L(n(P)). Thus we must have H = L{(n(P)).

(2) = (1): Assume (2) and let u:R(Q) +~ P be an
R-epimorphism. Set U = L(n(P))(ﬂ). Then L(n(P))[R(Q)/U] =
0 and so U is n{P)-dense in R(ﬂ). Thus n induces an
R-epimorphism from R(Q)IU to P/Up. Since R(g)/U is
n(P)-torsion, so is P/Uu, which forces P = Up. Now assume
that we have a diagram of the form

P
B
o

N S >()

with exact row and with 8 # 0. By the projectivity of R( ),

there exists an R-homomorphism B':R(Q) + N satisfying B8'a =
wB. If u" 4s the restriction of u to U and if g" fs
the restriction of 8' to U then p" 1is an epimorphism and
0# u"g = g%, By (2), L{n(P)) is an epimorphic image of a
direct sum of copies of P and hence so is U. In particular,
this implies that there exists an R-homomorphism g:P + U such
that zu"« # 0. Set 6 = gu" and vy =ga". Then 0O # ep =

Y&, proving that P is pseudoprojective. n

In particular, we note that if c € R-jans then W(7)

is pseudoprojective., Moreover, a torsion theory t € R-tors
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is jansian when and precisely when there exists a pseudopro-
Jjective left R-module P for which 1 = n(P). Indeed,
Proposition 1.2 assets that if t € R-jans then = = n(W(1)).
Several conditions for the stability of a jansian torsion
theory were given in [Golan, 75; Proposition 22.10]. We now

need one more.

(1.4) PROPOSITION: A torsion theory r € R-jans is

stable if and only if x € L(t)x for every x € W(t).

PROOF: If t € R-jans 1is stable then by [Golan, 75;
Proposition 22.10] we know that x € L(1)x for every x €
W(t) if and only if W(c) = L(x)W(x), and this is an immediate
consequence of the definition of W(x). Conversely, assume
that this condition holds. Let M be a r-torsion left
R-module and let o € HomR(W(r),E(M)). If there exists an
Xq € W(r) for which Xo» # 0 then there exists an r € R
such that 0 # rxpe € M. Since rxy € W(t), we have Xy €
L(T)rxo and so there exists an a € L(t) satisfying rXq =
arxy. Now define an R-homomorphism g:W(t) + M by
B: xc; B d; P x¢,drxg. Then 8 # 0 since arx; € im(g) and
50 HomR(w(r),M) # 0, contradicting the assumption that M is
t-torsion. Thus we must have that HONR(W(T),E(M)) = 0,

proving that E(M) is <-torsion and hence that is stable. o

In particular, we note that a sufficient condition for
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a jansian torsion theory =t € R-jans 1o be stable is that
W(t) be regular as a Teft R-module.

A ring R is said to be left weakly reqular if and only

if the following equivalent conditions are satisfied:
{1) For every a € R there exists an element b € RaR
satisfying a = ba.
{(2) Every left ideal of R 1is idempotent.
(3) R/1 dis flat as a right R-module for every two-sided
ideal I of R.
(4) Every left ideal of R is semiprime.
Such rings have been studied by Fisher [74], Hansen [75], and
Ramamurthi [73]. It is easily seen that if R 1is a left
weakly regular ring then every jansian torsion theory on R-mod

is stable.

Let us consider a more concrete example. Following

Bass [60], we say that a ring R is left perfect if and only
if every left R-module has a projective cover. Dlab [70] has
shown that a ring R 1is left perfect if and only if it is
right semiartinian and every torsion theory on the category
mod-R is jansian. Moreover, he gives an example of a ring
satisfying the condition that every torsion theory on mod-R
is jansian but which is not right semiartinian and hence not
left perfect. Another characterization of left perfect rings

is given in Golan [74], where it is shown that a ring R is

— et —— . mrneth, e
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left perfect if and only if every torsion theory on mod-R is
of the form n(P) for some projective right R-module P.
Michler [69] has studied the idempotent ideals of jeft
perfect rings. In particular, he has shown that a left perfect
ring R has precisely 2" idempotent ideals, where n is
the number of simple components of the semisimple artinian ring
R/J(R}). Therefore, if R s a left perfect ring then there
are only finitely-many torsion theories on mod-R and all of
them are of the form g(A), where A is a subset of a
compiete set of representatives of the isomorphism classes of
simple right R-modules.
We now want to characterize those left perfect rings
having the property that every member of R-jans is stable.
To do this, we recall that a ring R is said to be right

local if and only if all simple right R-modules are isomorphic.

(1.5) PROPOSITION: The following conditions on a left

perfect ring R are equivalent:

(1) R is isomorphic to a finite direct product of left

perfect right local rings.

(2) Every member of R-jans 1is stable.

PROOF: By Propositions 5.5 and 23.9 of Golan [75] we
know that (1) is equivalent to the condition that for any
torsion theory p on mod-R the class of all p-torsionfree

right R-modules is closed under taking homomorphic images.
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Since every torsion theory on mod-R 1is jansian, by
Proposition 22.12 of Golan [75] this is equivalent to the
condition that R/L(p) is projective as a left R-module for
every such p. But the ideals of R of the form L{p) are
Just the idempotent ideals of R and these are precisely the
ideals of the form L(t) for some t € R-jans. Thus (1) is
equivalent to the condition that R/L{t) is projective for
every t € R-jans. Since R s left perfect, it is in
particular semiperfect and so every cyclic left R-module has
a projective cover. Therefore R/L(t) is projective as a
left R-module if and only if it is flat as a left R-module.
But by Proposition 22.10 of Golan [75], this is precisely

equivalent to (2). O

[

|
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2. Modules cotorsionfree relative to a torsion theory.

IT < € R-tors then a left R-module M will be said to be

t-catorsionfree if and only if HomR(M,N) =0 for every -
torsion left R-moduTe N. The class of all r-cotorsionfree
Teft R-modules is clearly closed under taking homomorphic
images, extensions, direct sums, and projective covers (when
they exist). It is closed under taking submodules if and only
if there exists a torsion theory ° € R-tors satisfying the
condition that a left R-module is <“-torsion if and only if it
s v-cotorsionfree. Since no nonzero left R-module can be both
t-torsion and t-cotorsionfree we see that if ° exists then

L s the

A= £ in R-tors and so <° 5_Tl, where 1
meet pseudocomplement of <« 1in the brouwerian lattice R-tors.
But no nonzero homomorphic image of a Tl~torsion left R-module
can be t-torsion and so every TL-torsion left R-module is
t-cotorsionfree. Therefore we conclude that if <€ exists

then it must equal Tl.

{2.1) PROPOSITION: If 1 € R-tors then a sufficient

condition for the class of t-cotorsionfree left R-modules

to be closed under taking submodules 1s that - be

stable,

PROOF: Let M' be a submodule of a t~cotorsionfree left
R-moduTe M. If there exists a nonzero t-torsion left R-module

N satisfying HomR(M',N) # 0 then E(N) is also rt-torsion
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by the stability of 1 and we have HomR(M',E(N)) # 0, which
implies that Homg(M,E(N)) # 0. This contradicts the fact that
M is t-cotorsionfree and so we must have that M' is also

t=¢otorsionfree. o

If the class of all t-cotorsionfree left R-modules is
closed under taking submodules then every t~cotorsionfree left
R-module is also c-torsionfree. In general, this need not be
so. However, for any t € R-tors we note that if M is a
c-cotorsionfree left R-module then any t-torsion submodule of
M 45 small in M. (For a proof see Goel [77].)

If € R-tors then any left R-module M has & unique
maximal t-cotorsionfree submodule, namely CT(M) =

(M cM | M is r-cotorsionfree}. In particular, C.(R)

R
is the unique maximal t-cotorsionfree left ideal of R and

so it must, in fact, be a (two-sided) ideal of R. One easily
verifies that CT(_) is an idempotent subfunctor of the
identity endofunctor on R-mod. Also, we note that CT(M) is

a submodule of every t-dense submodule of M.

(2.2) PROPOSITION: If « € R-jans then CT(R) = L{e).

PROOF: If < € R-jans then HomR(L(t),M) = 0 for every
r-torsion left R-module M and so L{r) is a r~cotorsionfree
left ideal of R, proving that L(t} € CT(R). Since L(t) is

7-dense in R, we have the reverse containment as well. a]

) o

i L R
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If 7 €R-tors then we say that a left R-module M is
t-surtorsion if and only if CT(M) = 0 or, equivalently, if
and only if HomR(N,M) = 0 for every r-cotorsionfree left
R-module N. Surely every t~torsion left R-module is -
surtorsion. Moreover, the class of all r-surtorsion left
R-modules is closed under taking submodules, direct sums, and
extensions. It is closed under taking homomorphic images if
and only if there exists a torsion theory rd € R-tors
satisfying the condition that a left R-modyle is Td—torsion if
and only if it is t-surtorsion. Beachy [71] has given

equivaient conditions for this to happen:

(2.3) PROPOSITION: The following conditions on rt €

R-tors are equivaient:

(1) The class of all t-surtorsion left R-modules is

closed under taking homomorphic mages,

(2) CT(M) = CT(R)M for any left R-module M.

(3) Any R-epimorphism o:M + M restricts to an

R-epimorphism a':CT(M) + CT(M').

Indeed, 1 satisfies the equivalent conditions of Proposition

2.3 if and only if CT(_) s a cotorsion radical in the sense

of Beachy [71]. Under these circumstances, CT(R) is an

idempotent ideal of R, Indeed, one checks that under these

circumstances rd is Jjansian and CT(R) = L(Td). Moreover,
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the torsion theory Td is the unique minimal jansian
generalization of 1. Therefore a necessary condition for
Td to exist is that <t have a unique minimal jansian
generalization. Another immediate consequence of Proposition

2.3 is the following.

(2.4) COROLLARY: If 1 € R-tors satisfies the equivalent

conditions of Proposition 2.3 then a left R-module M is

r-cotorsionfree if and only if [R/CT(R)] B M= 0.

PROOF: We always have [R/C _(R)] B M = M/C_(RIM and by
Proposition 2.3 we see that this is isomorphic to M/CT(M),

implying the result we seek. o

Ramamurthi and Rutter [76] have also shown that if v €
R-tors satisfies the equivalent conditions of Proposition 2.3
then CT(_) commutes with direct products if and only if

C.(R) is a finitely-generated right ideal of R.

A torsion theory t € R-tors satisfying the condition
that the class of all t-torsionfree left R-modules is closed

under taking homomorphic images is said to be cohereditary.

Rutter [72] has shown that if R is a semiperfect ring then

every cohereditary torsion theory on R-mod is jansian. If

c € R-tors satisfies the conditions of Proposition 2.3 then

is cohereditary if and only if every r-cotorsionfree left

R-module is t-cotorsionfree. (See Golan r75], Proposition

e —

|

i
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22.12, for the proof of the equivalence of these and other
conditions.)
Jansian torsion theories all satisfy the conditions of

Proposition 2.3. To see this, it suffices to establish the

following result,

(2.5) PROPOSITION: The following conditions on t €

R-tors are equivalent:

(1) T is jansian.
(2) A left R-module M is t-torsion if and only if

it is t-surtorsion.

(3) M/CT(M) is t-torsijon for every left R-module M.

PROOF: (1) = (3): If M is a left R-module then
L(r)[M/CT(M)] = CT(R)[M/CT(M)] = CT(M/CT(M)) =0 and so
M/CT(M) is T-torsion.

(3} » (2): We have already noted that every t-torsion
left R-module is t-surtorsion. The converse follows directly
from (3).

(2} = (1): If M. | 1 €a} is a set of t-torsion left
R-modules and if N is a T-cotorsionfree left R-module then
Homp (N, 1M, ) ?ﬂHomR(N,MT.) =0 and so, by (2), . s

t-torsion. This proves that 1 1s Jansian. o

In particular, Proposition 2.5 shows that a jansian

torsion theory is completely determined by its class of

cotorsionfree modules.
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As a consequence of results of Goel [77] and Ramamurthi
[73a] we can then obtain the following criteria for a jansian

torsion theory to be stable.

(2.6) PROPOSITION: The following conditions on t €

R-jans are equivalent:

(1) < is stable.

(2) The class of all t-cotorsionfree left R-modules is

closed under taking submodules.

(3) CT(N) = N n CT(M) for every submodule N of a

left R-module M.

(4) CT(I) =1nN CT(R) for every left ideal] I of R.

(5) I= CT(R)I for every left ideal I of R contained

in C(R).

Moreover, as Ramamurthi and Rutter [76] have shown, if =
is a stable jansian torsion theory then for any Tleft R-module
M we have QTL(M) = M/CT(M).

A jansian torsion theory T on R-mod 1is said to be

centrally splitting if and only if R = L{c) x T_(R) as rings.

This condition has been studied by dans [65]s Bernhardt [69,
71, 73], and Golan [75]. From these sources we see that the
foltowing conditions on a jansian torsion theory t are

equivalent:

(1) + is centrally splitting;

— T
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(2) M= CT(M) 8 TT(M) for any left R-module M.
(3) t 1is stable and R/L(t) has a projective cover in
R-mod.
Kurata [72] has shown that if R is a commutative noetherian
ring then every jansian torsion theory on R-mod is centrally
splitting. Rutter [72] established that if R is a left or
right injective cogenerator ring then < € R-tors is centrally
splitting if and only if the class of all r-torsion left
R-modules is closed under taking injective hulls of simple
moduTes. Ramamurthi [73a] has proven that if R 1is a semi-
prime right noetherian ring or a quasi-Frobenius ring then
every stable jansian torsion theory on R-mod is centrally

splitting.

(2.7) PROPOSITION: The following conditions on t €

R-jans are equivalent:

(1} 1 is centrally splitting.

(2} A left R-module is r-cotorsionfree if and only if it

is t-torsionfree.

PROOF: (1) = (2): We have already noted above that (1)
implies that + 1is stable and so by Proposition 2.6 the class
of all t-cotorsionfree Teft R-modules is closed under taking
submodules. Therefore every t-cotorsionfree left R-module is
r-torsionfree. Moreover, (1) implies that R = L(x) @ TT(R)

and so if M 1is a t-torsionfree left R-module we have
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M=1{x)MO TT(R)M = CT(R)M = CT(M), nroving the reverse
containment.

(2) = (1}: Since the class of all t-torsionfree left
R-modules is closed under taking submodules, (2) implies that
this is true for the class of all t-cotorsionfree left
R-modules and so CT(M) n TT(M) = 0 for every left R-module
M. On the other hand, (2) implies that t is cohereditary
and s0 R = TT(R) + CT(R). If m is an element of a left
R-module M we then have m € TT(R)m a2 CT(R)m c TT(M) + CT(M)
and so M= TT(M) 8 CT(M). This proves (1). o

Kurata [72] has shown that the set R-jans can be
partitioned into the union of three disjeint subsets, which
he characterized. From the above discussion we see that
Kurata's partition corresponds precisely to the following
three cases:

(1} c-torsionfree « t-cotorsionfree;
(11) c-torsionfree = t-cotorsionfree but not conversely;

(I1II} <-torsionfree # t-cotorsionfree.
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3. Torsion theories of the form n{gd. If & isa

nonempty class of left R-modules let us define the torsion

theory n{2/) to be v{t € R-tors | every member of & s
r-cotorsionfree}. Note that the set over which this join is
taken is always nonempty. If M is a left R-module then we

will write n{M) instead of n{{M}).

(3.1) PROPOSITION: If Q0+ M =M M' 40 is an exact

sequence in R-mod then n(M' & M"} < n(M) < n(M").

PROOF: If <« is any torsion theory on R-mod then the
class of z-cotorsionfree left R-modules is closed under taking
extensions and homomorphic images. From this observation both

inequalities follow immediately. o

In particular, this implies that if {Mi} is a set of

left R-modules then n(ami) E.An(Mi)-

(3.2) PROPOSITION: If N is a small submodule of a left
R-module M then n(M) = n(M/N).

PROOF: If N ds a small submodule of a left R-module M
then by Proposition 3.1 we know that n(M/N) > n(M). Now let
7 € R-tors and assume that M/N is t-cotorsionfree while M
is not. Then there exists a r-torsion Teft R-module N' and
a nonzero R-homomorphism a:M + N'. Since N s small in M,

we know that N + ker{e) # M and so there exists an element
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meM~N satisfying mo € Ne. Therefore o defines a
nonzero R-homomorphism a: M/N + N'/Ne. But N'/Ne is a
nonzero t-torsion Teft R-module, contradicting the fact that
M/N is t-cotorsionfree. Therefore a(M) > n(M/N) and so we

have equality. o

(3.3) PROPOSITION: If M is a simple left R-module then
n(M) = x{M).

PROOF: Let < € R-tors. If M is t-cotorsionfree then
M cannot be t-torsion and so must be t~torsionfree. This
implies that © < x(M) and thus n(M) < x(M). On the other
hand, HomR(M,N) =0 for every y(M)-torsion left R-module N
since M is simple and so M 1is x(M) cotorsionfree. This

establishes the reverse inequality. 0

In particular, Proposition 3.3 implies that for any simple
left R-module M the torsion theory n(M) is prime and,
indeed, is a minimal element of the set R-sp of all prime
torsion theories on R-mod.

Following Mares [63], we say that a projective Teft

R-module is semiperfect if and only if each of its homomorphic

images has a projective cover.

(3.4) PROPOSITION: A projective left R-module P is

semiperfect if and only if J(P) 1s small in P and

n(P) = Ax(Mi), where the modules M, are simple left

ki foni T S ¥ RO




654 J.S. Golan

R-modules having projective covers.

PROOF: If P 1is a semiperfect left R-module then Mares
[63, Theorem 3.3] has shown that J{P) is small in P and
that P = mpi, where the Pi are projective left R-modules
which are the projective covers of simple left R-modules Mi'
Thus X(Mi) = “(Mi) = "(Pi) > n(P) for each index i and so
Ax(Mi)‘g n(P). To prove the reverse inequality we must show
that P s Ax(Mi)-cotorsionfree. Indeed, assume not. Then
there exists a nonzero R-homomorphism o: P + N, where N 1is
a left R-module which is X(Mi)-torsion for each index 1.
Since o # 0, its restriction o to some surmand P of P
is nonzero. Therefore ker(uh) EEJ(Ph)- Thus we have an
induced nonzero R-homomorphism Ph/ker(ah) - Ph/J(Ph) s M.
But Ph/ker(ah) is isomorphic to a submodule of N and so

this map can be extended to a nonzero R-homomorphism from N

to E(Mh), contradicting the assumption that N 1is x(Mh)-
torsion. Thus n{P) = Ax(Mi).

Conversely, assume that J(P) 4s small in P and that
n(P) = Ax(Mi), where the M; are simple left R-modules having
projective covers P, - M,. Then n(P) = An(Mi) = An(Pi).
Set N = E{($Pi)a | o€ HomR(ﬁPi,P)}. If N#P then P is
not &(P/N)-cotorsionfree and hence £(P/N) £ n(P). Therefore
there exists an index h satisfying &(P/N) ﬁ_n(Ph)~ This

implies that HomR(Ph,P/N) # 0, which is a contradiction.
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Thus we must have P = N. Thus P 1is a homomorphic image
of a direct sum of copies of &P, and so is isomorphic to a
direct summand of a direct sum of copies of @Pi. By Mares
[63, Theorem 5.2], this suffices to show that P s

semiperfect. o

As is to be expected, if P is a pseudoprojective left
R-module then the torsion theory n(P) defined here coicides
with the torsion theory denoted similarly in Section 1. Thus
a left R-module M is n{P)-torsion if and only if HomR(P,M) =
0. Since such torsion theories are jansian, it follows that
a left R-module M is n{P)-cotorsionfree if and only if M
is a homomorphic image of a direct sum of copies of P. In
particular, if P 1is a pseudoprojective Jeft R-module and if
M 1is an arbitrary left R-module then Cn(P)(M) = £{Pa |
o € HomR(P,M)}. Moreover, by the fact that jansian torsion
theories satisfy the conditions of Proposition Z.3, we see
that in fact Cn(P)(M) = tp(P)M, where tr{P) is just the
trace of P din R. Thus we see that a left R-module M s
n(P)-torsion if and only if tr(P)¥ =10 and is n{P)-
cotorsionfree if and only if tr{P)M = M.

As a consequence of the above discussion we see that if

a:P + P' is an R-epimorphism between pseudoprojective left

R-modules then n(P) <a(P').
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4. Relatively projective and injective modules. If

T € R-tors then a Teft R-module M will be said to be
T-projective [resp. t-injective] if and only if it is projective
[resp. injective] relative to every R-epimorphism [resp.
R-monomorphism] the kernel [resp. cokernel] of which is t-
torsion. Relative homological properties of modules were

first studied by Walker [66]. Rangaswamy [74] has established

the following result:

(4.1) PROPOSITION: Let 1 € R-tors and let M be a

t-projective left R-module. Then the following conditions

on_a submodule N of M are equivalent:

(1) Any diagram of the form

0 >} >M
'
a yd

y 4~

with W t-torsion_can be completed commutatively.

(2) M/N is t-projective.

In particular, we note that if < € R-tors and if N is
a t-cotorsionfree submodule of a r-projective left R-module M
then M/N is t-projective. This result is also due to
Bland [74]. MWe also note that direct sums and direct summands
of t-projective left R-modules are t-projective.

Another theorem of Rangaswamy [74] characterizes the
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r-projective left R-modules in the case that the torsion theory

T is jansian.

(4.2) PROPOSITION: If < € R-jans then a left R-module

M is t-projective if and only if M is jsomorphic to a

divect summand of P/N, where P is a projective left

R-module and N 1is a t-cotorsionfree submodule of P.

As a corollary to this we note that if t € R-jans and if
M is any left R-module then there exists an exact sequence
0+N' = N=+M=0 of left R-modules such that N s
r-projective and N' is c-torsion. Indeed, consider any exact
sequence of the form 0~ L +P +~ M0 with P projective
and set N = P/CT(L) and N' = L/CT(L). The result then

follows from Propositions 2.5 and 4.1.

(4.3) PROPOSITION: If « € R-jans then the following

conditions on a submodule N of & r-projective left

R-moduTle M are equivalent:

(1) M/N is v-projective.
(2) N/CT(N) js a direct summand of M/CT(N).

PROOF: (1) = (2): By Proposition 2.5, N/CT(N) is =
torsion and so we have an exact sequence of abelian groups:
Homg (H/C._(N) /G, (N)) > Homg (N/C.(1) /€. (M) >

Exth(M/N/C (V) = 0.

Therefore the exact sequence of left R-modules
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0~ N/CT(N) + M/CT(N) + M/N+0
splits, proving (2).

(2) = (1): If N' is a t-torsion left R-module and if
¢ € HomR(N,N') then CT(N) c ker(ez) and so & induces an
an R-homomorphism a':N/CT(N) = N'. By (2), we can extend this
to an R-homomorphism B':M/CT(N) + N, If v:M - M/CT(N) is
the canonical surjection then vg':M + N' extends «. Thus,
for any t-torsion left R-module N' we have an exact sequence
of abelian groups

Homg (M,") & Homp(N,N') -+ Exta(M/N,N') > Extl (M,N') = 0,
where ¢ is an epimorphism. Thus Ext&(M/N,N') =0 and so

M/N is r-projective, o

(4.4) PROPOSITION: The following conditions on t € R-tors

and on a left R-module M are equivalent:

(1) M is z-cotorsionfree and t-projective.

(2) Any diagram of the form

/f,M
|

N' >M >0

with ker(c) being t-torsion can be completed in

a unique manner.

PROOF: The proof of this proposition is just the dual
of the proof of (1)} « (3) of Proposition 5.1 in [Golan, 75]. ©
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The existence of modules which are t-cotorsionfree and
r-projective is important in constructing colocalizations. In

particular, Sato [76] has established the following result.

(4.5) PROPOSITION: If t € R-jans then W(r) GR M s

-cotorsionfree and r-projective for any left R-module M.

Another characterization of such modules for jansian

torsion theories is essentially given by Onodera [77]:

(4.6) PROPOSITION: If « € R-jans then the following

conditions on a left R-module M are equivalent:

(1} M is t~cotorsionfree and t-projective.

(2) There exists an exact sequence of the form

N(T)(A) + W(T)(g) +~ M+ 0.

(3) M is r-cotorsionfree and for every short exact

sequence 0+ N' > N+ M-+ 0 we have that N' is

r-cotorsionfree if and only if N is T-cotorsionfree,

Ohtake [77] has noted that Proposition 4.5 can also be

dualized. Namely, we have the following result.

(4.7) PROPOSITION: If ¢ € R-jans then HomR(w(r),M)

is t-torsionfree and t-injective for any left R-module M.

This result has the following consequence.

(4.8) COROLLARY: If t € R-jans then R 1is isomorphic
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to HomR(W(T),W(T)) in the category of left R-modules

and in the category of rings. Moreover, HomR(w(r),_)

is naturally equivalent to the localization functor

Q ().

Tv—

In Section 2 we considered those torsion theories for

which the class of cotorsionfree left R-modules is closed under

taking submodules. For such theories, we have a more

convenient condition for relative projectivity.

(4.9) PROPOSITION: If < € R-tors satisfies the

condition that the class of t-cotorsionfree left R-modules

is closed under taking submodules then a sufficient

condition for a left R-module M to be t-projective is

that C (R)M = M.

PROOF: Let a:N =+ N" be an R-epimorphism the kernel of

which is t-torsion and Tet B:M -+ N" be an R-homomorphism.

Set N' = (Mp)w

N*.

o and let o' be the restriction of o to

Since CT(R)M =M we have [CT(R)NIJQ| = CT(R)[N|“|] =

CT(R)MB = [C_(R)MIB = Mg, Therefore N' = CT(R)N' t ker(a').

Note that CT(R)N' n ker{a') < ker{a) and so CT(R)Nl n

ker(a') is both t-cotorsionfree and t-torsion, implying that

it equals 0. Therefore N' = CT(R)N' ® ker{o') and so

CT(R)N' = Mg. Thus 8 can be extended to an R-homomorphism

from M to N. o
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(4.10) PROPOSITION: If < € R-jans then t is stable

if and only if every t-cotorsionfree left R-module is

t-projective.

PROOF: If <t 1is stable then by Propositions 2.3 and
8.9 it follows that every c-cotorsionfree left R-module is
t-projective. Conversely, assume that this condition holds.
let M be a t-cotorsionfree left R-module and let N be a
submodule of M. Then we have an exact sequence

0 -+ N/CT(N) oY M/CT(N) + M/N =+ 0.
Since M 1is t-cotorsionfree, so is M/N and so, by assumption,
it is t-projective. Therefore this sequence splits, implying
that M/C_(N) ¥ M/N 8 N/C_(N). Therefore we have an induced
R-epimorphism M - M/CT(N) > N/CT(N). Since N/CT(N) is
r-torsion, this impties that N = CT(N) and so N 1is 1-
cotorsionfree. By Proposition 2.6, we have thus shown that

t 1is stable. o
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5. Colocalizations. An R-homomorphism o:N +M is said

to be a colocalization of M at < € R-tors if and only if

(1) ker{e) and coker(s) are r-torsion;

(2) N 1is t-cotorsionfree and t-projective.

(5.1) PROPOSITION: If < € R-tors is jansian then a

necessary and sufficient condition for the inclusion map

z:CT(R) + R to be a colocalization of R at t is that

C_(R) be t-projective.

PROOF: Since CT(R/CT(R)J = CT(R)ER/CT(R)] 0, it
follows that coker(1) 1is t-torsion. Moreover, the kernel of
1 is surely r-torsion and its image is surely t-cotorsion-

free. o

(6.2) PROPOSITION: If 1 € R-tors and if a«:N+M i5 a

colocalization of M at « then im{a) CT(M).

PROOF: We know that 1im(a) s t-cotorsionfree and so
im(a) < CT(M). Furthermore, CT(M)Iim(a) is both
t-cotorsionfree and t-torsion and so equals 0. Therefore

im(a) = CT(M). a

(5.3) PROPOSITION: Let « € R-tors and let o:N + M

and «':N' + M' be colocalizations of left R-modules M

and M' respectively at . If ge¢ HomR(M,M') then

there exists a unique g* € HomR(N,N') making the
diagram
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L N
g

|

c
| >MI

B*

P S

commute.

PROOF: By Proposition 5.2 we see that im(a) = CT(M) and

im(a') = CT(M') and so we have a diagram of the form

N
N '——9-‘——-—>CT(M' y————>0

with ker(a') being t-torsion. The result then follows from

Proposition 4.4. o

(5.4) COROLLARY: If t € R-tors and if o:N+M and
«':N' + M are colocalizations of a left R-module M at =

then there exists a unique R-homomorphism &:N + N' satisfying

§a' = o and this & is in fact an isomorphism.

Thus we see that colocalizations, if they exist, are
unique up to isomorphism. The question of the universal
axistence of colocalizations at a torsion theory =t was

solved by Ohtake [77], who proved the following result.

(5.5) PROPOSITION: A torsion theory < € R-tors is

jansian if and only if every 1eft R-module has a colocalization

at .
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Thus, combining Propositions 5.5 and 5.3, we see that if
T € R-jans then there exists an idempotent right exact
endofunctor KT(_) of R-mod and a natural transformation
<" from K (_} to the identity endofunctor on R-mod such
that for every left R-module WM, Kﬁ: K(M) +M isa
colocalization of M at 1. Indeed, Sato [76] has shown
that we can take K () to be W(t) By _, with k' given by
nﬁ: a; @b, @m b xa;b.m.. Moreover, we thus see that if
t € R-jans then (KT(_), QT(_)) is an adjoint pair of

endofunctors of R-mod. Note too that by Proposition 1.2 a

left R-module M ds r-torsion if and only if KT(M} = 0.

(5.6) PROPOSITION: If t € R-jans ijs stable then

KT(_) is an exact functor.

PROOF: By Proposition 22.10 of Golan [75] we see that
if t s stable then R/L{1) 1is flat as a right R-module
and hence L(t) is flat as a right R-module. This implies

that W(z) is flat as a right R-module and so W(<) ﬂR- is

exact. o

Finally, we obtain another characterization of stable

jansian torsion theorijes.

(5.7) PROPOSITION: Let v € R-jans. Then t is stable

if and only if every colocalization of a left R-module at =

1§ & monomorphism.
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PROOF: Let « € R-jans be stable and assume that
o:N + M 1is a colocalization of M at <. Then, by
definition, N is c-cotorsionfree and ker(a) is t-torsion.
On the other hand, by Proposition 2.6 we see that ker(a)
is also t-cotorsionfree and so it must equal 0. Therefore o
is a monomorphism.

Conversely, assume that the colocalization of any left
R-module at t is & monomorphism and let M be a
1-cotorsionfree left R-module. By Propesition 5.5 we know
that M has a colocalization o:N + M at < which, by
hypothesis, is monic. By definition, coker{a) is z-torsion
and, since the class of all z-cotorsionfree Teft R-modules
is closed under taking homomorphic images, it is also -
cotorsionfree. Therefore coker{(a) =0 and so o 5 an
isomorphism. In particular, this implies that every
r-cotorsionfree left R-module is t-projective. By Proposition

4.10 this shows that T 1is stable. o
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NON -~ SMALL MODULES AND NON - COSMALL MODULES
Manabu HARADA

Osaka City University
Osaka ~ Japan 558

0. INTRODUCTION

Recently the author has studied small ring homomorphisms of commutative
rings R in 9] and showed that R is not small in any ring extensions of R
as an R - module if and only if Krull dimension of R is equal to zero. In
this note, we shall consider an analogous situation on R - modules.

Let R be a ring, not necessarily commutative, with identity. A (right)
R - module M is called non - small, if M is not a small submedule in its
injective envelope E(M), which is equivalent to a fact that M is not a
small submodule in any extension module of M (see Proposition 1.1). In
the first section, we shall define a subfuctor Z*( } of identity in the
category of all right R - modules, related to non - small modules and
study its elementary properties (cf. [181).

It is clear that every module containing an injective submodule is
always non - small. In the second section, we shall study some rings

which satisfy the converse of the above property, nhamely every non - small

module contains a non - zero injective. We shall show that those rings are

663
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closely related to QF - 3 rings [ 19] and give a structure characterization
of those artinian rings. In the final section, we shall deal with the dual
of non - small modules. M {s called a non - cosmall module, following [ 18],
if M is a homomorphic image of a projective module P whose kernel is not
essential in P, which is equivalent to a fact that if M is a homomorphic
image of a module N, then the kernel is always not essential in N { see
Proposition 3.1). We also study some rings with dual property that every
non ~ cosmall module contains a projective submodule as a direct summand.
We shall show that they are also closely related to QF - 3 rings.

Throughout every ring R has the identity and every R - module M is a
unitary right R - module. E{M), Z(M) and J(M) mean an injective envelope,
the singular submodule and the Jacobson radical of M, respectively. Some
parts except in the final section overlap with results in [ 10], however
we shall give complete proofs for convenience of the reader.

The author would Tike to express his thanks to Mr. T. Katayama for
informing M. Rayar's paper [18] to the author and also to Prof F. Van
Oystaeyen and the staffs at University of Antwerpen for their kind

hospitalities during the conference of the ring theory in 1978,

1. FUNCTOR Z*

We know that 1F Krull dimension of a commutative ring is equal to zero,
then R is never small in any ring extension as an R - module. We shall
consider an analogous situation on R - modules, First, we take any ring,
which is not necessarily commutative.

PROPOSITION 1.1 ([ 141, theorem 1). Let M be an R ~ module. Then the follow-

ing conditions are equivalent,

1) M s not small in any extension module M' of M.

2} M is not small in an injective envelope E(M) of M,
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3) There exists an injective module E containing M such that M is not small

in E.

PROOF. 1)-+2)+3) are clear. 2)+1). We assume M' 3K, Then E(M'} = E(M) ®E,,
Hence, M is not small in E(M'). Therefore, M is not small in M'.
If M satisfies one of three equivalent conditions in Proposition 1.1,

we say M is non - small and other - wise we say M is small [14). "

LEMMA 1.1 Let 0-M=Q and Q' +M~0 be exact. If M is non - small, then so

are Q and Q'.
PROOF. It is clear from the definitions. L]

We shall define a subfunctor of identity in the category of all right

R - modules (cf. the functor Z{ )). Let M be an R - module. We put
(M) = (meMaR is small}  [18), § 2.

Since J(M) is the union of all small submodules in M, 2*(E) = J(E) for any
injective E and Z*(M) = MNJ(E(M)) = MnJ(E') for an injective E'2M. It is
clear from Lemma 1.1 that 2*( ) is a subfunctor of identity. If M # Z*(M),
M is non - small, however the converse is not true. If R is a right perfect
ring [2], 3(M} is a unique maximal small submodule in M and so M # Z*(M)
if and only if M is non - small. Z (W) 2d(M) and in general (M) # a(n).
We can define inductively 2, as follows : z*n(M)/z*n_l(M) = T ).
It is well known Z2 % 23 = ... for singular submodule Z{M) [ 7). We do not

know whether Z*2 = 2*3 = ,.. Or not.

However we have
. . x *
PROPOSITION 1.2 We assume R/J(R) is @ right artinian, Then 275 = Z 3 and

M/Z*a(M) is semi - simple and injective for every R - module M.

*oey s .
PROOF. Since Z' (E) = J(E) = EJ(R) for an injective E, E/Z (E} is semi -

4 - s ety o e AT
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simple. Let E/Z*(E) = ?ﬁsaeﬁesﬁ, where the Sa is injective and minimal
and the SB is small and minimal. Hence, Z*Z(E)IZ*(E)kg(BSB and Z*Z(E) =
Z'5(E). We put E = E/Z"(E). Since Z'(E) = 0, O(E(E))NE = 0. Hence,
J(E(E}) = 0 and E(E) is also semi - simple. Therefore, £ = E(E). Let E2M,
Then E/Z"(E) contains isomorphically W/Z'(N). Hence, Z",(M)/Z" (M) =
(Z*Z(E)/Z*(E))GM/Z*(M). Therefore, M/Z*Z(M) is isomorphic to a submodule

of E/Z* (E), which is semisimple and injective. Thus, vl (M) = i (M), =
2 2 3

From now on, in this section, we shall assume R is {left and ) right
perfect unless otherwise stated. Then there exists a complete set {91}
of mutually orthogonal primitive idempotents such that 1 = 2 gy Let
E =E(R) and x in E - J{E). Then we obtain an epimorphism f : R+xRCE.
Since xR is non - small by Proposition 1.1, R 95 non - small by Lemma 1.1.
Thus, we shall divide {gi} into two parts {gi} = {ei}:.‘:lu {fj}?ﬂ’ where
the eiR is non - small and the fJ.R is small. We know n>1 from the above.
We call an idempotent g non - small (resp. small) if gR is non - small
(resp, small). If we denote the primitive idempotents by e and f, we mean
e is non small and f is small, respectively,

LEMMA 1.2 Let R be right perfect. Then every injective module is a homo-

morphic image of the formZ ® &Ry vhere the &y is non - small.

PROOF. Let € be injective andy : Z ® giR-*E a projective cover of E.
Assume (g} r, are small for I'CI. Then ¢ (= ® g,R) s a small submodule
Il

in B by Lemma 1,.1. Since T @ g;R is a projective cover, I' =¢. "
I

LEMMA 1.3 Let R be as above. If M is not small inZ ® g1R/giA1, then there

exists ms such that “i(M) = giR/g-iA-i' where the .D‘1 is a right ideal and
s is the projection on giR/'g'iAi'

PROOF. Since M £ @ ng(R)/ngJ-, “1(M)E91J(R)/91Aﬁ for some 1. Hence, nl.(N)’
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giR/giAi’ since g;R 1s hollow. We call R a right QF - 2 ring if E(R) 1is
projective as a right R - module [12] and [19]. "

Theorem 1.3 Let R be right perfect, Then R is right QF - 3 if and only if

each eiR is injective, vhere the ey js a non = small primitive idempotent.

PROOF. We assume that R is right QF - 3. Then E = E(R} = EaaekR from
[2] and [21]). Let e be a non - small primitive idempotent. Then eR is
epimorphic to some ekR by Lemma 1,3. Hence eRnfekR is injective. Conversely,

let f be a small idempotent. Then we have an exact sequence EGekR-rE(fP.)

=+ 0 by Lemma 1.2, 0 e E(fR) &¥—— Z@gR
,‘.]
Accordingly, we have a diagram @ i’[ . ﬁ‘
R

where i is the inclusion. Since fR is projective and 1 is monomorphic, we
obtain a monomorphism h of R to Z eR. Therefore, E(R) is

projective.

COROLLARY. Let R be a right artinian and QF - 3 ring. Then R is a QF - ring
if and only 1f Z¥(R) (=1(r(J(R})}) = J(R), where r( ) (resp. 1( }) means

a right (resp. Teft) annihilator.

PROOF. Z" (R) = 1(r(3(R)}) by [ 18], Proposition 4.8 (see Lemma 2.2

below).

2. CONDITION (¥)

It 4s clear from Proposition 1.1 and Lemma 1.1 that every module

containing an injective submodule is non - small. We shall study the

converse case. For instance, if R is a QF ring, every non - small module

contains an injective module ( see Proposition 2.6). Ne shall investigate,
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in this section, some rings with the property above. Namely, we consider

two conditions :

(*)  Every non - small module contains a non - zero injective module.

(#x) Every indecomposable injective module E is hollow, namely every proper
submodule is small in E.

If R is right perfect, (*) is equivalent to " Every finitely generated
non - small module contains a non - zero injective module", since
M# 2 (M) if M is non - small. The ring Z of integers satisfies the above
condition, since every finitely generated module is small by { 11], Theorem
2. However, Z does not satisfy (*) by [11], Theorem 9.

Let K be a field and R a K - algebra of finite dimension. Then HomK(-,K)
is a dual functeor and every indecomposable injective module is of finite
Tength. Hence, the condition (%) is dual to (**)1(r95p.(**)r). Every
indecomposable projective, Teft (resp. right) module contains a unique
minimal submodule, (QF - 2 [197).

We shall make use of the notations in § 1.

LEMMA 2.1 We assume R satisfies (*). Then every injective module contains

a ¢yclic injective module and R contains a non - zero injective right ideal.

PROOF. Let E be injective. We consider an exact sequence = ® Ex-+E-+0 ;
XSk

E,=Eandyp = 1. Theny(® XR) = E and 50 = ® xR is non - small by

X < E XEE

Lemma 1.1. Hence, Z ® xR contains an injective module F. Therefore, some

xR contains an injective submodule isomorphic to a direct summand of F by

{22). If we replace T @ Ex by a free R - module, we obtain the last part.»

PROPOSITION 2.1 Let R be a right noetherian ring satisfying (x). Then R is

right artinian.

PROOF. Let E = E(R) and Tet E be a finite direct sum of indecomposable
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injective modules Ei' Then Ei is cyclic by Lemma 2,1 and so E is noetherian.

Hence, R is right artinian by [20]. u

PROPOSITION 2.2 Me assume that R contains no infinite set of mutually
orthogonal idempotents modulo 2*(R) and R satisfies (*). Then R is a right

QF - 3 ring of finite Goldie dimension.

PROOF, Since R contains a non - zero injective right ideal by Lemma 2.1,

we may assume R =‘21 @ ej.R ® hR, where the eiR are indecomposable and
i= ¢
injective and hR is small. Let E, = E(hR) and = ® R-*El-»-o be exact. If
k

¢ (2®hR) is not small in El’ hR contains an injective moedule by (*) and
Lemma 1.1. Hence, (2@ (1 - h)R) = E;, Thus we have an exact segquence
k
0 > By 14 3.}33(1 - h)R

il
R

Since hR is projective and i is monomorphic, f is monomorphic. Therefore,
E, =E(R) =2 & ein, where einﬁ e.R and R is of finite Goldie

dimension.

THEOREM 2.3 Let R be perfect. Then (*) holds if and only if there exists n,
for each non - small primitive idempotent e, such that eiR/eil(Jt) is
injective for 0<t<n, and eiR/e11(J"1'+1) is small. In this case
E1R1/e1.1(dt)neiR/e.i'l(Jt') for t<t'<n1 and every submodule of eiP either

contains e11(J“1+1) or equal to some e1.1(Jt), t<n, + 1, where J = J(R).

PROOF. We assume {*). Then e.R is injective and indecomposable from (*).

We assume ey =@ and eR/eB is non - small for some right ideal B. Then

eR/eB 1is injective, since eR/eB is indecomposable. Since eR is injective

and R is perfect, eR contains a unique minimal submodule el(J) and

(J) [2]. We have a natural epimorphism eR/el(J)->eR/eB and eR/eB is
rom (%) and Lemma 1.1. Therefore,

eB Del
injective. Hence, eR/el(J) is injective T

e e e~ -
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eR/el(J) contains a unique minimal submodule e](Jz)/eT(J), which {s
contained in eB/el1(J). Repeating those arguments, we obtain eRDeBDel (Jk)
5...2el(J) 20. First, we shall note eR/el(d%)#er/el (3t for k= t>t',
since 1(Jt) is a two - sided ideal. Now R/J 4s artinian and the
representative set of minimal modules is finite. Therefore, the above
lenght is finite. Accordingly, eB = e](Js) for some s and eR/e](Jn) is
small for some n. Conversely, we assume the ny in the theorem exists. Let
Mbe a nen - small module and E = E(M). Then MZEJ. Let m be in M - EJ,
then mR is non - small by Proposition 1.1. et 1 = = ei + 2 f,, Now,

J
me R~ e.R/e B for some right ideal B. Since eiR/e,i](Jt) is injective for

t<n,, el (Jt+1) is a unique minimal submodule of e_ER/e_IT(Jt). Hence, either

e = e1.1(Js) for some s or e182e11(dn 1) In the latter case, we have
an epimorphism eiR/e1.1(Jn1'+1)-+e1R/e1.B, which is a contradiction from
Lemma 1.1. Hence, meiR s injective. The last part is clear from the

above, .

LEMMA 2,2 ([18], Proposition 4.8). Let R be right artinian and M an R -
module. Then M is small {if and enly if Mr(J) = 0.

PROOF. See [37, p. 122, .

THEOREM 2.4 Let R be right artinian. Then (*) holds if and only if

R/r*(.J)Jk is a direct sumof an injective module and a small projective

module for all k>0, where J = J(R),

1 lme,]ReEl ® ij be as in § 1 andS r(d). Since the

fiR 45 small, f,S < 0 by Lemma 2.2. Hence, § = z ®e,Sand P =5 @ e, saP,

We assume that e; = e and eR is injective and eJ -1 £ 0, ed9 = 0. Then

et ! is a unique minmal submodule in eR. Hence, edY = o1(0). Simitarly,

4 "t t : -
we obtain ed9™" = e1(J") 1f eP/ed® t+1 s njective, If eR/ed® 4s small
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and er/edt! 45 injective, eSC ed® and hence, e$ = od°, since 6d%/e0s*! 4s
unique minimal, Therefore, if (*) holds, § = g ® e, S—-E ® e, 3" for
some n; by Theorem 2.3. Hence, R/SJk = g ® }Jé @ g e, é/ e J” itk and the
e, R/eidn Hk is injective for k>0 by Th;érem 2.3, 1anversew, we assume

the decompositions as in the theorem. We always have Sdk = g ®e, SJk
R/SJk = g ® fJR ® E ® e, R/e SJk Therefore, the e R/e SJ<15 injective for
any k:’g-gy Krull 1 &emak - Schmidt's theorem, since eiR is non - small.

If e,ISJt = 0 and eiSJt"1 # 0, e;R is injective and e1.SJt"1 is a unique
minimal submedule in eiR and eisdt'l = e1(J). Repeating those arguments as
in the proof of Theovem 2.3, there exist an integer n, and a unique series
of submodules e11(Jt) of eiR such that eiR/ei1(Jt) s injective and eis =

eiT(Jni). Therefore, R satisfies (%) by theorem 2.3. "

LEMMA 2.3 Let R be right perfect. (%*) holds if and only if every

indecomposable injective module 1s a homomorphic image of e.R. (*) impTies
(#).
PROOF. It is clear from Lemma 1.2.

PROPOSITION 2.5 ([ 101). Let R be right perfect and (*+) holds. Then each

eiR contains a unique minimal submodule if and only if R is right QF =3

(cf. example 2).

PROOF. We assume e.R contains a unique minimal submodule. E = E{e,R) 1s
indecomposable and E/J{E) is simple. Hence, e.R is injective by Lemma 1.3,
since some e R 15 projective cover of E and e R is projective (see the

proof of Theorem 1.3). Therefore, we obtain the proposition by Theorem

103!

COROLLARY ([191). Let Rbe a K - algebra of finite dimension over a field

Hence,
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K, If (**)1 and (**)r hold (namely R 1s QF - 2), R is QF - 3.

PROPGSITION 2.6 Let R be a right and left artinian ring. Then the following
conditions are eduiva]ent.

1) R is a QF ring.

2) (*) holds and einj = 0 for every non - small e; and smal fj.
3) (*) holds and 1(J) Cr(J).

4) esR 1s injective and eiR/eil(J) is small whenever eil(d) # 0 for every

non - smali TP (cf. [ 3], Theorem 2,5).

PROOF. 1)+2). Let R be a QF ring. Then 1(J) = r(J) and so 1{J)JX = 0.
Hence, (*) holds by Theorem 2.4. Since fj =0, e;Rf = 0. 2)+1). We assume
(*), then R is QF - 3 and ij is monomorphic to some £ & ein by Theorem
1.3 and its proof, where einﬂ=eiR. Hence, einj =0 implies fj = 0,
3)+1), If 1{3)Sr(d), Z'(R) = J by [ 18], Proposition 4.8% Hence, R is

QF by Proposition 2.2 and Corollary to Theorem 1.3,

1)+3). It is clear.

1)~+4), If eiR/ei1(J) is non - small, eiR/ei1(J) is injective by 2). Hence,
since R is a QF ring, eiR/eiT(J) is projective. Therefore, e11(J) = 0.

4} +1). Let {eiR}i be a complete set of non - fsomorphic right ideals in
{eiR}q' Then every indecomposahle injective modules is the socle of e;R

is not isomorphic to one of ejR for 1 # j. Therefore, e1R/eiJ is the
complete set of non - isomorphic minimal right modules. Let g be a primitive
idempotent. Then gR/gJ 1s isomorphic to one in {eiR/eid}f. Hence, an'eiR

is injective. )

COROLLARY. Let R be a commutative ving, If R is a discrete rank one
valuation ring, R satisfies (%) but not (x), If R is artinian, then the
following conditions are equivalent.

1) R is a QF ring.
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2} (%) holds,
3) (**) holds.

PROOF. The first part is clear from [13], [16], the structure of R and
Proposition 2.1, We assume that R is artinian and (**} holds. We may assume
R is local. Then a unique indecomposable and injective module is of the
form R/A by (w*) and { 101, where A is an ideal. Hence, E(R) = T @ R/A by
[16] and E{R) is faithful, Therefore, A = 0. The remaining parts are clear

by Proposition 2.6 and Lemma 2.3. n

PROPOSITION 2.7 ({101). Let R be perfect. When either R is hereditary or
I(R)?
1) (*) holds.

2) (#*) holds and each e,R contains a unique minimal submodule.

= 0, the following conditions are equivalent.

3) R is right QF - 3 ring (see example 1)

PROOF, 1)-2)~3) are clear by Lemma 2.3. and Proposition 2.5.

3)»1). Since R is right QF - 3, each eiR is injective by Theorem 1.3.
First, we assume that R is hereditary. Then (*) holds by Theorem z.3.
Next, we assume J2 = 0. Let M be non - small E = E{M}. Since MCEJ, there
exist m and & such that m91¢EM ~ EJ. Hence, me,R is non - small as in the
proof of Theorem 2,3. Now, meiR {s jsomorphic either to eiR or eiR/eiJ,
since J2 = 0 and eiR s injective, If meiRﬁ-eiR/eiJ, eiR/eiJ is injective,

since e.R/e.J 1s non - small. Therefore, M contains an injective submodule
e

n
meiR.

PROPOSITION 2.8 ([ 101). Let R be a right artinian and right QF - 3. Then

. t . sndects
R is hereditary if and only if eiR/eiJ is injective for every e; and t.

. t
PROOF. "Only if" part is clear from Theorem 1.3. Conversely, if eiﬂleid

A

amr s ers.ame
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is injective for every e; and ¢, (¥) holds by Theorem 2.2. Hence, every
indecomposable injective module is of the form eiR/eiJt by Lemma 2.3, Let
E be injective and M a submodule of £. We shall show E/M is injective. Let
S(M) be the socle of M. Ve define Loewy series ST(M) as follows !

simy/s ™My = swsT=1(M)). We show the sbove Fact by induction on S'(N).
Let £ = E() £y and £, = E(M) = = @ e ke, "ij. Stnce sqM) = 5(E,),
E)/S(E,) 2M/S(M) and EZ/S(EZ) is injective from the assumption. Hence, if
M= S(M), E/M is injective. We assume E'/N' is injective for E' DM’ vhen -
ever E' is injective and ST(N') = N'. Let # = s™2(M). Then E/s(M) 15
injective and S' (WS(M)) = WS(K). Hence, E/M~ (E/S(M))/(M/S(M)) is in-

Jective by the induction. u

COROLLARY. Let R be right artinian and basic. Then R is isomorphic to the
ring of upper tri - angular matrices over a division ring of degree n if
and only if R satisfies the following three conditions,

1) R =eRO® RO ... ®FR,

2) The composition length of eR is equal to n and

3) () holds.

PROGF. Conditions 1) 3) and Theorem 2.3 imply that every eR/eJt is injec-
tive for t<n. Hence, R is hereditary by Proposition 2.8. Therefore, R is

desired ring by [ 51, Theorem 2. The converse is clear. .

We shall study further properties of such a ring in a forthcoming paper.
EXAMPLES ((107). 1. Let K be a field, " a K - vector space of finite
dimension and H* = HomK(M,K). We put
K W K

K M
K.

=
1
F"_ - _“
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Then R is a QF = 3 ring by the natural multiplication M @ MK (see [6]).
k
If [M: K1>2, () does not hold, since Re,, contains two minimal sub-

modules. We note that R is not hereditary and Jz # 0 (see Proposition 2.7).

2, He put
KK KK
Re| K00
K 0
\ “/
Then (++) holds but R is not OF = 3 and J° = 0.
3. We put
a b ¢
R = o d e| a, b,c,dande K ((197).
o+ Y |

Then R = eR © fR and {*) holds. However the composition length of eR =3

(see Corollary to Proposition 2.8).

4. tet S be the ring of upper tri - angular matrices over
K with degree n and R a K = subalgebra of S containing {eii}?' We assume
R s a two - sided indecomposable ring. Then
R is QF - 3 if and only if (%) holds and ellR contains a unique
minimal submodule. R is QF - 3 and hereditary 1f and only if (*) holds,
Let A be a two - sided ideal in S. Then S/A always satisfies () (see a

forthcoming paper).

3. DUAL CONDITION (%)*

In this section, we shall consider the dual of non - small modules. The

following propositions and lemmas are obtained directly from the definition

and we shall omit their proofs (cf. [181 pp. 17 - 21).
PROPOSITION 3.1 Let M be an R - module. Then the following conditions are
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equivalent.

1} For any module T and any epimorphism £ : T-M, ker f is always not
essential in T.

2) There exist a projective module P and an epimorphism f : P =M such
that ker f is not essential in P,

If M satisfies one of the above conditions, we say M is non - cosmall

module, following [18].

LEMMA 3.1 Let 0-+M-Q and Q' +M-+0 be exact. If M is non - cosmall, then
so are § and Q'.

PROPOSITION 3.2 ([ 18], Proposition 2.4). M is non - cosmall if and only if
M#Z(M).

Every projective module is a non - cosmall module and so every module
containing a projective submodule (as a direct summand) is a non - cosmall
module. We shall consider the converse.

(*)* Every non - cosmall module contains a direct summand which is
projective.
(**)* Every indecomposable projective is uniform.

If R is a perfect ring, (**)* is equivalent to (**)r' If R is a
commutative local ring, then (**)* holds if and only if R is a domain.
LEMMA 3.2 We assume (*)*. Then every indecomposable semi - perfect module

i.e. local projective is uniform.

PROOF. Let P be as in the Temma. Then J(P) is a unique maximal submodule
of P by [8], [15]. Hence, P/K s indecomposable for any submodule K of P.
We assume Ky Ky = 0. Then P/K1 is non - cosmall by Proposition 3.1 if

K, # 0. Hence, P/K; 1s projective from the above and (*)*

K1=0. "

. Therefore,

PROPOSITION 3.3 If R satisfies (x)", R contains a projective and injective
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right jdeal.

PROOF. Let E = E{R), Then E # Z(E) and so E contains a projective direct
summand P, Since P is a summand of a free module and is injective, R

contains a direct summand isomorphic to a summand of P by [22]. "

PROPOSITION 3.4 1) Let R be a semi - perfect ring with (**}*. Then M is a
non - cosmall module if and only if M contains a projective module.

2) We assume (*)* holds. Then R is right QF - 3 if one of
the following is satisfied,
a) Right Goldie dimension of R is finite
b) R is semi - perfect.
PROOF. 1) Let M be non - cosmall. Then M contains a cyclic nen - cosmall
submodule mR by Proposition 3.2. Let 0+¢M§£E ® eiR be a projective cover
of mR. Since ker f is non - essential in Z @ e.R, ker frwejR is not
essential in ejR for some j. Hence, ker frﬁejR = and M contains a sub-
module jsomorphic to ejR.

2) a) Let {K;)] be a set of uniform rignt ideals in R such that

n n
ZoK, is essential in R, Then E = E(R) = ? ® E(Ki)' Let g : R7E(R) be the
1

inclusion and Q‘j = ker "85 where my is the projection of E to E(KJ). Since

E(Kj)
irredundant and E(R/Qi) = E(Ki). If n»2, R/Qi is non - cosmall and $o0

is uniform, Qj is irreducible. Furthermore, 0 = erqurn...raqn is

E(R/Qi) is projective from (*)*. 1f n = 1, R is irreducible and E is
indecomposable and non - cosmall. Hence, E is projective.

b) let 1=2e, +2f5 where {e;, f,} s 2 complete set of
mutually orthogonal primitive idempotents such that the e,R is injective

(see Proposition 3.3). Since ij is uniform by Lemma 3.2, EJ = E(ij) is

indecomposable and Z(EJ) # Ej. Hence, EJ is projective,
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PROPOSITION 3.5 We assume (*)*. Then for every uniform projective P, either
Z{P} = 0 or Z{P/Z(P)) = P/Z{P). Every submodule not contained in Z(P) is

projective.

PROOF. Let PDT and Z{P)2T. Then T 1is non - cosmall by Proposition 3.2 and
indecomposable. Hence, T is projective. Let Ki be submodules containing
Z{P} properly (i = 1,2). Then K, is projective. Put K = Klnk2 and consider
a natural epimorphism K; ® K, =K, + K,~+0, where ¢ = 1K1' 1K2' Then

ker v~ K. Since K1 + K, is projective, so is K. Hence, K # Z(P), Therefore,
Z(P) is irreducible and so P/Z{P) is indecomposable. Hence, P/Z(P) =

Z(P/Z(P)) if I(P) # 0. .

THEOREM 3.6 Let R be semi - perfect. Then (*)* holds if and only if there
exists sets of primitive idempotents {ei} and of integers {”i} such that
1) the eiR is injective,

2) eidti is projective for tesni and eiJ"1+1 is singular and

3) every indecomposable projective is isomorphic to some eidti.

In this case every submodule eiB in eiR either is contained in eiJni+1 or

equal to some eidt, tn, + 1, where J = J(R).

PROOF. We assume (*)* holds. Then there exists a complete set of primitive
idempotents e, such that e,R 1s injective by Proposition 3.4, Let e = e,
and ek a proper projective submodule of eR. Then eRDed>eK, Since eR 1s
uniform and eKCZ(eR), eJ is projective by Proposition 3.5, Now, ed~ fR

by [1] and so er 1s unique maximal submodule of ed, Therefore, we have

a unique chain eRoed3...2ed*2ek with ed! projective. 17 egin edd, this
isomorphism 1s extended to one of eR. Hence, i = j. Thus we can find some
m such that ed" 1s projective and ed™! is cosmall i.e. singular by

Proposition 3.2. If ij is not injective, ij is contained in some eiR
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by the proof of Proposition 3.4, 2). Hence, ije e1Jt1. Conversely, iet
M be a non - cosmall module. Then there exist meM and a primitive {dem-
potent g such that mgR is cosmall by Proposition 3.2. Since gR is uniform
from 1) and 3), mgR~ gR and ¢R keidt by 3). Thus, we have a diagram

0 —> mgR—> M

¢
/

=,
eﬂf . h
7
¥

eiR
Then we can find a homomorphism h of M to e1R, since eiR is injective.
Since im h_:_)_eidt and eiRDeidbeiJED... s a unique chain as above,
imh = eidti is projective. Hence, M contains a projective moduTe iso-
morphic to ethi as a direct summand, The Tast part is clear from the

above,

COROLLARY 1. Let R be semi - perfect and hereditary. Then the following

conditions are equivalent.

1) (%) holds.

2) There exists a set {e;} of primitive idempotents such that the e.R

is injective and ij is contained isomorphically in some eiR for every

primitive idempotent fj.
3) R 4s Morita equivalent to a divect sum of rings of upper tri - angular

matrices over division rings.

PROOF. Since R is hereditary, 1) and 2} are equivalent by the theorem. If
() holds, e.R is of finite length. Hence, R is right artinian. Therefore,
1

R 45 QF - 3 artinian and hereditary. Accordingly, we have 3} by [51],

Theorem 2. 1% is clear that 3) implies 2).

COROLLARY 2. Let R be & semi - perfect. Then the following conditions are

equivalent.

H!!

it b = e e e e e il .
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1) Z(R) = 0 and (*)" holds.
2) R is hereditary and right QF - 3.

PROOF. 1)-+2). Since Z(R) = 0, every submodule of ;R 1s projective by

Proposition 3.5. Hence, eiR is of finite Tength and so R is right artinian.
Furthermore, J = Z & 91J ®L® f‘jJ is projective from the above, There -
fore, R is hereditary.

2)+1). Let e.iR be injective. Then eiR is uni - serial and of finite length
from the proof of Theorem 3.6. Hence, R is right artinian, since R is right

QF - 3 and we obtain 1) by [51, Theorem 2. w

THEOREM 3.7 Let R be right artinian. Then (*) holds if and only 11’ 1)
1(d 1(J)) is a directsum of an injective module and a small projective

module for all k>0 and 2) (**)r' holds,

PROOF. We assume (*)* holds. Then (**) holds by Lemma 3.2, Let

n
1=% B, + 2 f be as in § 1 and the e, (resp. f ) a non - small (resp.

smaﬁ)1 pr1m3t11ve idempotent. Then &R is 1njectwe, ed® is projective for

kéni and ei.]n-]"'l = Z(e1Jn1+1) by Theorem 3.6. Furthermore, since

fJ.Rzeﬂ(j)th, fjJn'rr(j)-tJ' is projective and Fjdnn(j)'tj+1 = Z(fjJnn(j)-ti+1)-

We know by Theorem 3.6 that e;R2edD... Deidniaeidni“ is a unique series

of submodules over eidni"'1 of e;R. Hence, e, ;4(R) = Z(eiR) = e1.-Jn1+1.

Therefore, Z(R) =2 e, "M o s F (i)™ B  Now 1(0¥1(3)) = (xeR |
cz(R)} and so T(J1(J})/Z(R) 1'5 equal to the socle of R/Z(R)

(=% &R/, a" itlor, R ()5 Hence, 1(91(9)) = 2 e @

> fjd 1;(3) j is projective, If eidni = e,iR, eiJ 1 1s injective and if

eidn'i FoeR, eidni is small. We can show inductively that I(Jk1(d}) =

2 e ez @ £M(g) L,

Conversely, we assume 1) and 2). If J" = 0, R = 1(J™ (9)) is a directsun
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of an injective module and a small projective module. Hence, eik is
injective by Krull - Remak - Schmidt's theorem and so R is right QF - 3
by Theorem 1.3. Since E = E(R)=Z O ein H e_iJ.Rfc e;R and (**)r holds, f'jR

is monomorphic to some eﬂ( R. Put e = e, and e(l(Jnl(J)) = eR and

e(100"11(0)) # eR. Since 231(J““11(J))3ea, ed = (10" M) s
projective by 1) {note that ed is uniform and T(JkT(J)) is a two ~ sided
ideal). Since ed has a unique maximal submodule, e1(J""21(J)) = eL2. Thus,
we obtain a unique series of small projective submodules eJ:JngD... 5ed™!
and el = eZ(R). Therefore, ijR=e“(j)th and (*)* holds by Theorem

30‘5' =

REMARK 1. Let Q be a QF ring. Then

[00
R =
0 0
is QF - 3 and satisfies 2) in Theorem 3.7. However 1(J1(J}) is always
projective and 1(J21(J)) is projective if and only if Q is semisimple.
Hence, R satisfies (*)* if and only if Q is semisimple.

We do not know whether 1) implies 2) in Theorem 3.7.

N N R *
PROPOSITION 3.8. If R is self injective as a right R - module, (*) holds.

If R is commutative and noetherian, the converse is true.

PROOF. Let M # Z{M) for a right R - module. Then we have m in M such that
R £ Z(mR). Put K = (x&R | mx = O}, We may assume R = E(K) O E;. Since

K is not essential in R, El # 0. Hence, mR contains isomorphically El’
which is projective and injective. The remaining part is clear by

Corollary to Proposition 3.4 and Theorem 3.7,

REMARKS 2. Let R be self injective, even if R is a commutative ring such

that R/J(R) is artinian, R does not satisfy (%) in general (see [17 }
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p. 378 and Lemma 2.1).

3. The ring Z of integers satisfies a condition "Every finitely
generated non - cosmall module contains a projective direct summand.
However Z does not satisfy (*)". If R is a right artinian ring such that
every indecomposable injective is finitely generated, the above condition
is equivalent to (*)* from the proof of Theorem 3.6. We do not know

whether conditions (*) and (*)* are right and left symmetric.
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MATRIX VALUATIONS ON RINGS
M, Mahdavi-Hezavehi

Bedford College, Maths. Mept.
London NW1 4NS, England

0. INTRODUCTION

Given an ideal I in a commutative ring R, there is a well-known lemma
in commutative ring theory which says that the radical of I is an inter-
section of prime ideals P containing I, i.e. I =0P, P2I.

One way of generalizing the above result is o develop the notion of a
pseudovaluation p on a ring R as it 95 treated in [2]. There it is shown
how to obtain valuations from pseudovaluations on R. As 1t turms out
pseudovaluations on R can be considered analogous te ideals of R and
valuations similar to prime ideals. Moreover, given an arbitrary pseudo-

valuation p and {v;}igy @ family of valuations on R, then

p* = 'Inf{V.i}, Vi?p,
il

where p* s the root of p.
As another generalization of the result quoted above, Cohn in chapter

7 of [3] develops the notion of a matrix ideal of a ring R {(not necessarily

commutative), and shows how prime matrix ideals can be used to obtain the

universal field of fractions of R under certain conditions. Furthermore, it

691




e m e aana

692 M. Mahdavi-Hezavehi

is shown that given a matrix ideal A of R, then the radical of A is
an intersection of prime matrix ideals P containing A.

This paper, essentially, deals with a common generalization of those
stated above by developing the idea of a matrix valuation and a matrix
pseudovaluation on a ring R (not necessarily commutative),

In section 3 we introduce the notion of a matrix valuation on a ring R,
and show that any matrix valuation V on R gives rise to a prime matrix
1deal of R. Hence any ring R with a matrix valuation ¥V has an epiec R - field
K associated with V ; we point out that V induces a valuation on KV‘

Section 4 deals with a generalization of the idea of a matrix valuation
to that of a matrix pseudovaluation, and presents analogous results to those

of Bergmans'[2] for matrix pseudovaluations.

1. PRELIMINARIES

This section recalls some conventions from [3] which we will follow
throughout the work. A11 rings occurring are associative, but not necessari-
ly commutative. Every ring has a unit element, denoted by 1, which is

preserved by homomorphisms and inherited by subrings. Given two square

matrices A, B over a ring R, the diagonal sum of these matrices s defined

. n_|A O
as : A+B _[0 B}

This sum is always defined, and for square matrices of ordep ry s, the dia-
gonal sum fs square of order r + s. We now recall another operation on

square matrices over R which is in fact defined only for certain pairs

of matrices over R. Let A = (a;5), B = (b55) be two n X n matrices over

‘ij 'FOI" a]] 1 = 2, 3, se ey n’ j = 1, 2, eviy N we Sha'l']

say that the determinantal sum of A and B with respect to the first

R such that a5 = b

row

exists 5 it is the matrix C whose first row is the gyp of the first rows
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of A and B, and whose other rows agree with those of A and B, The
determinantal sum with respect to another row or column, when it exists,
defined similarly, We shall write C = AVB for the determinantal sum
of A and B, We note that the Tatter operation is not everywhere defined
and to say that C is a determinantal sum of matrices A, Az, cees An means
that we can replace two of Ay, ...y Al by their determinantal sum with
respect to some row or column, and repeat this process on two matrices
in the resulting set untill we are left with one matrix, namely C.
DEFINITION. Let R be any ring, A and B be twe square matrices over R not
hecessarily of the same size. We shall say that A and B are stably
associated 1f there exist invertible matrices P, Q such that
A+T=P(E+1)0, (1)
for unit matrices of suitable size. If P and Q in (1) are products of

elementary matrices over R, then A and B are said to be stably E -

associated.

An n X n matrix A over a ring R is said to be full if it cannot be
written as a product of matrices P, Q, where P is ann X r matrix and
Q is r X n, and rXn. Otherwise, A fs called non=full.

Now let P be a set of square matrices over R. Then P is called a
matrix ideal of R if
1. P includes all non-full matrices,

2. 1f A, BEP and their determinantal sum C = A7 B with respect to some
row (or column) exists, then CE&P,

3. I AP, then A + BEP for all square matrices B over R,

4. A+ 1EP+AEP.
P 1s said to be proper

P is called a prime matrix ideal if it 1

if it does not contain the element 1. Furthermore,

s a proper matrix ideal with the

additional condition
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A+BEP+ACP or BEP,

A set T of square matrices over R is said to be multiplicative if

1€X, and whenever A, BEZ, then

[g g} -

for any matrix C of suitable size over R.
We shall need the following result in section 3, for a proof see
chapter 7 of [3].
THEOREM A. Given a ring R with a prime matrix ideal P, there exists an epic
R - field K such that P is the precise class of matrices mapped to

singular matrices under the canonical homomorphism R-K,

2. MATRIX VALUATIONS

Let R be any ring and I' a totally ordered additive abelian group.
DEFINITION. A function v on R with values in I'U{4=} is called a semi -
valuation if
i} v{ab) = v(a) + v(b), a,heR,
i1) v{a + b)>min {v(a), v(b)},

111) v(0) = 4=

We recall that v is a valuation on R if we have v(a) = 4o if and only if
a=0.

OBSERVATION. The set P of a1l elements ac R such that v(a) = 40 {5 a
strong prime ideal (i.e. R = R/P is an integral domain), and v induces
a valuation on R.

Now using the operations "diagenal sum" and "determinantal sum" intro-

duced earlier, we generalize the concept of a semi - valuation to the set

M(R) of all square matrices over R,

DEFINITION 1. A function V on M{R)} with values in DU {4} 95 called a
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matrix valuation if
1) V(A + B) = V(A) + V(B), A, BEM(R)

i1) V(A B)y=min {V(A}, V(B)}, whenever is defined for square matrices

A, B over R,

i11) V remains unchanged under multiplying any row or column by -1,

iv) V(1) = 0 for 1€R,

v)  V(A) = += for any non-full matrix A over R.

We now present some consequences of the above axioms in the following
PROPOSITION 2. Given a matrix valuation V on a ring R, we have the
following :

V.1. If V(A) # V(B), then V(A B) =min {V(A), V(B)} vhenever is defined
for square matrices:A,B in M(R),

V.2. V is zero on elementary matrices over R. In particular, V(1) =0 for
any unit matrix I in M(R)

V.3, If we add to the column (or row) a; of matrix A = (al, vens an) a
right (or left) multiple ajl, A €R, of another column (or row), Y
does not change ; i.e. V(A) is unchanged if A is multiplied on the
left {or right) by elementary matrices,

V.4, V remains unchanged under any_permutation of rows or column of A,

V.5, v[‘g g}-vu‘ g}v[ﬁ gJ= V(R) + V(B),
where A, BEM{R}, and C, D are matrices of suitable sizes over R,

V.6. If A is stably £ - associated to B, then Y(A) = V(B),

V.7. V(AB) = V(A) + V(B) for square matrices A, B of the same size in

M(R),
V.8. The restriction of V to R js a semi - valuation.

PROOF. The proofs follow almost jmmediately from definition 1. "

The next result points out the interrelationship between matrix

iy

L N IR
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valuations and valuations of determinants in the commutative case.

THEOREM 3. Suppose R is a commutative ring with a semi - valuation v. If

V'is a matrix valuation on R such that V/R = v, then we have V(A) = v(det(A)),
AREM(R).

PROOF. Using proposition 2, one can prove this by induction on the order
of square matrices over R.
Thus a matrix valuation on R (in the commutative case) is completely

determined by its restriction to R, "

LEMMA 4. Given a matrix valuation V on a ring R the set of all square ma-

trices A such that V(A) = 4~ §s a prime matrix ideal.

PROQF. Follows from the definition of a prime matrix jdeal.
Let P be the prime matrix ideal obtained in lemma 4, By theorem A, there
exists an epic R ~ field K such that P is the precise class of matrices

mapped to singular matrices under the canonical homomorphism R+K. We shall

call this field, the field associated with V and use the notation Ky

We recall that, by theorem A, each element xEEK.\r can be obtained as the

first component u, of the solution (Ups Uy, oo, un)t of system Au + a = 0,

where A = (al, CPYRRY an) lies in the multiplicative set ¢ = P¢ of all

square matrices on which V is finite, and a 1s a column over R, Now define
Wlups Asa) = V(A)) - vy,

where A, = (2, a5, ..., 3,). It is not hard to show that W is independent

of the choice of system, and W is a valuation on KV. "

THEOREM 5. Let R be a ring with a matrix vajuation V. Then V 9nduces a

valuation on the associated epic R - f4ald KV‘

We now investigate matrix valuations on skey fields. Let K be a skew

Field, GL,(K) be the group of ai1 non - singular matrices over Ky and E(K)
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the subgroup of GLn(K) generated by I + }Eij for all 1 # j, and A€ K, where
Eij is the matrix having 1 in the (i, j) - place, O elsewhere, In[17] it is
shown that AEGLn(K) can be written in the form B.D(u) where BEEn(K) and
the matrix D(u) differs from the unit matrix only in the element a . which
is yeK. The image ﬁeK*abU{O} of u, where R = 70k, 7 5 s
independent of the choice of decomposition of A into B and D{u). p is
known as the Dieudonné determinant of A, and it will be denoted by d(A). We
can now state the following
THEOREM 6. Let K be a skew field with a valuation v. Then there exists a
unique matrix valuation ¥ on K inducing v, and V is given by

V(A) = v(u), § = d(A)

for each square matrix A over K.

PROOF., Similar to that of theorem 3. "

REMARK. Suppose f : RS {s a ring homomorphism of R into S. Then a matrix
valuation V¥ on S determines a matrix valuation W, say, on R by pullback,
i.e.

WeA) = V(AT).
COROLLARY 1. Given a ring R, let K be an epic R - field with a valuation v.
Then v induces a matrix valuvation on R.
COROLLARY 2, Given a valuation v on a right (or left) Ore ring R, there

is a unique matrix valuation on R inducing v.

4, MATRIX PSEUDOVALUATIONS

Let R be any ring and I be the additive ordered semi - group of real

numbers with 4= adjoined, A function p on R with values in I is called a

pseudovaluation on R if




[

698 M. Mahdavi-Hezavehi

1) plxy)=p(x) + ply)s x, Y€R,
2) p(x - y)2min{p(x),ply)},
3) p(1) =0, p(0) = +

In [2] Bergman shows that given a real - valued psevdovaluation p on a
commutative ring R, there exists a valuation v>p which also satisfies cer-
tain upper beunds. In particular, if p(st) = p(s) + p(t) for all s, t€S,
vhere $ is a multiplicative semi - group in R, then v can be chosen so
that v(s) = p(s) for a1l s&S. Here in this section we generalize the above
result by developing the notion of a matrix pseudovaluation on a ring R {not
necessarily commutative), and present analcgous results to those of
Bergmans' in [2] for matrix pseudovaluations. Let R be a ring and I’ be
the additive ordered semi - group of real numbers with <ee adjoined, Nencte
by M(R) the set of all square matrices over R,
DEFINITION 1. A function u on M(R) with values in I is said to be a

matrix pseudovaluation if the following conditions are satisfied :

1) w(A+B)>u(A) + u(B), A, BEMN(R)
1) w(A B)>min{u(A},u(B)}, whenever {is defined for square matrices
A, B in M(R),
111} wremains unchanged under multiplying any row or column by -1,
iv) (1) = 0 for 1€R, and u{A + 1) = u(A) for any A in M(R),
v)  w{A) = += for any non - full matrix A over R.
The matrix pseudovaluation w will be called radical if it satisfies
u( E A) = nu(A),
where A€M(R) and n any positive integer. Thus a matrix valuation V 1s
Just a matrix pseudovaluation satisfying the stronger condition
V(A + B) = V(A) + Y(B)
for all A, BEM(R).

e now collect some of the consequences of the above axioms in the
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following

PROPOSITION 2. Let R be any ring with a matrix pseudovaluation y. Then

we have the following :

w.l. If u{A) # u(B), then u(A B) = min{u(A), u(B)} whenever is defined
for matrices A, B over R,

u.2. u(A) is unchanged if A is multiplied on the left (or right) by
elementary matrices,

u.3. u@ g} - u[ﬂ g} = u(A + BY>u(A) + u(B),
where A, B M{R), and C, D are matrices of suitable size over R,

p.d. y is zero on elementary matrices over R, and u(A ; I) = u(R) for
any unit matrix I€M(R),

u.5. If A 1s stably E - associated to B, then u(A) = u(B),

p.6. u{ABY>n(A) + u(B) for square matrices A, B of the same size over
R,

u.7. The restriction of u to R is a pseudovaluation. f

PROOF. Similar to that of proposition 3.2. "

The following Temma shows how matrix ideals of R and matrix pseudo-

valuations on R are related.

LEMMA 3. Let R be any ring with a matrix pseudovaluation u. Then the set

P of all square matrices A over R such that u(A) = +° 1s a proper matrix

ideal,

PROOF. Follows from the definition of a matrix ideal. .

One can apply similar method of preofs as used in [2] to prove the

following results :
LEMMA 4. Let p be a matrix pseudovaluation on a ring R. Then the function

u*(A) = 11’m—1~ H(E A) is defined for all A€M(R) and it is a radical matrix
n

N
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pseudovaluation =uy.
Furthermore, if A€ M(R) and Z a multiplicative set of square matrices
containing A, then

sup (A + %) - w*(X)1<sup (u(A + %) - u(X))
p =D ez

where the supremum in this relation is taken over a]l Xez such that
p{X) <#=, £ will always be non - empty since it contains 1.

The above process of obtaining u* from u will be called “taking the root
of ¢ and we shall write u* =V, We note that y 4s radical if and only if
e

Before stating the next Temma, we need to give the folTowing
DEFINITION. A€M(R) is called regular under a matrix pseudovaluation y,
or u is regular at A, if for all B M(R)

W(A+B) = 4(A) + u(B).
LEMMA 5. Suppose u is a radical matrix pseudovaluation on R and A WR)
with u(A) €+°, Then the function

o
u(B) = Tm (I8 + (+ A)] - nu(A))

N oo
Ts defined for all B M(R), and it is a radical matrix pseudovaluation =y,
which is regular at A.

Furthermore, for any BE M(R) and any multiplicative set T of square

matrices containing A, we have

SWp [ u(B + X) - u(X)] <supl u(B + X) = (X)]
XET A A {ET

where the supremum is taken over all XE€Z such that u{X) <4, £ i3 non -
empty since 1€%,

We call the above process of finding u(B) “regularization at A"
LEMMA 6. Let u be a matrix pseudovaTuaHgn on a ring R. Then there exists

a matrix valuation V on R satisfying
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W(AYSV(A)<sup[ (A + X) - u(X)1, ASM(R)
X EM(R)

where the supremum is taken over all X€M(R) such that p{X) <dee,

PROOF. Let M be the set of all radical matrix pseudovaluations p' on R
satisfying
u(Aysu'(4),

sup[ p' (A +X) -~ 1" (X)] < supl (A + X) - w(X)]
X € M(R) X €M(R)

for all A€M(R). Lemma 4 says that M is non - empty, i.e. v &M, Define a
partial ordering on M as follows :

ny<uy 1wy (A)<up(A) for all AEM(R) and uyy uy EM.
1t 1s not hard to see that M §s inductive under the above ordering and
thus by Zorn's Temma M contains a maximal element V, say. Now lemma 5
ensures that V cannot be regularized any further and thus V is the desired
matrix valuation on R.

Now et the set M(R) of all square matrices over R be totally ordered

in any way and fix A€M{R). Then one can use the same methed of proof as

used in [2] to prove "

LEMMA 7. Let  be a matrix pseudovaluation on a ring R. Then there exists

a matrix valuation V on R satisfying

w(A)<V(A)&sup (u(A + X) ~ u(X}}s AEM(R),
XEZ,
where Zn denotes the multiplicative set of square matrices generated by

matrices <A under the ordering of M(R) and the supremum is taken over

all X&z, such that u{X) <+=.
THEOREM 8. Suppose u 1s a matrix pseudovaluation on a ring R, and let =

be a multiplicative set of square matrices over R such that

a(X +Y) = u(X}+ u(y)
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for al1 X, YEZ, Then there exists a matrix valuation V=u on R such

that V = v on L.

PROOF. Take a total ordering of M(R) such that Z becomes an initial segment
under the ordering of M(R}. So, by lemma 7, there exists a matrix valuation
¥ on R satisfying

u(A)<V(A)<sup (u(A + X) = u(X)}, AEM(R). (1)
XX

Now 1f ASE we know that u(A + X) = p(A) + u(X), XEEZ. Thus the First and
the Tast terms of (1) are equal, i.e. u{A) = V(A} for all A€z, ]

COROLLARY 9. Given a matrix pseudovaluation p and {VTLEEI a family of

matrix valuation on a ring R, then

w(A) = inf (v, (A)}
jel

if and only if p is radical.
Furthemmore, if u 1s an arbitrary matrix pseudovaluation on R, then

W= Vs inf (VL)
jer !

where Vi ranges over all matrix valuations >y,

PROOF. Follows from theorem 8 and lemma 4. "
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Modules with Baer, CS or Left Utuni

Endomorphism rings.

S.M. Khuri
Ameprican University of Beirut

Beirut=Lebanon

Let .M be a nonsingular left R-module, where R is an

R
associative ring with'l, and B = Homp (M ,¥) be the ring of
R-endomorphisms of M; let E(M) be the injective hull of M
and A = HomR(E(M),E(Ml) be the ring of R-endomorphisms of
E(M), We are interested in questions like the following:
what properties of M will make B a Baer ring? A Baer
(a Baer %) pring is a ring in which every right - and left -
annihilator ideal is generated by an idempotent (a projection).
There is interest in Ffinding out when the matrix ring
M_(R) is a Baer or Baer % ring, for example, see [3], [5], [7].
M (R) may be considered as the endomorphism ring of a free
R-module with finite basis, so that the question we ask is
a generalization to nensingular modules of the problem of
matrix vings of Baepr or Baer ® rings.
When M is nonsingular, the ring B may be embedded in
n is a (von Neumann) regular, left self-

the ring A, whic

injective ring. I+ is known that the maximal left quotient

(HLQ) ring of a left nonsingular ring is regular and left

self-injective. Hence the enbedding of B in A leads naturally

to the follwing questions; what preperties of ¥ will make B

left nonsingular and A the MLQ ping of B?

705
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There is considerable interest in some similayr gquestions
when B is a Baer #%-pring. For suitable Baer %-rings C, there
is a complete *-regular ring D, called the regular ring of C
such that C is a subring of D, the involution extends to D
and all the projections of D lie in €. Handelman, for example,
determines necessary and sufficient conditions for the maximal
ring of quotients of a Baer "-ring C to be the regular ring
of C([3]), and Pyle determines conditions on C which make
its involution extendible to its maximal ring of quotients
in such a way that the maximal ring of quotients can be
identified with the regular ring of C([4]). For example,
Pyle finds that, for a Baer % ring C, a necessary and sufficient
condition for the invelution to be extendible to the MLQ ring
of C is that C satisfy Utumils condition. This result motivates
another question we ask here, namely; what properties of M will
make B a left Utumi ring? A ring ¢ is said to satisfy Utunmi's
condition (on the left) or to be a left Utumi ring if C is
left nonsingular and any left ideal of C with zero right
annihilator is essential in C.
Before stating our answers to the questions raised
above, we make the following definitions: we will call a

module M retwractable (e-retractable) if Hom, (,U)#0Q for every

nonzero submodule (complement) U in M, A submodule U of

M will be called a-closed if U = EM(H) for some subset

H of B, where Ay(H) = {n e #: ol = o},



Baer, CS or left Utumi rings 707

{Recall that a submodule U is a complement, or essentially
closed, in M, if U has no proper essential extension in M}.
Notation: rp(U) = {b ¢ B: Ub = 0},

Qur results are as follows :

Theorem A: Let .M be nonsingular and retractable., Then B

R

is left nonsingular, ;B is essential in BA and A is the
MLQ ring of B.

Theorem B: Let _M be nonsingular and e-retractable. Then

R
B is a Baer ring if and only if every a-closed submodule of

M is a direct summand in M,

Theorem C: Let .M be nonsingular and retractable, Then B

R
ig a left Utami ring if and only if, for each submodule U

of M, rBCU) = 0 implies U is essential in M. When these
equivalent conditions hold, B is a Baer ring if and only if

every complement in M is a direct summand in M.

Examples of vetractable modules are: any generator,
in particular any free module, any semisimple module, and
any torsionless module over a semiprime ring. Examples of

e-retractable modules are given by any of the above; in

addition, any injective module and any CS-module (i.e. a

module in which every complement is a direct summandl is

e-petpactable. ILn connection with Theorem A, We can give

an example to show that, even for a nonsingular, e-retractable,

projective M, A may not be the MLQ »ing of B.

— e o e
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A left CS ring is a ring in which every complement

left ideal is a direct summand of the ring. The class of

left nonsingular, left €S rings is a subclass of the class

of Baer rings, which is a subclass of the class of left

Riekart rings (alsc known as left pP.p. rings). A ring R

is a left Rickart ring if the left annihilator of each element

of R is generated by an idempotent., Baer rings and left
Rickart rings are always left nonsingular.

There are several results in the literatupe
characterizing certain classes of rings in terms of the
endomorphism rings of their free or projective modules,

For example, HomR(F,F) is a left Rickart ping for every
free (projective) left R-module F if and only if R is left
hereditary, i.e, if and only if every left ideal of R is
projective (L6, Theovem 1, or [2], Theorem 2,3); Hom, (F,F)
is a Baer ring for every free (projective) left R-module F
if and only if R is seniprimany hereditary, if and only if
every torsionless R-module is projective([6], Theorem 2).
It is thus natural to ask which left nonsingular rings R
have the property that HomRCF,F) is

left nonsingular,
left CS for every free left R-module F,

Now, a ring B is left Rickart if and only if every
principal left ideal of R ig projective, 3 ring R is Baer
if and only if every cyclic torsionless lefy R-module is
projective, and a ving R is left nonsingular, left 0§ if
and only if every cyclic nensingular left R-module is

projective, {(One sees easily that these characterizations

are the natural ones to expect if one recalls that Baer rings
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are concerned with left annihilators being direet summands
while left CS rings are concerned with left complements being
direct summands, and if one notes that a cyclic left R-module
R/L is torsionless iff I is a left annihilator while, for

a nonsingular ring R, a cyclic left R-module is nonsingular
iff L is a left complement),

Hence, the following reault (obtained in collaboratiom
with A,W, Chatters}) is just the result one would expect:
Theopem D: Let R be a left nonsingular ring. Then
HomR(F,F) is a left C8 ring for every free left R-module F
if and only if every nonsingular left R-module is projective.

Actually, the rings R which have the property that
every nonsingular left R-module is projective are precisely
the Aptinian herpeditary serial rings (theorem 2.15 in K.R.
Goodearl's"Singular torsion and the splittiug properties",
Memoire of the Amer. Math, Soc., 124(1971).

Finally, a small result relating Baer, left Utumi

and¢ C$ ringst Proposition: R is left nomsingular, left C8 iff

R is Baer and left Utumi.

I e o
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REMARKS ON LOCALIZATION AND DUALITY

J, Lhambek

McGill University, Montreal, Canada

This talk will consist of three parts : a survey of some of
the work done jointly with Basil Rattray, a contribution to co-
localization and equivalence for additive categorles at non-small

projectives, and an indication of some possible further develop-

ments.

1. tIntroduction and survey

Given two categories J and B and a pair of adjoint functors

vi A-B and F: B + £ with adjunctions n : i1d — UF and

e : FU — 1id, there is always induced an equivalence between the

full subcategories
Fix (FU,e) = { aef| e(a) is iso }

and
Fix (UF,n) = { pe B[ n(B) is iso } .

Moreover, as flrst observed by Jobn Isbell, (UF,n) is an idem-
potent triple, that 1s nUF is an isomorphism, if and only 1f

(FU,e) 1s an idempotent cotriple.

711

that 1s, €FU is an isomorphism.
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In this case Fix(FU,e) is a coreflective subcategory of 4
and Fix(UF,n) is a reflective subcategory of B . (See [3]
for a proef.)

Next, an example. Let u4'°p be the category of topological
spaces and 73 the category of rings (in deference to the present
conference), Let U = u4(—,g) » where 2 is the discrete two-
element space, and F = J3(-,2/(2)), where 2/(2) is the two-
element ring, Then Fix(FU,e) is the opposite of the category
of Boolean spaces and consists of all spaces A which are pre-
sented by 2 , that is, for which there is a coequalizer diagram
g? = gx-e A , and Fix(UF,n) 4is the category of Boolean rings
and consists of all rings B cogenerated by 2/(2) , that is,
for which there is a monomorphism B =+ (5/(2))X .

To explain the title of this lecture, the reflector TU ;, which
assigns to each space A a Boolean space FU(R) , is an example
of localization, while the equivalence between the opposite of
the category of Boolean spaces and the category of Boolean rings
is the well-known Stone duality. (See (4] £for more on this sub-
ject.)

The famous Gelfand duality between compact Hausdorff spaces

and commutative C*-algebras may be treated in a similar fashion

(5] . Then A is as above and B is the category of commutative

Banach algebras. The localization functor 1s here the Stone-Cech

compactification [2] .

Note that in the first example B was an algebraic category,

while in the second example 3 is at least a f£uli subcategory of

an eguational category in the sense of Linton.

Now ring theorists are not usuvally interestegd in the category

of Banach algebras nox, for that matter, in the category of rings!

J. Lambek
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Let us look at the situation where £ is a cocomplete additive
category. (By "additive" is meant what other people call "pre-
additive", and "cocomplete" means that . has coproducts and co-
equalizers, in the additive case, cokernelis,) Let P be a given
object of A with endomorphism xing E and B = ModE. Tt is
of course well-known that the functor U= £(P,-) possesses a
left adjoint F . It may not be so well-known that there is an
explicit construction for F ; to wit, y(B): B[P — PF(B) is
the joint cokernel of all finitary morphisms h : P ~» |BIP for
which

r b(p,h) =0,
be |B| b

P, : |B|P » P being the canonical projection corresponding to
b€ |B| . (Here XP denotes the coproduct of coples of P , one

for each element of X , an@ |[B| is the underlying set of the
E-module B . A morphism P -+ XP is called finitary if it factors

through a finite subcoproduct.)

The adjunction n(B}:B— UF(B) is glven by
n{B) (b) = Y(B)ib

L :P— |[B|P being the canonical injection,

While the details will be found elsewhere [6] , it may be in-

structive to show why n(B) (be) = n(B){b)e , that is, Y (B) ibe=
y(B) iy e , for all b in B and all e in B , Indeed, this

follows from

£ b'pb,(ibe-ibe) =he - be =0,
b' € |B]

in view of the definition of ¥ (B)

To introduce the other adjunction € , We first define

MA) : Jua)| p— A by
X(A) if = f I

713
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for all f£e€ |U(A)| , and note that for any finitary

hep— Jum)e,

AM)h = A@) I dcpeh = T £ (pgh) ,
f:P2A f:Paa

where peh=0 for all but a finite number of £ € |U(A)|. Then
e{R) : FU(A)— A 1is the unique morphism for which

E(A) YU(A) = A(A)

The matter becomes particularly manaqable when, for any set X,
all morphisms P—+ XP are finitary. In that case P has baen
called weakly small in [6].

If P is weakly small, eFU and therefore nuf are isomor-
phisms if and only if P ig YU(A)-projective for all A in .
(Zf e:A'-»A , P is called e - projective if for every f:P-+A
there exists £':P » A' such that ef' = ¢ .}

Moreover, Fix(FU,¢) 1is then the subcategory of all objects A
of A presented by P , that is, for which there is a cokernel

diagram YP - XP - A . In this situation FU has been called a

celocalization functor [2] . Note that yU(A) is then the co-
kernel of all h:P— |U(A)|P for which A(A)h = 0 and thus
coincides with the morphism called K(A) in [2]

These matters are discussed in [6] and will be generalized later.

For the moment we shall require a lemma, which is easier to prove

than to cite :

LEMMA 1. P is in Fix(FU,g)

Proof: We know from category theory that U ¢(p)n u(p) = 1 ’
hence €(P)(n(E)(e)) =& . In particular,

e®) (B (1)) = 1



Remarks on localization and duality 715

Also e(P)Y(E)i, = e(P){n(E)(e)) =e ,

hence n(E) (1)e(P)Y(E}i, = n(E)(1}e = n(E) (e) = y(B)i, , and

therefore

[}
-
-

(n(E) (1)) (P}

If we know that P is +(B) =projective for all B in ModE,
Fix{UF,n) will be subobject-closed; in fact, if A has a cogene—
rator C , Fix(UF,n) will consist of all E-modules cogenerated

by U(C) . The following, while essentially contained in [6], is

not explicitly stated there.
P 1is called projective if it is e-projective for all regular epi-

morphisms (that is, cokernels) e.

PROPOSITION 1. Let /£ be a cocomplete additive category, P a
weakly small object of A, E, U and F as above. Then the

following statements are eguivalent :
(1) (UF,n) is idempotent and E is projective in Fix(UF,n) .

(2) (FU,e} is idempotent and P is projective in Fix(FU,e) .

(3) P is projective in some full coreflective subcategory of A .

(4) P is ¥(B) -projective for each B .

(5) n(B) is a surjective epimorphism for each B .

Proof. (1) == (2). BY Isbell's theorem, (FU,e) is also ldem-

potent. By Lemma 1, P ig in Fix(FU,e) . Since U(P) = E , it

corresponds to E under the equivalence, hence it is also pro-

jective.

(2) = (3). Pix(FU,e) 1is a full coreflective subcategory of

Mcd E.
(3) = (4). Since a full coreflective subcategory is closed

under coproducts and cokernels, and since F(B) 4is constructed

Sl

g >
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by means of coproducts and cokernels, Y (B} is in the given
subcategory, Moreover, vy(B) is a regular epimorphism in the
subcategory, hence P is y{B) - projective.

{4) = (5). Let f ¢ |UF(B) | + that is, £:P-s P(B} . In view
of (4), we can find h:P — B[P 30 that y(B)h = £ ., Since P
is weakly small,

h_

- Z i p h ]
bela| Db

where Pph= 0 for all but a finite number of beg |B| . Therxefore,

£=y®Bh= 5 nB)(b)p h = nB)( & Py, h)
be |B| b be|B| b

{3) = (6). Since Ue{AnU(a)

mn

T, it follows from (5) that
nU(A) 4is an isomorphism for each A y hence that (UF,y) is idem-

potent. To see that E is projective in Fix(UF,n) , it suffices

to verify that every regular epi in FiX(UF,n) is one in ModE,

that is, a surjection.

Let B1—ﬁ 52 be a regular epi in Fix{UF,n) , hence the co-

kernel of B,— By in Fix(UF,n) . In view of the way cokernels

are constructed in reflective subcategories, B,— 52 is isomoxphic

with B1—a B —+ UF(B) , where B1-ﬂ B is the cokernel in Mod B

and n(B) : B » UF(B} . Since both of these are surjections, so is

their composition,

As an application of the ahove methods I want to mention the

main result of [6] ,

THEOREM. Let I bLe a quasi-injective right R-module with the

discrete topology and E itsg endomorphisn ting. Then the functor

o
U: (ContR)°P o Moarn gives rise to a duality between the category

of continuous right R-modules cepresented by I and the category
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of abstract left E-modules cogenerated by EI .

Here Cont R consists of all continuous right R-modules, that
is,; topological R-modules over the discrete ring R , and all con-
tinuous R-homomorphisms. I 1ig small, because it is discrete,
and the quasi-injectivity was used in [1] to show via Harada's
Lemma that I 415 m=- injective for any regular monomorphism

m:A - IX in Cont R, The funcktor FU is an example of locall-

zation in ContR, not in ModR.

Several classical duality theorems are subsumed under the

following coxollary to the above theorem.

COROLLARY., Tet I be an Artinlan quasi-injective cogenerator
of ModR and E its endomorphism ring. Then there is a duality
betwaen the category of continuous pro-Artinian right R-modules

(with the inverse limit topology) and EMod.
Another illustration of our methods is afforded by the following

example: If P is a finitely generated projective right R-module

with endomorphism ring E , the associated functor U: ModR - ModE
induces an eguivalence between the category of right R-modules pre-

sented by P and Mod E. Of course, here F 2 (=) gp .

Again FU is an example of colocalization in ModR. It is a

pity that P has to be assumed to be finitely generated, in view

of the fact that McMaster [7] has discussed colocalization for an
arbitrary projective and even shown that it coincides with FU .

To adapt the present methods to McMaster's results, a new idea is

required., We shall make a little detour and introduce topological

considerations.
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2. Colocalization and equivalence at non-small projectives

We shall consider a second object P' in our category A .
We shall stipulate that P' determines E'yU', P', n' and ¢'
in the same way that P gave rise to E etc. As we ghall see
later, the assumption on P' made in Proposition 2 will be satis-

fied, for example, if /£ is Abelian and P' 4g a small generator

of A .

PROPOSITION 2, Let £ be a cocomplete additive category, P
and P' objects of A& with endomorphism rings E and E' and
associated functors U: £ — MoAE and U': A, Mod ' .
Then each object of ModE of the form Ufa) is gz topological
E-module, a fundamental system of open nelghborhoods of zero con-
sisting of all subgroups VA (g1) n...n VA (gn) of 0(a) , where
Val9y) = {£:P o Al £9,=0} is associated with gt P'— P,
Moreover, nU(A) is continuous, U(a) ig Hausdorff if P' generates

P,and U(A) 1is complete if PEFIX(F'U',e")

Proof. C(learly U(a) is a topelogical group. But also, for

each e¢E , the mapping £ fe is continuous, since
-1
e MValgdn.onvyg ) =Valegy) nnvyleg) .

U(A) 1is Hausdorff, since the intersection of fundamental open

neighborhoods of zero is N

Va{g) =0, providea p’ gene-
g:P'wp

rates P ,

Next,we shall ghow that U(a) 1is complete, if p EPix(F'U', "} .

Let {£f, | x€X} be a Cauchy net in U(A) , where (X,<) 1is an

upward directed set. We shall write Vylg) = Valgy) no..n Vala,) o

when g = [g1;4.o, gn} tnP'— P .
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Then, for all g:nP'=+ F , there exists x(g) €X such that,

for all xgzx{g} , £ EV{yg) . We seek a limit £ of

x fx(g)
this net,

Consider the mapping ©: JA(P',P)— A{(P',A) defined by
v{g) = fx(g) ¢ . This is easily seen to be an E'~homomorphism.

For example, f € VA(ge‘) ; for all xzx{ge') ,

x-fx(ge')

£ € VA(g) , for all xzx(g}) , hence,

x~ fx(g)
1 | J— | - 1

for all x > both x(ge') and x(g), fx(ge')ge = fxge _fx(g)ge ,
and thexefore ¢{ge') = ¢lgle'.

Suppose for the moment we can f£find f:P— A such that
o = A (P',f) . Then £,g= fetg) 9 = wig) = fg for all x> x{g),
and so f -£f€V,(g) for all x>x(g) . Thus f is the limit of
the Cauchy net.

It remains to show that ¢ = A((@',£) . Since e'{P) is an
isomorphism, we can put £ = ¢'(A) F'(9) (e'(B))”! , then the follow-

ing square commutes:

1
F'{v) S~

F'U' (P)

& () ¢ (B)

But this means that fFe'(p) : F'U'(P)— A corresponds to

¢:U' (P)— U' () under the adjunction, hence = U'{f} .

pinally, to show that nU(A) is continuous, take any

g:np'— P, then
= :P"Alfg= 0}
V‘A(g) {£

{g:p+ 24l f'-zp.ha. £'ppiigg=10}

L L
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S {f:P - a[yu(a) ic9

0}
= {f;P - A IHU(A)(f)g

I

0}

(nU(A) )-1 VFU () (g) v

which is therefore an open subset of U(A)

The proof is now complete.

The following result shows that the assumption on P' in
Proposition 2 will be satisfied if J is Abelian and P' is
a weakly small generator of /£ . In fact, in this case,
Fix(U'F',e') = A . as there is no point in carrying the prime,

P should be read as P' when applying Proposition 3 to Propo-
Bition 2.

PROPOSITION 3, Let 4 be a cocomplete Abelian category, P a
weakly small generator with agsoclated functor U .;’f—-. Mod E .

Then Fix(FU,e) = A , that is, U is full,

Proof, Let A be any object of .;4, « Since Ug(A) nU(a) =1,

U e{d) is epi. Since U ig faithful, e(a) ig epi.

Recall that €(aA)vyu(a) = M{A) , where A (RB) if= f for all

f£:P oA . Since 4 is Abelian ang YU(A) is epi, it will follow

that e(ad) is iso 1f we show that YU() kera(p) = o |,

Let k:K-— |U(A)|P be the kernel of \(A) ang let g:P -K.

Since P is weakly small, kg is finitary, hence

kg = b3 l.p:k
fipan LTECT 7
where Pekg = 0 for all but a finite number of £e |U(a)| . Now
0=2x()kg = ¢ £p. k)
f:1pa) gtdy

therefore YU(A)kg=o0 , by definition of Y
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Since this is true for all g:P - XK and P Is a generator,
yU(A)k= 0 , as was to be shown.
This proof is reminiscent of the Gabriel-Popescu theorem,

where the assumption that P is weakly small is replaced by

the assumption that /{ has exact direct limits.

Our next proposition and the lemma leading up to it will de-

pend on the following :

ASSUMPTION A. A 1s a cocomplete additive category, P and B’
are objects of J‘é with endomorphism rings E and E' and asso-
ciated functors U: £ — ModE and U': At =~ Mod E' . Furthez-
more, every morphism P'— XP is finitaxy and P' generates P .

Clearly, the last condition is gatisfied when P' 1is a small

generator or when P'=P 1s weakly small.

LEMMA 2. Under Assumption A, the following are eguivalent :

(1) the image of n(B) is dense,
(2) P is approximately v (B) - projective,

that is, for every f£:P =~ F(B) and every g :nP's P, there exists

h:p — |B|P such that y(BJh-£E€VL g (q)

proof. Assume (1), then, for each £:P=- F(B) and g:nP'—?P,

we can find be |B| so that £- n(B) (b} € Vg gy (9) , hence

¥ (B) ibg = n(B)(blg =£9 .

and so we have (2) with h = ib .

assume {(2), and let f:p—F(B), g:nP'—+P . Find h so that

fg.Now hg:np'— |B[P is finitary, by Assumption A,

Y(Blhg =

-




P T —
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hance

hg = T i, p.hg
bep PP d

for some finite subset P of |B| depending on g .

Then

fg= y¥(B)hg = ¢ n(B)(b)pbhg = n(B)(bg)g '
bEF

where bg = N EEZF b{ph k) . Thus £ - n(B) (bg)e VF(B) {g) , and so

{1} holds.

PROPOSITION 4. Under assumption A, the following are equi-

valent :
{1} nuU@a) is surjective ;
(2) P is yyu(a) - projective,

Proof. The implication (1) == (2) 1= proved as for Lemma 2,

Assume (2). Then, by Lemma 2, NU(A) has a dense image, Thus,

given f:P-—>FU(A) and g:nP'P , ye can fing fg:P—+A such

that nU(A) (fg)g =fg . Now
fgg= (Ue{A) nU(a)) (fg)g = e(A) nU(a) (fg)g = g({A)fg .

But this means that the net {fg’ |g9:nP'— P}, uhere 9'sgq

means VA(g') [ VA(g) ¢, has limi¢ e(A)E .
Now consider the net {nu@) (fg) lg:ap'— p }. By density,

it has limit £ , But, by continuity of NUA) , it has limit

nU(A) (e (A} £) . Since the topology on  UFy(a) is Hausdorff,

f= nU(a)(e(A)f), and so (1) holds.

In view of Proposition 3, the following is of interest, which

is also implicit in [6] and could have been treated in Part 1.



Remarks on localization and duality 723

PROPOSITION 5. met £ be a cocomplete additive category,

P an object with endomorphism ring E and associated functor
U: A~ ModE, and assume that 7 U(A) is surjective for all A
in A . Then

(1) Pix(FU,e) is a coreflective subcategory of A con-
sisting of all objects presented by P ;

(2) Fix(UF,n) is a reflective subcategory of ModE ., If A
ls copresented by C , this subcategory consists of all E-modules
copresented by U(C) .

Proof. Since nU(A) is always mono, it follows from the hypo-
thesig that it is an isomorphism. Therefore, {UF,e} and (FU,n)
are idempotent, and so Fix(FU,e) 1s a coreflective, Fix(UF,n)

a reflective subecategory.

(1) Each object of Fix(FU,e) has the form F(B} and, according

to its construction, is the jolnt cokernel of a certain collection

Y of morphisms P—XP , where X = |B| , hence the cokernel of

a single morphism ¥P-—XP .

Conversely, Fix(FU,e} is a full coreflective subcategory of

J&, hence cloged under coproducts and cokernels. By Lemma 1, P 1is
in Fix(FU,e) , hence so is every object presented by P .

(2) By assumption, for each object A of £ there is a kernel

X__’CY . Since U preserves kernels and products,

diagram A—C
X ¥
we have a kernel diagram U{A)— U(C)"— u(c) in ModE. Now

each object of Fix(UF,n} has the form U(A) , hence is copresen-
ted by U(C} .

Conversely, since nU(C) is an isomorphism, U(C) is in

Fix (UF,n) . Moreover, being a full reflective subcategory, the
' -

latter is closed under products and kernels, hence it contains

every object copresented by u{C)

X
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In view of Proposition 4, the hypotheses of Proposition 5
are satisfied if Assumption A holds and 1f P is vy U{(A) - pro-
jective for all A in A4 .

P was called weakly projective in [6] if P is e-projective

for every regular epimorphism e:XP- A . This implies, in particular,
that P is yU(A} -projective for every A in A .

Putting all this together, we obtain the following consequence
of propositions 4 and 3.

PROPOSITION 6. Let A be a cocomplete additive category with
a small generator, and let P be a weakly projective object of A
with endomorphism ring E and assoclated functor U: £—ModRE.
Then the conclusions (1) and (2) of Proposition 5 hold,

We are finally able to deal with McMaster's colocalization.

PROPOSITION 7. If P is a weakly projective right R-module
with endomorphism ring E , the R-modules presented by P form
a full coreflective subcategory of ModR which is equivalent to
a full reflective subcategory of ModE consisting of all E-modules

copresented by Homp (P,Q/Z).

Proof, In Proposition 6 take £ = ModR + P'=R and

C=Hom, (R,Q/Z) . Then calculate

uic) = Hom, (P, Hom, (R, /%))

HomR (P&R, Q/Z)
R

nt

n

Homg, (P, Q/Z) .



Remarks on Tocalization and duality 725

3. Additional remarks

Let us explore some possible further develpments. If we look
at Proposition 2, we wonder why some cbjects of ModE should be
topologized, while others, namely those not in the image of U,
have no obvious topology. One could remedy the gituation by re-
garding U as a functor from A to ContE instead of ModE.
Unfortunately, it is easily seen that this functor A - ContE
does not preserve infinite preducts, hence cannot have a left ad-

joint. What is needed is really a different kind of category from

ContR .

¢iven any bimodule E'GE , we shall construct a new category

(Mod E) ; . Its objects are pairs (B,V) , where BEModE and V

assigns to each g&€G an additive subgroup V(g} of B (not in

general an E-submodule) satisfying certain conditions (see below).

Its morphisms @ @ (B,v)— (B',V') are BE-homomorphisms ¢ : B— B’

such that, for all bEB and 9EG ,

hEV(g) == @b} EV' () -

The conditions to be satisfied by V are the following :

(1) For all b€B, e€E, ge€aG,
be € V(g) w= b€ Vieg) -

(2) For all b€B, e'eB', g€ G,
bEV(g)mfviV(ge')

(3) n vig) =0.
gEG

i d . Vo oma
(Mod E) 4 is an additive category with kernels and products ¥
e a topology on each cbiect, as on U(A) before.

be used to defin
and all morphisms are continuous.

This topology 1S Hausdor££,
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If A is an additive category satisfying the assumptions of
Proposition 2, we let G = A (P',P) and obtain a functor

U:ﬁ_r(ModE)G, where U(a) = (A(P,d), V,) and U(£) = A(p,£) .

In order to construct a left adjoint F to U , we shall

assume further that every morphism f£:P'— XP is finitary., we

define vy(B): |B|P - F(B) as the joint cokernel of all morphisms
g h
P'— P — |B|P such that Z, lh(pb h)€V{g) , in the sense that
bEIB

there is a finite subset F, of |B| such that, for all finite

subsets F c¢ontaining TF_, I b(pbl1)Ev1g) .
9° bperF

As before, we define n(B)(b) = T(B)ib for all beg|B| . It
is not difficult to see that P ig then left adjoint to U with
adjunction n . If we postulate some kind of projectivity for P,
it again follows that np(B) is dense and consequently an epimor-
phism in (ModE)G. However, there is no reason for ni{B) to be
a surjection, unless B = U(A) . Thus we are far removed from an
algebraic kind of category, in which all epimorphisms have to ke
surjections.

If we insist on having an algebraic type category in place of
(Mod E)G » We can produce one; but it won't be something that is
easily recognized by a ring theorist, There are in fact two methods

for doing this,

According to the first method, we look at the full subcategoxry

of A consisting of all xp + Where X ranges over all sets, and

regard it as an equational theory in the sense of Lawvere~Linton.
We then construct an equational category whose chjects are product
preserving functors from the opposite of this subcategory into the

category of sets. We shall not explore this method further here.
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We shall briefly sketch the second method. Given a cocomplete
category A and an object P of /£, one first forms the functor

U': A — Sets , such that U'(A) = A(P,a) , and its left adjoint

F', such that F'(X) = XP , with adjunctions n' and e' . One
then forms the category AlgP of algebras over the triple
(C'F',n", U'e'F') , as in any recent book on category theory, an i
algebra being a pair (X,£) , where X is a set and E: U'F'(X) -+ X !
satisfles certain conditions. Y
There 1& a well-known comparison functoxr U :Jfa AlgP , such
that U(a) = (U'(a), U'e'(A)), and this has a left adjoint F
with adjunctions n and & . F is constructed with the help of ;
¥(X,E) : ' (X) » F{X,E) , the coequalizer of F'(§) and e'F'(X), '
and n is defined by n{X,E)(x) = U'y(X,E) (L) . L
It is now easy to show that n(X,§) 1s surjective if and only [
1f P 1is +v(X,£)-projective. Moreover, the analogues of Proposi-
tion 1 and Proposition 5 hold in this general context, the proofs
being almost identicql to those given above, The only problem that

remains is to identify Alg?P in any giveh situation as a familar

category.
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G. Reynelds, A sharpenmed contravariant representation theorem,
Communications in Algebra 5 (1977), 821-827,



MODULES = - INJECTIFS
Constantin Nastdsescu

Université de Bucarest
Faculté de Mathematiques
14, rue Academiei
Roumanie

0. INTRODUCTION

C. Faith a defini dans [71 Ta notion de module £ - injectif : un module
Q est dit T - injectif si Q(I) ast injectif pour tout ensemble I.

Sojent R un anneau commutatif noethérien et A = R[X]GG,All'anneau des

polyndmes dans les indéterminés (Xu)aelx (A est un ensemble arbitraire). Soit

O—bA—bQO—bql-r.‘,-hQn—l—..,

la resolution injective minimale de A. Dans
sont ~ ils B - injectifs ? I1 montre dans

[2] I. Beck pose le probléme

suivant : les modules Onh1>0)

[2] que 1taffirmation est yraie si R est un anneau de Cohen-Macaulay. Dans

ce travall nous montrerons que 1'affirmation est vraie dans 1e cas oY R est

de dimension de Krull finie (théoréme 3.1). (Le probleéme rest ouvert pour

le cas ol R est de dimension de Keull infinie).

Par le théoréme 1.4 nous donarons de méme une réponse négative & une

question posée par J.E. Roos dans [10]

peFinitions, notations et résultats préliminaires

Tous les anneaux considérés dans ce travail sont commutatifs et
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unitaires. Tous les modules sont unitaires. $i R est un anneau, nous
noterons par Mod R 1a catégorie des R - modules. Si M est un R - module,
par E(M) nous designons 1'enveloppe injective de M. Par Spec R on désigne
1'ensemble des id&aux premiers de R. Si peSpec R alors ht{p) est 1'hauteur
de 1'idéal p, qui est un nombre naturel ou =, La dimension de Xrull de
1'anneau R est noté par dim R, On sait que dim R = sup{ht{p)). Si M est un
R - module alors Ass M est 1'ensemble des fdéaux p €Spec R premiers
associés a M, c'est-a-dire Ass M = {pESpec R 13 xEM, x=0 tel que p=Ann xJX

Une topoiogie additive sur R est d'aprés Stenstrim [117 un ensemble
non vide F d'idéaux de R, vérifiant les conditions suivantes :

1) Si I€F et a€R, alors (I : a}eF,
2) $i 1 et J sont deux 1déaux de R tels que JEF et (I : a)€F pour tout
a€d, alors IE€F,

Pour Ta topologie additive F on peut considérer Tes deux classes de
R - modules :

TF = {M&Mod Rt ¥V x&€M, Ann x€F}
FF = {MEMod R| x€M et Ann XEF+x = 0}

Une module METF(resp‘ te FF) est nomg F - torsionné (resp. F - sans
torsion). Le couple (TF, Fi) est une theorie de torsion haréditaire pour
Mod R[111].

$1 Me ModR nous notons : t(M) = {xEM| Ann x€F}, L'application M~ (M)
est un foncteur t : Mod R-Mod R qui s'appelle 1e radical associé & la
topologie additive F. Mous désignerons par CF(R) T'ensemble :

CF(R) = {I idéal de R| R/I est F - sans torsion}.

L'ensemble CF(R) est un treillis modulaire complet. L'etude de ce
treillis a été fait dans [1], [9].

Si CF(R) est un trefllis noethérien, alors 1'anneau R est dit F -

noethérien. Un idéal I de R est dit F - de type fini s'i] existe un idéal
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de type fini JCI tel que I/J est F-torsionné. Leséquivalences suivantes sont
vraies : R est F - noethériens tout idéal de R est F - de type fini+tout
idéal premier de R est de F - de type fini (voir [5], [91]). Soit XCSpec R ;
1'ensemble FX = {ICR/(R/I)p =0V peX} est une topologie additive sur R.
11 est clair que TFK = {MeMod R | Mp =0V peXl,

ST X, = {p€&Spec R| ht{p)<n} nous noterons par Fo (resp. (Tn, Fn)) la
topologie additive Fx (resp. le coupie (TFn, FFn)). Si R est Fn - noetherien,

n
nous dirons plus bref que R est n - noetherien. ST F est une topologie

additive la sous - catégorie Tocalisante Tp (6], ch. V) est dit stabile

par rapport aux enveloppes injectives si pourtout METF i1 résulte que

E(M) ETF.

l. ANNEAUX F - NOETHERIENS

THEOREME 1.1 Soient R un anneat, (R ). g, une famille filtrante croissante

de sous - anneau noethériens de R tel que R =QEUAR°“ Supposons que pour

tout « €A et pour tout idéal premier p&€Spec R , 1'id&al pR est premier dans

R. Alors 1'anneau R est n - noetharien pour tout nombre naturel n et les

sous - catégories localisantes Tn(n; 0) sont stable, par rapport aux

enveloppes injectives.

DEMONSTRATION. Soit p&Spec R avec ht(p) <= Nous notons p_ = (pnR )R.

Mors p_eSpec Retp =\ p Parce que ht(p) <=, i1 existe «<A tel que

p= p Comme R est noethémen alors an est un idéal de type fini et

donc p est de type fini et par conséquent p est de type fini. Donc nous

w-p de type fini. |

: - srien. 11 suffit d E
Nous démonstrons maintenant gue R est n - noethérien. 11 suffit de 3

}r - de type fini. On peut supposer que

avons montré que ht(p}<

montrer que tout idsal premier p gst
ht(p) = e Comme p = U p , 11 existe un €A tel que ht(p

o€ : {
i
i

Y= n.
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Mais Eu = (pNR_)R est de type fini. Soit q€Spec R avec ht(q)<n. On voit

que ﬁa?tq et donc 11 existe SEBq » S€q. S1 8€p/p, xEp alors 58 = sX = 0

et donc (p/;':a)q = 0. Par conséquent p/fa{}L est Fn - torsionné et donc p est

Fn - de type fini,

La derniére partie de la théordme se déduit dy corollaire 4,2 [9], =

COROLLAIRE 1.2 Sofent R un anneau noethérien et (Xa)uen une famille
d'indétermings, Alors 1'anneau des polyndmas R | XQI LEA et 1'anneau des
series formelles R [[)(m]]mE/,L sont n - noethériens,

De méme les sous - caté&gories localisante Tn(n2=0) sont stable par

rapport aux enveloppes injectives,

DEMONSTRATION. Nous pouvons &crire

RIX ] =U R[X ] et RI[X 1] =W RIX 1]
aeCh peA e ey “Ta€A Fca  ® gf
ot F est un ensemble fini arbitraire de A. On voit facilement que nous

sommes dans les conditions du théorame 1,1, "

COROLLAIRE 1.3 Nous sommes dans les hypotheses du thaoréme 1.1. Notons
par F =N F , qui est une topologie additive sur R. Alors pour tout

Y onzo
modules M = 0, F - sans torsion, nous avong Ass M £ . En particulier si

Q est un module injectif F - sang torsion, i1 existe une famille d'{déaux

premiers (py); oy avec ht(p;) <= tel que Q est une extension essentielle
de Ta somme directe & E(R/p.).
jiel 1

DEMONSTRATION. Soit Q un module injectif F - sans torsion. Comme Q £ 0 11

existe un nombre naturel n pour Teque] Qy.lTn. T, &tant stable par rapport
aux enveloppes injectives alors £,(Q) est injectif (t, est le radical

associé & la topologie Fn). Donc Q= tn(Q)EQ/tn(q) ol Q/tn(Q) # 0 et est

F, - sans torsion. R étant Fn - noethérien, d'apras e lenme 2,2 (9] on

deduit que Ass Q/t (Q) # P et donc Ass Q # p, Maintenant, si M est un
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module F - sans torsfon alors E(M) est F - sans torsion. Puisque Ass M =
Ass E(M) alors Ass M £ P,
Pour 1a derniére partie voir Te Temme 6.5 [9].

Soit R un anneau noethérien et A = R [Xa] . Nous désignons par Tﬁ

la sous - catégorie localisante associée I:Eigpo1091e additive {sur
1'anneau A). Soit Mod A/Tw la catégorie quotient et 7 Mod A-Mod A/Tﬁ
le foncteur canonique ([&61, ch. 3). I est bien connu que Mod A/Tw est une
cat&égorie de Grothendieck, c'est - & - dire une catégorie abelienne avec

genérateur et limites inductives exactes. .

THEQREME 1.4 Soient R un anneau et A =R [Xq] ol A est un ensemble
a&A

infini. Alors :

1) La catégorie Mod A/TQ ne contient pas d'objets simples (en partculier

alle est une cat&gorie sans 1a dimension de Krull au sens de Gabriel

([6] ch. 4)),
2) Tout objet injectif de Mod A/Tﬁ est une somme direct d'injectifs

indécomposables.
3) Toute somme direct (1imite inductive filtrante) d'injectifs est un

injectif.

4) Tout sous - catégorie localisante de Mod A/T, est stable par rapport

aux enveloppes fnjectives.

DEMONSTRATION. 1) En effet si S est un objet simple de Mod A/T, alors

d'apras le lemme 3.5 [1] 11 existe un idéal premier p&F, tel que

ssaTw(A/p). De plus p est un &1&ment maximal dans CFQ(A)' En particulier

ht(p) <w. Comme A est infini i1 existe toujours un idgal premier q tel que

pcq et ht{q) <. Comme qech(A). :
2) Soft J un objet injectif de Mod A/T,. Alors 0 =T, (Q) ot

nous obtenons une contradiction.

Q est un A - module jnjectif et F - sans torsion. D'aprés le corollaire 1.3,

733

TR
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Q est une extension essentielle de @ E(A/pi) ol ¥ sont des 1déaux
premiers avec ht(pi)*fw. Nous notonl FEJI= 1é-)IE(;!\/pT.). Comme T, est stable
par rapport aux enveloppes injective, alors Tn(Q) est une extension
essentielle de Tn(Q‘) (Tn est le foncteur canonique Tn : Mod A~ Mod A/Tn),
A &tant Fn - noethé&rien, d'aprés le théordme 1.6 [9] Tn(Q) =1121Tn(E(A/pi))
est un objet injectif. Donc Tn(Q) = Tn(Q') et par suite Q/Q° €7, Comme
n est arbitraire alors Q/Q' €7, et donc § = T,(Q) = T (Q') = 121TW(E(A/P1))
ol Tw{E(A/pi)) sont des objets injectifs indécomposables,

De Ta méme fagon on preuve 1'affirmation 3).

4) Soit A une sous - catégorie localisante de Mod A/Tw.
Alors T;I(A) est une sous - catBgorie localisante de Mod A et Twc:T;l(A).
D'aprés 1a proposition 4.1 on peut écrire T;l(A) =ngTp ot T_ =
{MeMod A Mp = 0} et F 1'ensemble des idaux premiers p pour lequels

A/ngT;,l(A). On observe que pour tout pEF, ht(p)<=. Ensuite on applique

la proposition 4.1. "

REMARQUE. La catégorie Mod A/T  n'est pas localement noethérienne [10]. De
cette fagon nous donons un reponse négative a un probléme posé par J.E.
Roos dans ([10], pag. 201) auv sens suivante ; si dans une catégorie de
Grothendieck C, tout objet injectif est une somme directe d'injectifs

indécomposable, 11 ne résulte pas que ¢ est Tocalement noethérienne.

2, LA DIMENSION DOMINANTE

Sofent R un anneau commutatif arbitraire et M un R - module, Soit F une
topologfe additive sur R. Nous dirons que M a 1a dimension F - dominante @
n, s'i1 existe une résolution injective de M dans 1a quelle Tes premiers
n composantes sont F - sans torsion (voir [41). Notons 1a dimension F -

dominante par F - dR(M) 5 elle est un nombre naturel oy e,

Les resultats suivants sont bien connus [4]:
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a) F - dp(#) >n+les premiers n composantes de Ta résolution injective
minimale de M sont F - sans torsion.

Soft t : Mod R—+~Mod R le radical associé @ Ta tepologie additive F ;

t est un foncteur exact @ gauche, Désignons par R't {(i=0) les foncteurs

dérivés de t, Alors :
b) F - dg(M)>n + 1= (R't)(M) = 0 pour tout 1<n.

S M est un R - module, nous noterons par Z(M) = {a€R [3xEM x=0, ax=0}

Une suite finie d'éléments a;, 855 «uvs a SR est une M ~ suite (de

Tongeur n) si a1¢Z(M), vies a1+s¢Z(M/a1M boeas aiM) pourtout 1<1{<n-1.

${ I est un idéal qui contient une M - suite de longeur n nous écrivons

G(I, M)>n [8]. Pour 1'idéal I de R nous gerivons plus simple G{I} = G(I, R).

THEOREME 2,1 Soient F une topologie additive sur 1'anneau R et Mun R =
module de type fini. Considerons les affirmations suivantes :
1) F - dR(M)::n
2) G(I, M)>n pour tout I1eF
Alors 2)-1) est toujours verifige. S de plus R est F - noethérien

alors elle est verifiée de méme 1'implication 1}-2).

DEMONSTRATION. 2)~1). Par récurrence finie nous vérifions que G({I, M)=n

+Ext!(R/1, M) = 0 pour tout i<n.
En effet si n = 1 Ta conclusion est immédiatement. Soft 2, ags <.y

a 1EI une M - suite de longueur n + 1. De l1a suite exacte
n+

a
0+ M-t M/aM->0
nous trouvons 1a suite gxacte !

~Exty Lipt, M)-'-Extn (R/1, M/a M)
0 par 1'hypothése de récurence, puisque

~Ext"(R/1, M) Yext"(R/1,

Nous avons Ext" (R/I, M/a\1 ) =
G(I, H/a\1 }=n, Conme aleI 1e morphisme
Ext"(R/1, 1) ) et (R/T, W)

est &gal & z&ro.

ET Tt
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Alors Ext"(R/I, M} = 0.

Comme un module M est F = sans torsienﬁ-HomR(R/I, M} = O pour tout I€F,
on voit facilement que 2)-1).

Supposons maintenant que R est F - noethé&rien et nous prouvons que
1)~+2), S F - dR(M)izl alors M est F ~ sans torsion. M &tant de type fini

alors M est F - noethérien (corollaire 1.3 [91), En vertu du théoréme 2.3,

Ass M est fini et Z(M) = v Mp. Soit I€ F, Puisque p#F pour tout
pEAsS
pehss Malers I¢p et donc 1¢ U p. I1 existe, donc, un E1ément a€1l
pEAss M

tel que a¢Z(M). Par conséquence G(I, M)>1. En suite nous procédons par
récurrence sur F - dp(M). Supposons que F - dp(M)=n (n # 0). I existe
a;€1 avec a19£Z(M). De 1: suite exacte

0--H-+-+1/a,M>0
nous obtenons Ta suite exacte

—*(R"'zt)(M)—>(Rn'2t)(M/a1M)-+(Rn"lt) M ...

d'oll nous obtenons que (Rn'zt)(M/alM) =0et doncF - dR(M/alM) =n-1, Par
récurrence nous avons G(I, M/alM):an-l d'oll 11 resulte que G(I, M)>n

pour tout I€F, "

3. APLICATIONS POUR LES ANNEAUX DES POLYNOMES

Soit R un anneau noethérien commutative et (Xu) une famille arbitraire

c€A
d'indéterminés. Considérons 1'anneau A = RIX,1 . Nous prouvons :

e EA
THEOREME 3.1 Supposons que dim R<e, Sojt
0-+A-1-Q0->Q1->,,,-+-Qn-+_”
la resolution injective minimale de A. Alors pour tout >0, 01 sont
Z - injectifs (ou au sens de [2], A est un anneauy Z, - noethérien),
Pour 1a démonstration, nous utilisons le Temme suivant :
LEMME 3.2 Soft R un anneau noethérien avec dim R<w, Soient R [Xys X

2, [ NE ]
Kn] 1'anneau des polyndmes en n indéterminss et pcR [xl, vvey X ] un id8al
n
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premier tel que ht(p)>dim R. Alors
ht(p) - dim R<G(p)

DEMONSTRATION. Posens dim R = r et ht{p) = r 4+ 5, s21. I1 est clair que

s<n. Procédons par récurrence sur s. S s = 1 alors ht(p) >dim R et d'aprés
le lemme 3 {[ 3], pag. 16), p contient un polyndme unitaire f en Xn ( faisant
une abstraction d'un changement de variable). On voit facilement que f est
un &lément régulier et donc G{p)>1.

Supposons 1'affirmation vraie pour s - 1 (s>1). Comme ht(p) >dim R
d'aprés Te lemme 3 ([ 3], pag. 16) i1 existe un polyndme unitaire f€p en
1'indéterming Xn.

Posons g = R[Xl, feed Xn_l]ﬂp et q* = gR [Xl, R Xn]. On voit que
£2q" et on deduit alors que ht{(g) = r + s - 1 (voir le théoréme 39 [8]). 3
Par récurrence q contient une R[ Xy ...y Kpe1d - sufte, fy, oy w00y foorr
Mais fl’ fz, . Fs-] est une R{ Xl, vees Xn] - suite. Soit maintenant
1'egalite hf = gofy + Gpfp + vou + 93Ty 00 9y vvis Gg gy RERTXG, vy
Ky 1o

Ecrivons

f = xl': + tlxﬁ"l + okt eths= hox'r‘: + hlx';"l et hy

oﬂ tl, re 0y tk’ ho, h1, [N ] hmER[x‘l’ *say xn-1}-

De 1'égalité ci - dessus on obtient que h, =Jg1f1 + g2f2 e+ G
L] Xn_llo Donc hOE < fl’ sy fs-]_ >

fs-l ol Gps =eos gs_leR [xl, .

I - 1
ol nous avons noté par < fyy cees fap = 1 idéal engendré, dans 1'anneau

RIXqs «ovs xn-ll par Tes 8léments fq, ...» fou1e :
En suite, de 1'Bgalité hy + hoty = g fy ot 91751 O 81> ++vs 9y ,E
ER[Xys voes Xn-ll on déduit que h& < Fra eaes fs_1>. Par récurrence !
nous avons hgs hys <o hmE< Fpo ees f1” d'oli 11 résulte que !
!

X g hery x ]-
ht—:flﬂ[xl, . Xn] Forea +fs_1R[ ) .
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En conclusion IETIKERY fo.qs T est une R [Xis vovs X1 = suite conti-

enue dans p. L

Démonstration du théoréme 3.1 Soit r = dim R<w, Considérons Ta topologie

additive sur A : Fn wp s {ICA| I¢gp VpESpec A, ht{p)<n + r}. Soient

Ian+r et t = G(I).
Ainsi que dans le théoréme 5.5 [2], on montre qu'il existe un fdéal

premier pO1 tel que t = G(1) = G(p). Puisque pEF, .. alors ht(p)>n + r +1

y r vy

Alors 11 existe des indéterminges X , ..., X tel que ht(pnR [X
o GR Cl'.l

1
X D=n+r+ .
%R
En vertu du Temme 3.2 nous obtenons que G(pNR [xa s saes Nu 1) =n+l
1

k
d'ol i1 résulte que G(p)>n+l. D'aprés le théoréme 2,1, Qqs Qps coes Qn
sont des modules Fn+r' sans torsion. Comme A est an - noethérien, en ver-
tu du théoréme 1.6 [91 11 resulte que tous 01. (0<i<n) sont = ~ injectifs.

Quand R est un anneau noethérien arbitraire nous avons Te résultat

partial. "

THEOREME 3.2 Soft R un anneau noethérien arbitraire. Avec les notations

du théoréme 3.1 tous Qi (i>0) sont Fw - sans torsion ot F = N Fn‘
hz0

DEMONSTRATION. 11 est bien connu que Ass A = {pA | PEAss R}. Soit IE€F,.
Alors 1¢p pour tout p&Spec A avec ht(p) <, D'autre part si pehAss R

alors ht({pA)<e et donc 11 existe a9E L, a8 U q. Pour 1'&lément

. . . , gEAss A
ay 11 existe des indéterminés )(a s vees )(Ot tel que 3ERIX 4 ooy K 1,
1 r % %p
posons
RIX 4 ey X 1
I *1 e )
R alR[Xal. m’x“r] s A7 = A - {ay, rees o} et

A' = A/a,A. On voit que A' = A/a.A = R' (X ,] .
1 ! * aten
S1 on note 1" = I/a,A, 1'id&al 1' est de hauteur infini, Ainsi que

ci - dessus en remplacant R par R', i1 existe un &ément €1 tel que
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i,€l' et a, € U g'. Dans cette manidre on obtient la suite a,, a,,
2 2 q' hss A 1* %2
ETI AREY d'élément qui appartiennent & I et qui forment une A - suite.

Donc G(I}>n, pour tout nombre naturel n. En vertu du théoréme 2.1,

Fw - dR(A)En pour tout n»0. "
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ON THE SPECTRA OF LEFT STABLE RINGS

tzoltan Papp

George Mason University
Fairfax, Va. 22030, USA

0. INTRODUCTION. Let R be a left stable ring, R-sp

= {the collection of prime torsion theories on R-mod}
and Sp(R-mod) = {the collection of isomorphism classes
of indecomposable injective R-modules}. For a large
class of rings (e.g. D-rings, see J. Golan f1]) the
assignment X:F -+ X(F) is a bijection of Sp(R-mod) onto
R-sp, thus any topology introduced for one of the spaces
can be carried over to the other, The space R-sp (or

Sp(R-mod)) with an appropriate topology is called the
spectrum of the ring R. For an R-module M, x (M)} (§(R))

denotes the unique largest (smallest} torsion theory
relative to which M is torsion free (torsion}. The
notation FESp(R-mod) is used to denote both an isomox-
phism class of indecomposable injective modules and
representative elements of the class. A two-

one of the

sided ideal I is associated to an R-module M, I=ass(M),

if there exists a non-zero submodule N of M such that

741
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I is the annihilator of all non-zero submodule of N,
It follows that for any F&Sp(R-mod) ass(F) is a prime
ideal and for an element w€R-sp we can define ass(w) by
the equality ass(w)=ass(F) where m=X (F). The assignment
Oim-ass(w) maps R-sp to Spec(R) = {the collection of
prime ideals of R}. Given the Zariski topology on Spec(R)
and  the basic order topology on R-sp, 6 is a continu-
ous map whenever R is left stable, left noetherian Ting,
This result implies that the presheaf constructed on
Spec(R) by F. van Oystaeyen, [8), is in fact a sheaf for
the abeve class of rings. (It has already been shown in
[8] that this is true for prime left noetherian rings.)
A torsion theory t is called basic if 7= E(R/L)
for some left ideal L of R. The set {pgen(r) | 7 is a
basic torsion theoryl, where pgen(r) = {ré€R-sp | v=n},
forms a base of open sets for a topology on R-sp which

is called the basic order topology.

In the papers [3] and [4] the author showed that
the left stable rings are characterized by the fact
that the order relations in R-sp are in complete agree-
ment with the existence of non-zero homomorphisms among
the elements of Sp(R-mod), Namely, Hom(F,G) # 0 if and
only if X (G}=X (F) for any pair F,G € Sp(R-mod). Since
the basic order topology reflects the order relations
in R-sp one can expect that the above fact has its

consequences on the structure of the spectrum
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R-sp. In this note we are going to study a few of
these implications,

All rings R considered here will have identity and
each R-module is a unitary left R-module. The usual
notation E(M) denotes the injective hull of an R-module
M and the notation ER(M) is used if the ring R has to
be emphasized. For the unexplained concepts, resulfs,
terminclogy and notation on torsion theories we refer
to the book [1] of J. Golan, and only the most important

concepts will be defined in due course,

1. THE CONSEQUENCES OF THE DESCENDING CHAIN CONDITICN ON R~SP
Tet R be a semi - noetherian ring, then

any descending chain of prime torsion theories termin-

ates in finite steps. (See J. Golan [1].) In this

section we discuss a few consequences of this result,

one of which is the analogue of Theorem 7.6 of R.Gordon

and J.C. Rebson [2].

THEOREM 1. Let R be left stable semi-noetherian

ring. Then any descending chain of torsion theories
in the form §(F;® ... ®Fpl, F.€Sp(R-mod), terminates

in finite steps.

PROCF First we show that for any two F,G€ Sp(R-mod),

a proper inequality v (F)<¢(G) is equivalent to the

proper inequality E(F)<E(G). The stability of R implies
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that given X(F)<X(G), then E(F)=X (G}, thus E(F)=E(G)

cannot happen, If F is §(G) - torsion free, we have

§(G)=X (F)<X (G) which is a contradiction, hence the

only alternative is §(F)<§(G). The converse is similar.
We are going to show that the existence of an in-

finite sequence of strictly descending torsion theories

- >'...> >-.-
0 G‘n

o 1

of the form gy = E(Fi ®... ®F; } implies the existence
i

of a sequence

E(6g) > §(6;) >..> §(Gy) >...

where GiESp(R-mod} (i=0,1,2...) which, in turn, gives
a strictly decreasing sequence of prime torsion theories
in contradiction with Proposition 20.13 of J, Golan
[1].
Let S; = {E(F) | FESp(R-mod) and S(F)so;] and let
S; be the set of maximal elements of S}. Then §. is
a finite set. Indeed, if §(PJSUi, then F is Ui—torsion,
hence there exists an index k, ISkSni such that F is

E(FL)-torsion, otherwise F would be ECFi)-torsion free

for each k, thus o;-torsion free because
¢,=E(F] ®...® Fo =8PV VECF ). This means that
i i

E(F)SE(Fijsci, thus every maximal element in S% equals
to some of the §(F}) 1sk=n,, also o;=v{E(F)| £(F)es, 1.

We are going to construct the following infinite graph

6. Let the set V=U{Sili=0,1,...J be the vertices of
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G which is an infinite set. The vertices £(F) and

£(G) are connected by an edge if ECFJESi, §(G)ESi+l
and §(F)>§(6). We claim that if S(F)€S; and there is
an edge going out of the vertex §(F), then E(F)ﬁsj

with j>i. Let E(G)Gsi+1 and E(F)>§(G). Assume
§(F)€Sj, j>i, then the relations ci+léujz§(F)>§(G) con-
tradict with the definition of E(G), thus our claim is
proved. This insures that there are at most finite
many edges going out of any given vertex., Since the
sets 5y, i=0,1,2,..., are finite sets, for a given
§(F)€s;, the number of edges in any path leading from
some vertex in S  to E(F) is bounded. This implies
that there exists a longest path leading from some
element of S to E(F). If S(F)€S, we say the height of
E(F) is 0, otherwise the height of an element E(F)€V

is the number of edges in the longest path, Let define

Vk={g(p) | height of §(F) is k}. Then V=U{Vk|k=0,1,...]

and Vk is a finite set for each k=0,1,... . This follows

by induction from the fact that V, is finite and from

the above remark about the number of edges that going

out from a fixed vertex. Since V is infinite there

must exist paths with arbitrary length. An application

of the Kénig Graph Theorem insures the existence of an
infinite properly decreasing sequence of Torsion

theories E(Goj ~ 5(61)>"'>§(Gn)>"'as we claimed.

isr ¢

! !|l1|
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If R is a left stable left noetherian ring and L
is a left ideal, then the basic torsion theory §(R/L)=

E(E(R/L)) = §(F1@>...G)Fn). Thus Theorem 1 implies the

following result:

COROLLARY 1, Let R be a left stable, left
noetherian ring. Then any descending chain of basic

torsion theories terminates in finite steps.

REMARK. Let L be a left ideal of the left stable,
left noetherian ring R. A torsion theory of the form
X (R/L) is called cobasic torsion theory. By the above
method we can prove that the ascending chain condition
holds for cobasic torsion theories if and only if it

holds for prime torsion theories.

The torsion theory £(F), F€3p (R-mod) coincide with
the one that is called coprime by J. Raynaud, [6], if
R is left stable, left noetherian ring, because §(F)
is the unique minimal element of the set
{7€R-tors | X(F)fpgen(r)}.

Let P,Q € Spec(R), It is easy to see that
S(R/P)AE(R/Q)=E(R/ (P+Q)) = SIE(R/ (P+Q))] = S(F V.. .VE(F )
with FiESp(R~modJ, i=1,2,...,n, hence E(R/P)AE(R/Q)
is a finite join of coprimes, If this is true for every

pair of coprime torsion theories §(F) and £(G),

F,GeSp (R-mod), then we say R satisfies Propertz F, If
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If R is a left stable, left noetherian ring, Property F
has &an interesting consequence. Let I and J be left
jdeals of R. Then §[R/I)A§(R/J)=[§(F1)v...vg[Fm)] A
[§(61)v...VE(6))] =v{§(Fi)A§(GJ.); i=1,...,m; j=1,...,n}

where E(R/I) = F1® v ®F, E(R/J)=G1® 0 ® G direct
sums of indecomposable injective modules. If R has
Property F, then we can continue the change and obtain
the decomposition §(R/IJA§(R/J)=§(H1)V...v§(Hk) =
E(H;® ... 8H) where we have dropped all the

torsion theories which would have made the join

redundant. Let H, = E(R/L;), Ly irreducible left ideal,
we have that E(R/LiJ ®,..%9 E(R/ij = E(R/(Lln...nLk)),
thus, with the notation L=Lln...ﬂLk, the equality
E(R/I)AE(R/F) = E(R/L) shows that the meet of finite
many basic torsion theories is a basic torsion theory.
Consider R-sp with the basic order topology and

let Uy & Uy ©ovs <y, S be a strictly increasing

sequence of open sets. We can assume that Ui is a

finite union of basic open sets of the form pgen §(R/L),

and then the equalities pgenﬁ(R/Ll) u...U pgenE(R/Ln)=

pgen[g(R/Ll)A...A§(R/Ln)] and A pgen (r) = T change the

above sequence to strictly decreasing sequence of basic

torsion theories by the result of the preceding para-

graph. Corollary 1 contradicts this possibility, thus

we have the following theorem.
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THEOREM 2. Let R be a left stable, left noetherian
ring. Property F implies that R-sp with the basic order

topology is a noetherian space.

REMARK, A1l the examples of left stable, left

noetherian rings the author knows about, have Property F,

2. REDUCTION THEOREMS, Let R be a left noetherian,

left stable ring. We are going to show that the study
of the topological space R-sp can be reduced to the case
when R is a semi-prime (or even a prime) ring. 1In the
beginning we point to the importance of the prime torsion
theories x (R/P), P€Spec(R). Let start with the known
fact that for left noetherian rings R (or left D-rings
in general) the Rap P -+ Y (R/P) is an order reversing
injection, thus PSQ if and only if X(R/P)2 X (R/Q). 1If

R is left stable as well Hom(E(R/P), E(R/Q)) # 0 is
equivalent to X (R/P)2X(R/Q), and consequently, to‘PSQ.
This can be extended to include the other indecomposable
injective modules as well and it shows that the torsion

theories X (R/P), P € Spec(R), are the "local maximums",

PROQF. Let R be a left stable, left

noetherian ring. If FE€Sp (R-mod) and P=ass(F), then
X (F)=X (R/P).
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PROQF., Let P=ass(F) be the annihilator of the
submodule N of F and let L be a maximal element of the
set {ann(a)}a€N}. Then L is either a maximal element
in fann(b)|b€F} or there exists a maximal element I in
the latter set that contains L. It follows that I is
a critical ideal, F=E(R/I) and PcI, hence the epimorphism
R/P-R/I-+0 insures the relation Hom (E{R/P) ,F)#0, so we
can conclude that % (F)<X(R/P) by the stability of the

ring R.

PROPCSITION 2. With the assumption of Propositionl.
let F,G€Sp(R-mod), P=ass(F) and Q=ass(G). If

Hom(F,G) #0, then P<Q.

PROOF.  Let ¢ € Hom (F,G) and a€F with ¢(a)#0. By
Theorem 4.4 of B. Stenstrom [7] P2a=0 for some natural
number n, hence Pn(Ra]=Pna=0 as well. Thus
Pn¢(Ra)=@(PnRa)=0, hence PP annihilates a nonzero

submodule ®(Ra) of C. This implies that Pn;Q, and

consequently P<Q.

THEOREM 3, Let R be a 1eft stable, left noetherian

ring, N the prime radical of R and let R=R/N., Consider

R-sp and R-sp with the respective basic order topologies.

Then R is a left stable, 1eft noetherian ring and there

exists a bijection §=R~sp+ﬁ-sp such ¢ is a homeomorphism.
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PROOF. Let @ be the epimorphism ®:R~R/N=R and
¥*:R-nod=R-mod the restriction functor. [f FESp (R-mod)
and P=ass(F) then there exists a nonzero submodule
M of F such that PM=0, hence NM=( which implies that
F = {a€F|Na=0)#0. We claim that F is an indecomposable
injective E-module and the map Y:Fwf gives a bijection
Y:Sp(R—mod)~Sp(ﬁ-mod). If F€Sp(R-mod), then ﬁESp(ﬁ-mod)
and given H,HI,HZESp(ﬁ-mod) it follows that ﬁ;fE?ﬁ):H
and BR(CP*Hl):ER(fp*Hz) if and only if HI:HZ. It is also
Clear that the inverse map vl is given by Y'I:H+ER(¢*H)
and Ep(¢*F)ZF for Be€Sp(R-mod). Given F,G€Sp (R-mod), our
next claim is that HomR(F,G)#O if and only if HomE(F,a)#O.
Since E&q*?)QF, any map O#fGHomﬁ(F,a)can be extended to
a non-zero map in HomR(F,G). On the other hand, let
Homp (F,G)#0.  Since FA0 and F is X (G)-torsion free which
implies that niker f£|f €Homp (F,G)}=0, there must exist
an element fEHomR(F,G) such that f(f)#b. But f(ﬁ):ﬁ,
thus the restriction of f to F gives a non-zero element
in Homﬁ(f,ﬁ).

Consider a torsion theory 7€R-tors, The collection
of R-modules {MER~modl¢*M is t-torsion) gives the torsion
class of a torsion theory in R-mod which wili be denoted
ot r (See J. Golan [3] p. 85.) Since both R and R are
left noetherian rings the assignment ¥:F- %(F) is a
bijection for both rings. Thus the restriction of ¢#

to R-sp gives a bijection $:R-sp » ﬁ-sp. Also if
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McB-mod, then M is X(F)-torsion if and only if ¢*M is
% (F)-torsion, hence we alsc have @ﬁX(F)=X(F).

Now let H HZESp(ﬁ-mod) and HomﬁtHl,Hz)#O. Then

l’
H1=Fi for some FiESp(R-mod) (i=1,2) and HomR(Fl,Fz)#o.

Since R is stable, X(FZ)SX(FIJ follows and Proposition
9.1 of [1] implies that x(Hz)=x(F2)=cp#x(Fz)scp#x(Fl)=

X (F;)=x (i), hence R is stable by Theorem 2 of [3].

17
Finally, we are going to show that the map ¢ is a

homeomorphism if we use the basic order topologies in

both R-sp and R-sp. Any open set of R-sp 1s the union

of basic open sets, pgenf(R/I), I is a left ideal of R.

Since R is left noetherian, left stable ring,

E(R/1)=E(E(R/T))=5(F; ® ... ®F )=E(F))V...VE(E,), hence

pgen E(R/I)=pgen E(Fljn...n pgen §(Fn). This shows that

the set {pgeng(p)]FESp(R-modJ} is a subbase of the basic

order topology of R-sP.
The proof of the theorem will be
spgenk (F)=pgens (F), Let

complete if we

show that for any FESp (R-mod)
% (G) €pgent (F) . Then F is % {(G)-torsion, hence Hom (F,G)=0

which in turn implies that Homﬁ(ﬁ,G)=0 that is F is X(G)-

torsion and consequently x(ﬁ)ﬁpgen§[§3. The procedure

can be reversed which establishes our claim.

given & torsion theory T pspcl(r) = {n€R-sp|mstl,
If the left stable, left noetherian ring is prime, then

nique maximal (prime) torsion theory and for

X (R) is the U
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every torsion theery v, R is t-torsion free. In general,
let Pl,...,Pn be the minimal primes of R, then
X[R/Pl),...,x(R/Pn] are the maximal prime torsion
theories of R-tors. The following result can be estab-
iished by repeating the steps of the proef of Theorem 3.
It shows that the study of the spectrum of left stable,

left noetherian rings can be reduced to examine the

spectrum of prime rings since R-SpﬂpSpClX(R/Pl)U...UpSPCIX(R/PnJ

and pspch(R/Pi) is homeomorphic to R/Pi-sp (i=1,...,n).

THEOREM 4. Let R be a left stable, left noetherian
ring, P prime ideal of R, F€Sp (R-mod) and 1let F={a€r|Pa=0}
be considered as an R/P-module, Then the map 4:X (F)-%(F)
is a bijection §:pspch(R/P)+R/P-sp and becomes a homeo-
moxphism if we consider the basic order topology in R/P-sp
and the relativization of the basic order topology of

R-sp to the closed set pPspcl¥ (R/P).

REMARK. Recall the notation ass (m)=ass (F), where
meR-sp, n=¥ (F), FE€Sp (R-mod). Given PESpec(R) and
consider the subset (R-5p)p={r€R-sp| ass () =P} of R-sp
with the relative topology. Since (R-sp)P is homeo-
morphic to [R/P—sp)o, 0 is the zero (prime) ideal of

of R/P, it is enough to consider a Prime ring R and the

set (R-5p)0=€wER"SP | ass(m)=01, If =X (F), FE€Sp (R-mod) ,

then nE[R-spjo if and only if ne left ideal L of R with

FSE(R/L) contains an ideal. Let I be ap ideal of R and
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IcL. Then I(R/L)=0,thus ass(m)#0., On the other hand,

if ass(m)=P#0, then a left ideal L can be found such that
Pl and FSE(R/L). Indeed, let PN=0 for some nonzero sub-
module N of ¥ and let 07a€N. Then Pe(0:a)={r€R|ra=0} and
FZE(R/(0:a)). The set (R-sp)p resembles the spectrum of
a simple ring. Therefore, the study of left stable, left

noetherian simple rings seems to be interesting in oxrder

to learn more about the spectrum of left stable rings.

5. THE MAP R - SP~SPEC(R). The aim of this section X

is to show that the map ©:m+ass(w) is a continuous map

from R-sp with the basic order topology onto Spec(R)

This, in turn, implies that

with the Zariski topology.

the presheaf constructed by F. van Oystaeyen on Spec (R)

(see [8]}is a sheaf for left stable, left moetherian
Tings.

THECREM 5. Let R be left stable, left noetherian

ring. Consider the Zariski topology in Spec(R) and the

The map 9:w~ass(w) is a

pec(R).

basic order topology in R-sp.

continuous map from R-sP onto S

PROOF. Let C be a closed set in Spec(R). Then C

~{p€Spec (R) | radI=P},
o radl is a finite intersection of

- A a8 . Pt . . A .

where radl is the prime radical

of an ideal I, als
prime jdeals of R minimal over I, radI=P1ﬂ...ﬂPn. The |
inverse image of G B'l C= {wER-SPIass(w)Ec] and if
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P=ass (), P€C means P2P, for same 1<k<n. The stability
of R and Proposition 1 imply the inequalities

7S (R/P)=X(R/P, ). Consequently o-lc .
pspch[R/Pl)U...Upspc1X(R/Pn) which is the union of
finite many closed sets in R-sp, hence it is closed

itself. This proves the continuity of 9,

Theorem 5 has an interesting consequence. Let
0 be any open set in Spec(R). Then 0 = Spec(R)\C ,
where C is a closed set, thus it has the form
¢ = {P€Spec(R)[radIcP} for some ideal I of R. It
follows from the above discussion that 0 *¢ =
{m€R-splass(m)€ct = pspclx(R/Pl)U...Upspc1X[R/Pn) where
rad I = Plﬂ...ﬂPn. If P is a prime ideal of R, then
R/P is either torsion or torsion free with respect to
any torsion theory, hence the equalities pspch(R/PiJ =
= supp (R/P;) (i=1,...,n) follow., Since R-sp\supp(R/P)=
pgenS(R/P), we conclude that the inverse image of the
open set ¢ has the following form: 6710 =
pgen§(R[P1)ﬂ,..ﬂpgenE[R/Pn) = pgen§[R/P1)V...V§(R/Pn) =
pgen§(R/(Plﬂ...ﬂPn)) = pgen§{R/radl) = pgenE(R/I). As
a consequence, we have A 8 10 §(R/I) which is the
torsion theory one uses to construct the ring of quotients
in the construction of the presheaf on Spec(R), (See

F. van Oystaeyen [8).) The construction of the presheaf

on R-sp uses the same torsion theory since the assignment
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is: U~ QAU(R) for an open set U of R-sp. Consequently,
for any open set 0 of Spec(R), 0 = {p€Spec (R) | PPradl},
the assigned ring of quotients QI(R) = QE(R/I)(R) =

QAe'la(R) is the same object which is assigned to the
inverse image 010 of 0 in the construction of the

presheaf on R-sp, By Theorem 1 of [5] the presheaf
constructed on R-sp is a sheaf if R is left stable, left

noetherian ring, thus we have the following result.

COROLLARY 2. Let R be a left stable, left noetherian

ring. The assignment QI(RJ = QE(R/IJ (R) to the open
set 0 = {PeSpec(R) | P pradl} for an ideal I of R is a
sheaf on Spec(R).

n of left stable, left

Therefore, the collectio

noetherian rings is another class of rings, besides the

class of prime noetherian rings (see [8]),for which the

presheaf of E. van Oystaeyen on Spec(R) is in fact a

sheaf.
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ON GALOIS EXTENSIONS OVER COMMUTATIVE RINGS
George Szeto

Bradley University
Peoria, 111inois
UGSIRI

0. INTRODUCTION

Let B be a commutative ring extension of a subring A with an auto-
morphism group 6 (= {o}) of order 2 such that (1) 2 is a unit in B, (2)
jz = -1, jb = o(b)] for o in G and b in B, and (3) the set of elements g8
i B fixed by o 15 A (8% = A). S. Parimala and R. Sridharan (61 ) shoved
wtension over A if and only if Bi@AB[j] is isomorphic
pder 2 over B, MZ(B) (161, Proposition 1.1), vhere

he sense of Chase-Harrison-Rosenberg ([2] }.

that B is Galois e
with the matrix ring of 0

the Galois axtension is in t

We shall generalize the above characterization to cyclic Galois extensions

from the point of split
uch that (1) G is cyclic generated by o

ko = oXb)i¥, 3" = -1, and (3) B€ = A.

(G is cyclic) ting rings for Azumaya algebras. Let

G be an automorphism group of B s
of order n snvertible 1in B, (2) J
is over A then Bﬁ'AB[j] = Mn(B).
ver, we shall discuss amnon = cyclic case :

phism group of B such that @ is a non - cyclic group

If B is Gale The converse holds when n

is prime. Moreo
Let G be the automor

of order 4 invertible in B, G = {a)(B)s that 1,j, and k are the usual

757
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quaternions with ib = o(b)i, jb = g(b)j, kb = as(b)k, and that g% - A.
Assume each maximal ideal of B is G - invariant. If B is Galois over A then
B(@AB (i, j, k] = M4(B). The converse holds when none of the following
algebras is commutative : B/M@ABH], B/M@AB[j] and B/M@AB[k] , for

each maximal ideal M of B.
1. BASIC DEFINITIONS

Let B be a commutative ring, and A a subring of B with the same

dentity 1. Then B is called a Galois extension over A ([2]) with a

finite automorphism grouwp G (Galois group) i (1) there exist elements in
B, {aj, bi/i =1, 2, vvss n for some integer n} such that Eaibi =1 and
Eai°(b1) = 0 whenever o # 1 in G, and (2) the set of elements in B fixed
under each element in 6 is A (BG = A}. For characterizations of Galofs
extensions, see (2] or [3]. Let S be & ring, and R a subring with the same
identity 1 (not necessarily commutative). Then S is called a separable
extension of R if there exist elements in S, {ci’ di/i =1, 2, ..., n for
some integer n} such that (1) a(2c1®d1) 2 (Eqi®di)a for each a in S,

where @ is over R, and (2) Ecidi =1 {[56]1, Section 2, Definition 2.

S is called an Azumaya R - algebra if it is separable over R and {ts center
is R([1] and [3])). A commutative ring extension B over R is called a
splitting ring for the Azumaya R - algebra S if B@Rsa HomB(P,P) where P
is a progenerator B - module ([ 3], P. 63). We shall employ the following
facts :

PROPOSITION 1. (3], Theorem 5.5, P, 64) Let S be an Azumaya R - algebra,
If 8 is 2 maximal commutative subalgebra in § (that fis, sf - B, the
commutant of 8 in S is B) and 1f it qg separable over R, then it 95 a
splitting ring for S.

PROPOSITION 2. ([31, Proposition 1.2, P.81) Let B be a commutative ring
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extension of A. Then, B is Galois over A with the Galois group G if and
only if (1) 8% = A, and (2) for each o # 1 and maximal ideal M of B, there
exists an element b in B such that (b - o(b))EM.

As a consequence of Proposition B, the ideal generated by {b - o(b)}

for all b in 8 is B for any ¢ # 1 n G.

2. MAIN THEOREMS

This section will include a generalization of & theorem of Parimala and

Sridharan ([6], Proposition 1.1). Let B be a commutative ring with 1, G

an automorphism group generated by ¢ of order fi invertible in B, and A = BG,

We define an algebra over A, B[J1, such that (1) B[J]is a free B - module
with a basis {1, Jy +ees @) 5t = -1, *b = ak(b)jk for all b in B

and each positive integer k, and (3) multiplication is distributive over
addition.

LEMMA 2.1 1
such that B is maximal commutative subalgebra of B[J].

£ B is a Galois extension over A, BIj1 is an Azumaya A - algebra

ter of B(J] is A. Let En o{byd ) for
(2b,Jd )j, that is,

PROOF. We first claim that the cen
b. in B be an element in the center. Then j(ZbyJ )

Ea(bk)jk+1 a Zb jk+1 Since {1, Js «e» " 1} form a basis over B,

a(b,) = by For k = 0, 1, +ovs =1, The automorphism group G 1s cyclic

generated by o such that B = A, so bk are in A, Also, (zbkak) (Ebkjk)a

.k amgk -
for each a in B, so Zabd" = £b o (a)J . Hence bk( g"(a)) = 0. But

B is Galois over A, SO Propesition 2 in Section 1 implies that by =

for each k # 0
This proves that the center of B[J] is A,

laim that Brj] is a separable €
" 1)) satisfies the equations : xu = ux

Next we C xtension over B. In fact, the
e

n-1
element X =(Unﬂ1@1-z 1“ @ j atis!
for a1l u in BLJ] ...(1), and (1/n)(1 - 233"y =1 ... {2). For any b in
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B, xb = (1/n)(18b - 2(j 8™ b)) = (1/n) (10D - 3(51 86" (5)57 1)) -
(1/n)(16b - 3(5%™ bY@ ™)) = (/n)(18b - 5(bs @M T)) for the
tensor product is over B and o” = 1 in G, bx = (I/m}(b®l - E(bjiﬁbjn'i)),
so xb = bx for each b in B. 3" = -1, so X3 = 3x. Thus xu = ux for all u
in B[J1. The second equation is clear, Moreover, by hypothesis, B is
Galofs over A, so it is separable over A ([3], Proposition 1.2, P. 81).
Thus B[J] is separable over A by the transitivity of separable extensions
([51, Proposition 2.5). Therefore B[ j] is Azumaya over A.

Further, we claim that B 1s a maximal commutative subalgebra of B[ j}
by showing that the commutant of B in B{j] is B. Let Ebkjk for bk in
B be an element in B[ J] such that a(Ekak) = (Ebkjk)a for each a in B.
Then, }:abkjk = Ebkck(a)jk, and so bk(a-ak(a)) = 0 for each k. Thus
Propos1t1on B in Section 2 implies that bk 0 for each k # 0. Thus
(8151)°
THEOREM 2.2 I B is Galofs over A with a cyclic Galois group G generated
by o of order n invertible in 8. Then B@AB[J] given in Lemma 3.1 is

isomorphic with the matrix ring Mn(B) of order n over B,

PROOF. By Propos1t1on A and Lerma 2.1, B®A(B [j ]) *‘HDmB(B[J » B[31)

where (B{J]) is the opposite algebra of B[j] ([31, Theorem 5.5, P, 64).
Since B[J) is a free B - module of rank n, HomB(B[j] » BLJ1) arﬂn(B),
a matrix algebra over B of order n. But then, taking opposite algebras on

both sides, we have B@,B[J] E(Mn(B))O5"~1"',,(|?'), where the second isomorphism

is the transposition hap of matrices, (]

To show the converse of Theorem 2.2, we start with a Temma.

LEMMA 2.3 Let B be a commutative ring with 1, and G the automorphism group
(= {o)) of order n invertible in B such that 85 = 4. 1¢

B@AB[j] EMn(B), BIJ) is an Azumaya A - algebra.
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PROOF. Since B is a commutative A - algebra and Mn(B) js an Azumaya

B - algebra, B@AB[j] = Mn(B)) is Azumaya over'B ; and so it suffices to
show that A is an A - direct summand of B by Corollary 1.10 in [3], P.46,
In fact, let Tr be the trace map such that Tr(b) = Z Gk(b) for k = 0,1, ...
n-1. Since B = A, Tr (b) is in A for all b in B and (1/n) is also in A,
Clearly, the imbedding map Im : A~B has an inverse map {1/n)(Tr). Both

Im and {1/n){Tr) are A - module homomorphisms, so A is an A - direct

summand of B. Thus B{j] is an Azumaya A - algebra. "

LEMMA 2.4 Let B be a commutative ring with 1, and the automorphism group
( = {}) of order n invertible in B such that B - A. Assume each maximal
ideal of B is G-invariant. If B®AB[j]aMn(B) and if B is not Galois over
A, then there exist a maximal ideal M of B and an integer k=1 such

that B/M®AB [dk] is a commutative subalgebra of B/M@AB [il

PROOF. Since each maximal ideal M of B {s G-invariant, jM = Mj ; and so

MB[j] is an ideal of B[j]. But B[j] is Azumaya over A by Lemma 3.3, so

MB[j] = mB[j] for some ideal m of A by a well known fact for Azumaya

algebras. Noting that {1, Js «vo» j"'l} is a basis over B, ve have M = mB,

Now B is not Galois over A, sO there exist a maximal ideal M of B and an

automorphism & for some k such that (b - ck(b))EM for all b in M
(13], Proposition 1.2, P. 80). Hence ck(b) = b + ¢ for some ¢ in M, This

will imply that (B/M)wAB[jk] is a commutative subalgebra in (B/M)®AB[;j].

In fact, 103 =
(note that m = MNA), € = 2 c;cy for some C; in mand c; in B. Thus
k

- § in B/M® B[] . Therefore, 16 = T@b]

i@gk(b)jk - i@(bq.c)jk - Tobi* + I®cjk. Since M = mB

- - . f
Toci® = 5(E ®C.5|Jk) or

all b in B, This jmplies that (B/M) @AB[
rse of Theorem 3.2 when the order of ¢ is a prime

jk] is commutative.

Naw we show the conve
|

integer.
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THEOREM 25 Let B be a commutative ring with 1 and G the automorphism aroup
{ = {¢}) of prime order n invertible in B such that B = p. If

B@AB[j] zMn(B) then B is Galois over A.

PROOF. Assume that B is not Galois over A, there.exists a maximal ideal M
of B such that MB[J] is an ideal of B[j). In fact, Proposition 1.2 in

[3] implies the existence of a maximal ideal M of B and an 9integer g such
that b - aq(b) are in M for all b in B, Hence oq(b) = b + ¢ for some ¢

in M, and so o9(b) is in M whenever b is in M. By hypothesis, n is prime, so
o generates G. But then cmq(b) is in M for all integers m, and hence M is

G - invariant. Thus MB[J] is an ideal of B[j]. Now, Lemma 3.4 (which holds
when this particular M is G - invariant) implies that B/M@AB[jq] is a
commutative subalgebra of B/MGDAB [j]. Since n is prime such that jn = -1,
BI3Y1 = BLJ1, and so B/M®WB{J] (= B/MOB{3Y]) is commutative. On

the other hand, BGJAB[;]] a'Mn(B) by hypothesis, so B/M@AB[j] aMn(B/M)
which is an Azumaya algebra over B/M. Thus B/M@AB[jq] is never commutative,

a contradiction. Therefore B is Galois over A. "

The aTgebra given in Theorem 2.2 is derived from a cyclic Ga]ois‘
extension B over A, Now we give an algebra derived from a non - cyclic
Galois extension. Our result is another generalization of the theorem of
Parimala and Sridharan, Let B be a commutative ring with 1 and with a non -
cyclic automorphism group of order 4 invertihle in B, where the group
G = (a)(B) such that a2 = 62 =1, and B¢ = A.

We define an A - algebra B[4, j, k], where i, J, and k are the usual
quaternions such that (1) ib = a(b)y, jb = g(b)i and kb = (a8) (b)ks
(2) BLi, 3, k] s a free B - module with a basis {1, 1, 3, k}, and (3)

multiplication is distributive over addition.
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THEOREM 2.6 L B is Galois over A with the above Galois group. Then (1)
Bli, 3, k] is an Azumaya A - algebra. (2) B is a maximal commutative
subalgebra of Bi, j, kI. (3) B®AB[1', gy kI %M4(B), a 4 by 4 matrix

algebra over B.

PROOF. Considering B as a subring of B[, J, k1, we claim that B[1, J, k]
is a separable ring extension of B. let ¢ = (1/9){101 - i@ - j&] - kOk)
(for 4 is a unit in B). Then ie = (1/4)(1@1 + 181 - kO] + j&k), and

ef = (/B)(1®i + 1@+ i®k - k®j), where @ is over B. Hence ic = ei.
Similarly, je = e and ke = ck. Also, for each b in B, be = (1/4)(b @1 -

- bi®f - bj®j - bk®k) and eb = (1/4)(10b - i®fb - j&jb - kokh).

I

Noting that 18b = b@1 (for ® is over B), i®ib = i®a(b}i = ja(b) @1
- 2(b)i®i = bi®i, j6ib = bj®J and kOKb = bk ©k, ve have that ex = Xe

for a1l x in BIi, d» k1. Also, (1/8)(L - i2 . 5% - k) = 1. Hence

B[i, §, k] is separable over B. But B is Galois over A, so it is

separable over A. Thus B[1, J» k1 is separable over A by the transitivity

of separable ring extensions.

Next, ve show that the center of B[, J» ¥] 18 A. Let

X = ag* azi + 335 + a4k be an element in the center. Then bx = xb for
each b in B. This implies that ay(b - (b)) = 0, aglb - (b)) = 0 and
= 0 by

a4(b - ag{b})) = 0. But B is Galois over A, s0 ay = 33 = &

Proposition B in Section 2. Thus 3, = X. Also, ali = 1a1, alj = ja1 and

- G .
alk = kal’ 50 8y = u(al), ay = s(al) and a; = us(al). Since B” = A, 3y is

in A. Thus x is in A, Clearly, A is contained in the center, 50 A is the

center.
For part (2), we ¢laim
t in the commutant,

that the commutant of B in B[, Js ¥) is B. Let
x be an elemen The proof of part (1) implies that x is in

B. Clearly, B is contained in the commutant.
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Part (1) and part (2) Jmply that Ba,(B[1, J, k])OEHomB(BH, s k1,
BI1, §u K1) (131, Theorem 5.5, P. 64), where (B[4, 3, k110 is the
opposite algebra of B(1, §, k]. Since B[, j, kI is a free B - module

of rank 4, taking opposite algebras on both sides, the proof is completed,
n

As given in cyclic Galois extensions, we can get a similar fact to
Lemma 2.4 with a slight modification of the proof of Lemma 2.4,
THEOREM 2.7 Let B be a commutative ring extension of A with a non - cyclic
automorphism group of order 4 ( = («)(8)) invertible in B such that 8C = A.
Assume each maximal idea] of B is G-invariant, If B‘DAB[i, Js k1 an(B)
and 1f B is not Galois over A, then there exists a maximal fdeal M of B
such that one of the following algebras is commutative :

B/M@AB[i],B/M&AB[j]andB/M@AB[k].
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A NONCOMMUTATIVE THEORY FOR PRIMES

Jan Van Gee)

University of Antwerp
U.1.A,

0. INTRODUGTION

There have been some attempts to generalize the theory of vaiuations
(primes) in fields to the case of rings. In[2] D.K. Harrison expounded
a theory which enabled him to obtain some nusber theoretic resuilts

for commutative rings. The main objects in this theory are not the

so-called "primes

The relations between primes and valuation pairs are studied in[2].

Harrison primes in noncommutative rings were studied only in some special

cases ; e.g. in [6] primes inm

atrix rings over locally finite fields

are characterized and in [ 12] some results in finite dimensional algebras

over fields are obtained, but only for primes containing a basis for the

algebra (i.e. "spanning” primes).

Using a weaker definition of primes, Connell constructed a functor

(cfr. [11), which i

related primes in the non

g a transformation of Spec. Van Oystaeyen studied
commutative case (cfr. (51, [10], [11]) he also

obtained some qumbertheoretical properties for so-called (semi) restricted

cannot expect to obtain a valution theory for non-

primas. However oné

767

" ut the valuation pairs introduced by Manis in[3], [4].
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commutative rings in this way since (as mentioned in (81) the extension
theorem for primes does not hold.

In this paper we study, more general primes in noncommutative rings
(these include all other given definitions 1),
For these primes, the 'extension theorem" does hold ; all results of papers
cited become special cases of our theory here. We characterize all primes
in central simple algebras over arbitrary fields and the result on matrix
rings over locally finite fields, cf. [6], 9s a trivial conseguence,

Many thanks to Freddy Van Oystaeyen for some useful suggestions.

1. SOME GENERALITIES ON PRIMES

Let R be an arbitrary ring with unit. Ye are interested in couples (P,R')
satisfying :
DEFINITION 1.1 1) R' is a subring of R

i1) P is a prime ideal in R
111) If XR'yCP with x,y&R then xep or yep

(PsR') with these properties is called a prime in R. P is called the kernel
and R’ the domain of the prime.
We are only interested 9n nontrivial primes, i.e. P £ R', This definition
generalizes the primes studied in [81, the couples studied there will now
be referred to as belng complete primes. [t is obvious that in case R s
commutative both definitions are the same, Some of the properties for
completely primes are now being restated for general primes ; the proofs
are easy adaptions of the former Ones, so we refer to [B) for most of them.
LEMMA 1.2 Let P be an additive subgroup of Ry Which is multiplicatively

closed, define

R = (rep I PPCP and Prcp)
then R s a subring of R and P is an ideal in RP.
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PROOF. straightforward, .

Recall that a subset S of a ring R is called an m-system iff for 5428, €S
there is an X€R such that sleEES. A prime ideal in a ring is then
exactly an ideal which 1is the complement of an m-system.

We call a subset S of a ring R an m-system for T, with TCPR, iff for

Sqs So €S there is an X€T such that syxs,€S5.

PROPOSITION 1.3 If (P,R') is a prime in R then R\ P is an m-system for R'.
Conversely : If P is an additive subgroup of R_which s multiplicatively
closed and such that R\P is an m-system for RP then (P,Rp) is a prime

in R.

PROOF. The fact that R\ P 1s an m-system for R' follows from the third
condition in Definition 1.1,
In view of Lenma 1.2 the converse is also obvious because RP\ P is an

m-system (for Rp) since R\ P is an m-system for RP and this again is

equivalent to condition iii) in Definition 1.1.

REMARK 1.4 Let (P,R') be a prime in R. Then also (P,RP) 1s a prime in R
and R'CRP.S0ifPisa kernel of prime in R then RP 45 the maximal domain

for it. If no domain is mentioned for a prime P of R then it is understood

that (P,RP) is considered.

mwmnmNLsthMapMmianthmisawmewaWof

R contained in P. pO js the maximal ideal of R in P.

PROOF, One easily verifies that p0 = (xeR IR x RCP} is the desired ideal,

cfr. Proposition 1.4 in [8].

Notation and terminology.
Denote by Prim R the set of all kernels of primes in R, i.e. :
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Prim R = {R[P is a prime in R}. Clearly Spec RCPrim R and {f we

endow Prim R with the (Zariski) topology defined in [81, then it follows
from 1.5 that Spec R is dense in Prim R. However in the noncommutative
case Prim R is not necessarily a functor from Rings - Top.

Let R be a subring of a ring A then we say that a prime (Q,A') in A
is lying over a prime (P,R') in R iff QNR* =P and A'NROR'. If
m = (P,R') is a fixed prime in R we define :
w-PrimR(A) = {Q1Q is a m-prime in A} = {Q 1Q is a prime in A lying over
T},

Clearly if P is a prime in R and Q a prime in A, then Q lies over P
whenever QNR = P and Rpc:AQ, i.e. ¢ is a left and right RP - module, in
this case we have AQF1R = RP,

COROLLARY 1.6 Let RCA, (P,R') a Fixed prime in R then QCA is a P-prime
in Aiff;

1) 9 is a left and right R' - mdule

2) QnR =P

3} ANQ is an m-system for AQ.

PROOF. This follows easily from the definitions an Proposition 1.3. L

DEFINITION 1.7 A prime (PsR') is called special iff for all xe R\ R' there
s a MEP such that AxeR', A prime (PsR'} is called semi-restricted iff
for all XxER\ R' there is a A€P such that AxER'\ P. ¥ RCA,
m = (P,R') a fixed prime in R then a w=prime Q in A is called
n-special, and m-semirestricted 1ff one may take A in P,

Note that the correct terminology would be left-special, left-semi-
restricted bitsince we do not use these conditions on the right the

introduced terminology will do. Prime ideals in a ring are obviously

semirestricted primes in it.
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2. EXISTENCE AND EXTENSION OF PRIMES

In [8] completely primes in algebras over rings were studied. It is
mentioned there that in the noncommutative case the existence of
completely primes is not guaranteed {cfr. p. 19).

The main example is the following.

Take A = Mn(ﬂ), A a skewfield, n # 1., Suppose (P,A') is a completely
prime in A, let &3 be matrix units in A, Then for i # J, LI 0ep
50 eijeP and ey = RO for J #£19 so eﬁEP but since 1 =2 e,., we

j
have 1€P which means P = A'.

In this section we shall prove that with our defintions, extension of

primes from the groundring to the algebra considered is always

possible. As an example, all primes in a matrix algebra over a field will

be constructed.
Throughout we consider aTgebrés A over a groundring R with unit, for

simplicity sake we assume RCA.
If S, R are subsets of A then

§<T> stands for (xeA|x =2 s‘iti’ SiES, tieT}
where T is the mul tiplicative closed set generated by T.

THEOREM 2.1 Let A be an R-algebra, = = (p.R') @ fixed semirestricted

prime in R. Let BCA and MCB satisfy the following properties 3

iy Bpcp<B> and BR' CR' <B>
§i) p<B>nNRCPp

iii) M is a m-system for B

v} R'\ pcM

V) Mﬂp<B> = ¢
uch that pAM = ¢, BPCP, PBCP and

Then there is 2 1-prime P in As

RAP = p.
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PROOF. Let 8 = {Q 1Q a 1eft and right R' submodule of A which is
multiplicatively closed, such that MnQ = ¢, BGcqQ, QBcQ and RNQ =

A straightforward computation (cfr. [8], Theorem 3.7) shows that

P0 = {x€AI xR'< B> Ccp<B>1} is an element of S.

In view of Coroliary 1.6 we only have to prove that A\ P is an m-system
for AP,

Let x,y €A\ P and suppose xApyCP. Nefine :

de = {z |z is a finite sum 001: elements of the form ajxe,x ... LALLIELY

eAPy and P g=P LetP =2 P ., then P is clearly a multiplicatively
] .l 0 !

closed Teft and right R' - medule containing P and x. Define P‘y in the

same way.
. p
Since BCA¥ we have BPxC Px and PxBCPx’ also BPyCPy and P BCP But P

was maximal in S so P (P ) satisfies P.NM £ ¢ or P,AR £ p (PynM # o or

PynR £ R).

If P, AR £ p take rern(R\p), i.e. there is a » # 0ER' such that

y)

Ar€R'\ pCM but also Ar€P, ; so PXOM # ¢. Analoguously we deduce PynM#¢.

We now show that PxﬁM # ¢ and PynM # ¢ Teads to a contradiction. Choose

m P NN and myGPyﬂM, i.e.my = fo(x) (X)Lt f (x) with f.
F(x) &Py g My = 9ply) + 9y (y) + .00+ gy (y) with gy (y) &Py 45 s0 that
n and t are minimal. Since xApyc:P we have Px ':Py JcP fm-. all
i=ji=l.

Lﬁ:ctnat and let s B be such that mysmeM then (my - go(y))smx = he
€%, Px,k’ 50 m, smy = go(y)smx + h and go(y)smxep (since MCBCAP),
contradicting the minimality of n, "

COROLLARY 2.2 Take A,R,r as in the theorem, then : n-PrimR AE .

PROOF. Take B = M = R'\p, then 1) to v) are trivially fulfilled. -
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REMARK 2.3 Let us discuss the consequences of the theorem in some special

cases

1) 1f R is a subring of the center of A then the first condition may be
omitted.

2) If R is a field, R' has to be a valuation ring with maximal ideal p
(cfr. [81, p. 8) and this is always semirestricted.

3) If we only want to prove the existence of a prime in A then the
conditions i) to v) may be replaced by 1€M and 0¢M (cfr. [8], theorem
2.2).

Characterisation of primes in matrixrings over fields.

Let A be a matrixring over a field K, then A is isomorphic to an

endomorphism ring of a finite dimensional K-vectorspace V. We wil] describe

all primes lying over a Fixed vatuation ring Oy in K. In case K is the

center of A all primnes restrict to a valuation ring of K, so we will have

a characterisation of the primes in A. Since the commutativity of K shall

not be used in the proofs, primes in a matrixring over a skewfield D

which restrict to a valuation ring in D, 1.e. primes in simple Artinian

algebras, may be characterized {n the same way.

PROPOSITION 2.4 Let A = EndKV and (MK,OK) a valuation in K. If L.W are

O¢ - submoduTes of Us N;L and MKLCH then P = {a€A la(L)CH} is a

prime in A lying over MK'

PROOF. Clearly P is an OK - submodule of A which is multiplicatively

—irp—

¢losed. Supposé kePNK,
So PNK = MK(MK
at A\P is an m-system for AP,
y in L such that a{x) #W and B(y)&W. Consider

g2 V-V ka(x}—ky for all keX

k &My then k"léoK and we have L = k'lkLck'lwc:u,
cP by hypothesis). Using Coroilary 1.6

a contradiction.
Take a,8 EA\ P, then

it remains to prove th
there are alements X and

the following nomamorphism 3
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z~0 for all x€V\ Ka(x)
if vEKa{x)NL, v = ka(x), k¢ 0, then (" ku(x)eMKLcw, a contradiction.
S0 Ke(x)nL
to Ke{x)NU

[ 14

OKa(x), this yields n(L)COKyCL. A similar argument leads

Mea(x), which yields »(W)cW. It is now obvious that «PcCP,
and PrcP, i.e. vcAP, But gua(x) = By} #W, so Bna®P since xel. ]

PROPOSITION 2.5 Let P be as in Proposition 2.6, then AP = (e €A | a{l) cL
and o(W) CUl.

PROOF. Suppose ofW) €W and oPCP and PacP. There is an x€W such that
a(X) &W, consider the homomorphism
m: V>V i ky->kx for all k€K, yel\ ¥

z=0 for all z€V\ Ky
then LNKy = Opy (cfr. Proof of Proposition 2.6), so n{L)ClW or neP,
but ar{y) = o{x) W, contradiction.

Also, a{L)¢L leads in a similar way to a contradiction. Conversely, the

other inclusion is trivial, .

LEMMA 2.6 Let P be a prime in A, Then there is an element x€V such that
VEPy,

(Px is the set of all images of X under the action of elements of P).

PROOF. Let «a€A and consider the subspace Ker(l+a) of V. Choose B&P so
that dimKKer(1+B).2dimKKer(lw), ¥ a€P, If Ker(l48) =V then 1 + 8 = 0
this would yield 1€P which is impossible. Take xeV\ Ker(1+8) and put
v = (1+8)X. Suppose that v€Pv. Then there is an element Y €P such that
7(v) = v. Consider (1-y}{14g), the kernel of this morphism contains
Ker(1+g) and X, so dimKKer(1+B-7~'rB)>dimKKer(1+B). This contradicts the
fact that g-y-yg€P and dimKKer(1+s);dimkker(hq), ¥ P, .
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LEMMA 2.7 Let (M,,0,) be a Ffixed valvation ring in K, (P,AP) a prime
in A lying over (MK,UK). Then P 1s a maximal ideal in AP,

PROOF. Consider AP/P as an OK/MK - vectorspace. If {vy, ...y v 1 is
k - independent, OK/MK = k, then any set of representatives for {vl, vees vn]
in AP is K = independent {cfr. Proposition 1.1 in[91]). Therefore

(AP/P : KI<[A : K]<, 50 since k is a field AP/P is simple artinian,

this entails that P is a maximal jdeal. n

If P is a prime in A, and vEV such that véPy (cfr. Lemma 2.6) then put
L= {x€V]a(x)EPy, ¥ o €P].
It is obyious that Pv (=W) and L are 0, - modules such that Pvci;L,

MKLCPV.

LEMMA 2.8 Let P,L,W be as above then !
1) ¥ ac AP : ofL)CL and a(M)CH.

2) {LycHlL implies BEP.

PROOF. 1) Suppose ¢€ aP then Pa(L)CH but this yields a{L) CL by definition

of L. Now oP CP yields aPvCPv,

2) Take g €A such that B(L) CMgL. In view of the first part of this

Temma and the K = linearity of the maps we have ApBApLCMKL, If ApBAp¢P

(otherwise the Temma is proven) then APaAP + P = AP by the maximality
o there is a 7 €APRA"

v) = Vo -,T(v)e‘MKLCH, with 1€P. Therefore =(v) €W,

of P (Lemma 2.7}, S such that v-1€P, We then have

rLChL inplying 7(

y(v) €W yield vEH, contradiction.

We now are able to prove that (with the above notations) P = {a€A a(L}CH}.

this characterizes all prime in A.

Together with Proposition 2.4
mma 2.8, Then P = {a€A]a{l) CH}.

PROPOSITION 2.9 Let P,L,H be as in Le
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PROOF. It is obvious that PC{a€A la(L)CH}. Take t€{aEA | a{l) cU}.
Consider : = : V=V : kv-+kv for all kek

z+0 for all zeV\ ky.
Like in Proposition 2.6 a straightforward computation shows that KvnlL = DKV
and Kvnll = M, Therefore :
m AP eAP n(L)cn AP e AP(LY P g(L) cn APQH) (W) CMpvem ]
(Lemma 2.8, 1)). Lemma 2.8, 2) yields : n AP £ AP wCP and since v @P

we must have ¢ AP rcp ; for the same reason : zePp, "

COROLLARY 2,10 The primes in A which restrict to the valuation pair (0,K)
in K are given by the sets {a €A (L) CW where L and W are K - subspaces
of V, Wg L}

This corollary reestablishes the result of [6]. Here maximai primes as

defined by Harrison are considered in matrixrings over locally finite

fields only,
3. THE RELATION WITH OTHER THEORIES OF PRIMES

In this section the relationship with the theory of Harrison primes,
(2], [31, [4), (6] and [12] 15 described. We wil] reestablish the main
results for our generalized primes |
DEFINITION 3.1 A subset P of a ring R is called an Harrison prime
(H - prime) iff it is maximal with respect to the following properties
it is closed under addition and multiplication and neither containing -1

nor 1.

LEMMA 3.2 Let P be a H - prime in R it is an additive subgroup of R and
X PyCP and xyCP yields x€P or yEP,

PROOF. cfr. {12], Lemma 1.1, .
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PROPOSITION 3.3 If P is a H - prime in R then it is a prime in R.

PROOF. Suppose x RPy<CP, then clearly x P yCP and xycP this yields

XEP or yEP. .

REMARK 3.4 1) The propesition may also be derived directly from the

Extension Theorem 2.1.

2} The converse is obviously not true, since prime ideals are

prime but they are H - primes iff they are maximal

3) From [7] it follows easily that all primes are H = primes
in case R is a global ring (i.e. a subring of a global number field).
Note that in section 3 of [12] Warner imposes a supplementary condition

(i.e. "spanning") on H - primes in algebras which is necessary for

studying extensions of H - primes. Our definition of special primes has

the advantage that it is not linked to the finite dimensionality of the

algebra. Recall :

DEFINITION 3.5 Let A be a finite dimensional algebra over a field K, then

a H - prime P is called spanning if it contains a K - basis of A, i.e.

KP = A,

PROPOSITION 3.6 A @ K - algebra, K a field and [A 3 K1 <= A prime P

in A contains a K - basis 1ff it is = - special, where m = (M,0) is the

underlying valuation in K.

prime in A and let {Uugs +o» un} be a K =

PROOF, Let P be & m - special
hn in K such that

bacis for A. Then there are elements Aqs oo

i i eM,\ {0} we get
{AX Uy ax u }CP, which is sti11 a K - basis since K is a vield.
1 RN ] n n | p
Conversely, Tet {vys +eo» vn}CP a K - basis for A Take XxEA\ A” then
=1 .
: i i eM,, Consider
X =2 livi and there 15 2 hj not in 0K 50 lj K

i=1
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-1, 1o . -1 . b
Aj X = iil aj sV if one of the Rj Aj 1s not in 0, we repeat the above,
i.e. multiply with the inverse, which is in M¢s of that element. This can
be done untill every coéfficient is 1n OK' So we found an element r in My

such that rxe AP, "

REMARK 3.7 The above proposition still holds if A is a finitely generated
algebra which is a free module over a commutative domain R and if one
considers primes in A lying over special primes of K,

The commutative interpretation of Warner's paper [123, is the vaTuation
theory develloped by Manis in [3] and [4].

DEFINITION 3.8 Consider pairs (Q,S) where S is a subring of R and @ 2
prime deal in S. These may be partially ordered by defining

(Q,8)= (Q',5') iff SCS' and Q' NS'= Q.

The maximal pairs with respect to this order are called valuation pairs.

We connect this theory to ours.

In what follows R is a commutative ring,

PROPOSITION 3.9 The valuation pairs of a ring R are exactly the semi-

restricted primes in R.
PROCF. Theorem 2.1, and [31, Proposition 1. "

REMARK 3.10 From Theorem 2.1 follows now immediately that semirestricted

primes extend to semirestricted primes, since every pair (Q,5) s contained

in a maximal one.

With every valuation pair in R there is a valuation associated {.e. a
map v : R—+T, I' an ordered group, such that

1) v(xy) = v(x)vly) V xyer

i) v(x+y) <max{v(x),v(y)} ¥ x,y€R.
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This valuation is defined as follows :

v(x) = {z€R{ [P : z2lp ={P : x]R}and
v{x) € v(y) 1FF v{x)2v(y)
v(x)v(y) = v(xy).

0 1

Note that P” as defined in Proposition 1.5 is equal to v~

(v(0)).

Let A be a commutative R - algebra then one says that a valuation v on R
extends to a valuation w of A iff there is an order preserving homo-
morphism ¢ of the respective ordered groups such that w lR = ¢ 0V, In
terms of primes this is equivalent to PSCPWCPV (cfr. [4], Proposition 4),
By this one can recover the extension theorem for valuation from our
Theorem 2.1, In terms of primes this theorem says :

PROPOSITION 3.11 (cfr. [41, Proposition §). Let A be an R - algebra (p,R")
a semirestricted prime in R then there is a semirestricted prime

(P,AP} in A lying over (p,RP}. (cfr. Remark 3.10). The valuation induced

. 0 0
by (p,R") extends to the one induced by (P AP) ifE PTOR = p7,
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1. INTRODUCTION

F.A. Szdsz has raised the following problem (in a Jetter) :

Jetermine the structure of all (associative) rings R such that

(1) R/1 =R
for any ideal I # R. The class of rings satisfying (1) will be called K.

Clearly all simple {prime) rings are in K.

An example of a non-simple ring which belongs to K is the ring [Z(ﬁ”)]°,

the zero-ring with as additive group the quasicyclic group of type p, p

a prime number, In section 5 we will construct a non-simple non-zero-ring

in K {Theorem 10).
A hereditary class is a class ¢ of rings such that for any ring A and

any ideal I in A one has : AeC-I€C,
K 4s not a hereditary c1ass, since the ideal [Z(p )]°of [Z(p ] © does not

belong to K. One has : [Z(P y1°/ [Z{p)] ox[Z(p)]°¥ [Z(p }1°. The class K

is obviously homomorphically ¢losed.

A class C has the extension property if I R, 1€C, R/IE€C imply REC.

783
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Again, K does not have the extension property since

(Z(p)1° €K, (Z(0)1° 1Z{p2)1°, [2(p%)1°/ 1 Z(p)1° €K but [Z(p2)1° & K.

Hence the class K s neither a radical class nor a semisimple class. e

will show that, aside from one exceptional, case, (the ring [Z(pw)]°),

the additive group " of every ring REK is either a divisible torsion-free

roup or a reduced p-group for some prime p (Coro}lary 3). We also show

that if REX with R2 # 0 then R is a prime, hereditary fdempotent ring

(Theorem 1),

For any ring REK the ideals of R form a well-ordered set (Lemma 5). This

s a crucial property and it enables us to prove one of our main results :

Every ring in K is a strong chain ring (Theorem 6). Here a ring R will be

called a strong chain ring if it satisfies the foliowing two conditions :

(2) For some ordinal v the set of all ideals of R can be written
ma%<q<7 ,waeHuCHﬂifandOMyifogasaiv,and

(3) For afa éziy we have Ha+1/Ha =H for some ring H which is either simple
or a prime order zero-ring.

From this definition it follows that Hy = 0, Hy =H, H? = R and that for

g any Timit ordinal HB = U H.
a<fp a

If R = Hre K then one might ask what kind of an ordinal ¥ must be. In order
to statethis properly we define :

An ordinal v 1s called a prime component ordinal or a prime compohent if

f +7 =7y forall g<y (see [6], p. 282).

Another main result is now :

Let REK 50 the set of all fdeals of R can be written {HG}USQST for some

ordinal v. If 0<7 then Hy§ K if and only if 0 is a prime component (Theorem
13).

2. PROPERTIES OF THE RINGS IN K.
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a) Any ring REK is subdirectly irreducible.

PROGF, Let REK and suppose R subd?‘r‘ect Ri’ where the Ri are subdirectly
jrreducible. Then R contains a class of ideals {B1.} such that N B, = 0 and
R/Bi HF?.1 for all i. Since N B, = 0 at least one of the Bi £ R and

R/Bi = R implies RxR., 50 R is subdirectly irreducible.

b) Any ring REK is unequivocal, i.e. for any radical Q, R is ejther Q-

radical or Q-semi-simple.

PROOF. Let R€K and suppose Q is an arbitrary radical (in the Kurosh-Amitsur

sense). Let Q(R) # R so R is not a Q-radical ring.

Then R/Q(R) =R implies that R is Q-semi-simple. K is a proper subclass of the

class of all unequivocal rings since K is, for instance, homomorphically

closed but the class of unequivocal rings is not.

Also [Z()1°, the zerc-ring on an infinite cyclic additive groups, is

unequivecal {[11), p- 682) but [Z{=)1° & K.
¢) If REK then either R = 0 or R% = R

PROOF. Assune that RZ # 0. If now R™ # R then R/RE R inplies that RC = 0,

which is not the case. So R2 = R.
if and only if R is a zero-ring, i.e. R = 0.

d) A nilpotent ring R is in K

. Z
PROOF. Let R be a non-zero nilpotent ring in K. Then R2 4 R. By {¢), R = 0.

e) A zero-ring is in K if and only if either R+=—‘Z(p°°)(quasi-cyc'l'ic group
rime num=

of type p) or R+¥Z(p) (cyclic group of order p}, where p isap

ber.

PROOF. From (a) we get that the saro-rings in K are exactly the subdirectly

e ot - .
irpeducible ones. S0 a zero-ring REK if and only if R* 15 a subdirectly

' . +:¢ )
irreducible abelian group. This means : REK i and only if R =Z(p ) or

R+§Z(p).
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REMARK.
This result was also obtained by Sz&1pdl (7] for abelian groups.

f)} The only rings with unity in K are simple rings.

PROOF, Let REK have a unity. Then R has a maximal ideal M. From R=R/M
we get that R is simple. This also shows that if there exists a (non-zero)
non-simple ring R in K then R cannot have maximal ideals.

2

g) ATl non-commutative rings in K are idempotent, i.e. R® = R,

PROOF. Obvious from (c).

h) If REK and R® = R then Ann (R} = 0 and Amn, (R) = 0.

PROOF. Ann(R) = (XER |Rx = 0} is an ideal in R. Sfnce R’ = R we have
R% #0 so Amn_(R) # R. Then R/Ann (R) =R.

Let R = R/Ann (R) and suppose X€ Ann_(R}. Now Rngnnr(R) implies R%x = 0.

But R% = R so Ry = 0, which means x& Ann_(R) or X = T. Then Ann (R} =0

and since R&R we get that Ann (R) = 0. Similarly Anny(R) = 0,

3. A PARTITION OF THE CLASS K.

Divinsky has studied the structure of unequivocal rings. Theorem 4,
p. 680, of his paper [1) reads :
There are four kinds of unequivocal rings :
(1) divisible tersion-free,
(1)  reduced torsion-free,
(i1i) divisible p-rings,
{iv)  reduced p-rings.
Here a ring R 1s said to be “reduced" if its additive group R" is re-
duced (no divisible subgroups) and similarly R is divisible, torsion-free
or a p-ring if RY s divisible, torsion~free or a p-group resp.

We now investigate whether all of these four classes contain rings from K.
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We first show

THEOREM 1. If REK and R2 = R then R is a prime hereditarily idempotent

ring, i.e. for any ideal I in R we have 12 =

PROOF. Let H be the heart of R. We claim that W2 4 0 since if K = 0 the g

ring R would have a non-zero nilpetent, hence 1ocally nilpotent, ideal and ;
!

so being unequivocal, RE L where L is the Levitzki locally nilpotent radical.

Now Tet 0 # x €H then since Annr(R) = 0 and Ann, (R) = 0 we have Rx # 0 é

so RxR # 0. But then RxR CH CRxR is an ideal in R so H = RxR. This implies

that 0 # x = Euixv for some finite set {u; ’Vi} and this is impossible in

a locally n11potent ring. Thus H # 0 and if A,B are non-zero ideals of R
then 0 # H CAB so R is prime. In particular R has no non-zero niTpotent
ideals so if I is an ideal in R W1th I #R then 0 # R/I xR and R/I has
the niTpotent ideal 1/1%. Thus /17 = O that is 12 21 for all ideals 1

of R.

PROPOSITION 2. Let RE K, then
A} R is not & reduced torsion-free ring, and

3) 1f R is a divisible p-ring, then RZ = 0.

PROOF. Let REK be a reduced torsion-free ring. Since R+ is reduced there

is a prime number P such that pR # R. Clearly pR is an ideal in R and as

REK we get R/pR =R. However R/pR is a p-ring whereas R is supposed to be

torsion-free. This contradiction chows that the ciass £ does not contain

any reduced torsion- -free ring and (R) 18 establ
e claim that every divisible

ished.

Next suppose that R is a divisible p-ring.
,yER. Since p* is a p-groups P Ay = 0 for

n-ring 1s a sero-ring. Take X
is divisible. Hence

some power of P. Now ¥ = P N, for some zER, since -y
xy = x(p"2) = ()2 =

R=[Z(p )1°by (&)

0. Requiring that RE K implies that
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COROLLARY 3. If REK and R® =R then either R is a divisible torsion-free

ring or R is reduced p-ring.

PROOF. Obvious from Proposition 2.

So the only interesting classes in K are
(i) divisible torsion-free,

(iv) reduced p-rings.

Jefining the following subclasses of K :

Kl = {REK IR s divisible torsion-free)
Ry 1 = (REK | RY is a reduced p-group}
Ky = (REKIR" is a divisible p-group},

we now get a partition of K :
K =K1UK2UKy

The simple rings in K are contained in K1 it they have characteristic zero and
in I<2 if they have characteristic p. The prime order zero-rings are in KQ’
the zero-rings in K are contained in the ¢lasses K2 and K3. K3 consists

entirely of zero-rings, whereas Kl contains only prime rings.
COROLLARY 4. The only commutative rings in K are zero-rings or fields.

PROOF. Let R be a commutative ring in K. Then either R® = 0 or R = R{(c)).
If R = 0 then either R™ 2Z(5"™) or &' 2Z(p)((e)}. In the First case
R2[Z{p )] °(& K3), in the second case R=[Z(p)] ° (e KE)‘ Now assune R® = R.
Then R is a prime hereditarily idempotent ring (Theorem 1) and Tet H be the
heart of R. Since H2 = Hand H is a simple commutative ring it follows

that H is a field. If R is not simpTe H # R. But then H has a unity implies
that H is a proper direct summand of R. This is impossible so R must be

simple. Consequently R = H s a field.
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4, THE STRUCTURE THEOREM

In order to find a non-simple, non-nilpotent ring in K we first investi-

gate the idealstructure of the rings in K. The cructal point is

LEMMA 5. For any ring RE€K the ideals of R form a well-ordered set.

PROCOF. If R2 = 0 we know that either R+EZ(p°°) or R+§Z(p) and the lemma
follows with either RE"-[Z(pW)°]0r'R¥[Z(p)]°. Otherwise R2=R((c)) and R is
hereditarily idempotent prime ring (Theorem 1). let H be the heartof R, ther
H is a simple ring. First we show that the ideals of R form a totally
ordered set. For any ideal I # R in R we have R=R/1, so any ideal I # R

is a prime ideal. Then supposé I1 and I2 are two proper ideals of R. Since

N1, is a prime ideal of R, 1112C11r'1l2 implies either Ilgllﬂlzgl2

L
or Izc IlnIECIl' Thus the ideals of R form a totally ordered set.

Now to show well-ordering let S be any non-empty subset of the ideals

of R with A = (B¢ I #R. (If A =R then of course § = {R} has a least

element R). Then R/A=R so there exists B/AxH.

Thus there exists some [€S such that BZ L. Since the ideals of R are

totally ordered it follows that I<B. But AcI and since B/A is simple

it follows that A = I€5 and so A is the least element of S.

THEOREM 6. Every ring in K is a strong chain ring.

PROOF. Again if R& K and RZ = 0, i.e. either Ra[Z(p")1° or RE(Z(P)1°

the ring R satisfies (2) and (3) of the definition of strong chain ring

of the introduction. The rings H of (3) is now a prime order zero-ring.

Then let REK and R;3 = R. Since the ideals of R form a well-ordered set

it is clear that there exists an ordinal ¥ such that the set of

(1emma 5)

all ideals of R can be written {Ha}O:’:afar’ where H,CH,
ow let o<7y. Then H #H = R so R/H =R

if and only if

0<a<p<y. S0 g satisfies (2) N
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Also Ha+1/Ha is minimal in R/Ha , hence H{H_l/HuaH, where H is the heart
of R, for all ordinals e« <y. As R is a prime ring, H is a simple ring.

Thus R satisfies (3), hence R is a strong chain ring.

REMARK 1. It now follows that ]<1 is contained in the class of all strong
chain rings with characteristicOand that K,UK; is contained in the class
of all strong chain rings with characteristic p for some prime p.

REMARK 2. Whether the converse of Theorem 6 is true we do not know. Clearly
v must be a limit ordinal unless +¥ =1 and R = Hy. In the final section we
will show that v must be a prime component, (Theorem (3). Also note that

if R“-*[Z(p“)]" for some p it follows that R = Hm and 7 = v.
5. A NON-SIMPLE, NON-NILPOTENT RING IN K

In the next Temma we give sufficient conditions for the ideals of a ring

R in order that REK,

LEMMA 7. Let R be a ring which is a sum of a countably infinite set of
ideals H., i = 0,1,2, ... with Hy = 0 and where the H; are the only ideals
of R. Also assume that H = Hy is simple and that HigHj if and only if
0<i<],

Let there exist a set of isomorphisms b5 Hi+1/H"'H for all i>0 which

are 'compatible”, that is ¢. = ¢, . for all i>1.
i

Then for al}l n, R/HHER, so Re K,

PROOF. Let ¢ : R=R/H be the natural homomorphism and write ¢ NPT

H1+1 i1

for all 1>0. Then o, maps H1+1 onto Hi for al1 i>0. Now the mapping
=V ay R-R defined by a(x) = u,i(x) if x€ HT.Jrl is well-defined, by
compatibility, since ®is1 = o (i>0).

i

Moreover o is a homomorphism of R onto R, and « maps H.

¥l onto Hi‘ Finally,
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o maps Hisn onto H, and Ker o = Hn'
It follows thatEl!R/Hn for all n. This completes the proof of Temma 7.
Now we show that there exists a non-simple, non-nilpotent ring in K. The
example is a primitive ring tzﬁt is artinian relative to two-sided ideals
but not noetherian. Let W= U W, where each I has ordinal w, be a
basis of a vector space V of1:éuntab1y infinite dimension over a field F.
nelative to this basis, matrices of linear transformations of V will consist
of doubly infinite arrays of blocks each with {countably) infinite rows and
columns. Call a matrix bounded row Finite 1f for some n it has no more than
n columns containing non-Zero elements. It is clear that K, the ring of all
linear transformations of finite rank of V, 1is jsomorphic to H, the ring

of all bounded row-finite matrices over F. According to an example, due

to T.S. Shores [4], we might relabel W and form the ring H, of all

A 0W

4) + H

. ‘)

where A is some bounded row-finite matrix repeated in every diagonal w by

w block. Then H = H; js 1somorphic to the ring of a1l matrices of this

block form. Also Hy is an ideal in Hy and Hz/lefH, [4]
cess assuming for induction that we have & sub-
(k = 0,1,25 «+0s

Now we can centinue the pro
ring Hn with H = H1<1H2<1H3<1 oo SRy and all Hk+1/HEHk

n-1) with HO = 0. Let B Hy (written relative to the basis W) and again

relabel the basis. Form the ring Hn+l of a1l
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r N
B
B
5) ' + H.
. C)
Now H<1Hn+1, so any non-zero ideal of Hn+l must contain H. Let = : Hn+1 -

—+Hn+1/H be the natural map then the non-zero ideals of Hogq @re H and ideals
of the form J = n"l(d'), where J' = J/H is an ideal of H_,/H. But
Hn+l/HH}#land we can go by induction to Hn for any n. Now we show that

each Hn is actually contained, as an ideal, in Hn+1‘ Assume for induction
that H; <4H, ...<¥Hn_l<lHn, vhere Hk+1/H‘—*Hk for k = 0,1,2, ..., n-1. By
induction we know that we have in Hn every matrix Qc-‘--h|n__1 (relative to the
W-basis). Using again the construction (5) and reordering we can form the

set of all

J
Since H ;<M it follows that the above set is an ideal of “n+l' But this

is exactly the way we form Hn’ that is, Hn*QHn+1. The idea here is that,
start1Tg with H _, and H we can build H, and Hn/HEEHn~1'
Now = “(H_/H) = H_gives us H, as an ideal in Ho41+ Thus by induction we get
the whole seguence of Hn and we can let R = U Hi'

Now we claim that R has all the required properties of lemma 7. Indeed the
H, are totally ordered in the strictly ascending chain : H = HICZHZC -
CH CH 1S« and, by construction, Hk/HEHk_1 for any k = 1,2, ... . It
is also clear from the construction that the isomorphisms are compatible

since
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r
h

/

The ring H = H1 is a simple ring. In order to show that the Hn are the
only non-zero ideals of R, we need
LEMMA 8. Let R = U H; be the above ring. If AEH, but A¢H, then for

each k<n there exists some CER such that ACGHk, ACE Hk-l'

PROOF. This 1s (vacuously) true for n = 0 and for induction assume it for

n. Then suppose ;ﬁut':JHM1 but Aan. Now
B

A= + 1,

\,

where 1€H, BE Hn but B%Hn_l. By induction, for any k<n, we have CER

such that BCEH,, BCEH ;. We get
k k-1 . , \
[ ¢ BC

(A-1) = € Hen

L . 4 \ /

and suppose it were in Hp Then
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BC D W

" . v L ) /
where D€ Hk-l' But Il has finite rank so eventually we get BC = D contra-
dicting BC ‘%Hk_l.

Since s h

) e} = H1 we have A EHk+I

4

b / ' )

but ¢ H, for all k + 1<n + 1. Thus induction is complete,

THEOREM 9. Let J be a proper ideal of R then J = Hn for some n.

PROOF. Since H = H1 is simple and every non-zero ideal of R contains linear

transformations of finite rank it follows that HiCJ. Row J # R so there

exists some n such that H CJ but w1 EJ. Suppose Hn # J then there would
be some A€ J with AEH_ but Ag Ho-1 for some m>n. By Temma 8 we then have
AC&J with ACEH _; but AC¢}%k2 so without Joss of generality we may
assume A€ J with AGH - but A¢ H, But in R = R/ we know Fn+1 = Ho /M
is simple so for any BE H,4q ve have B = ? Ei ITJ'i for some Ei’ D',iEF{nH.
Then Z €, A D, =B + W for some WEH, CJ. But also 2 C; AD € so we

i i
would arrive at the contradiction Ho,1 9. Thus we conclude that Ho = d.

We can now state

THEOREM 10. There exists a non-simpie, non-nilpotent ring in K.

PROOF. The above ring R = U H1. satisfies a1l the conditions of Lemma 7
by Theorem 9.
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6. PRIME COMPONENTS

The following lemma is probably well-known.

LEMMA 11. If a ring R is hereditarily idempotent then every accessible

subring of R is an ideal of R.

PROOF. 1t suffices to show that if JdI<R then J4R. But if J' is the

ideal of R generated by J then by the AndrunakieviE Jemna, J' = J'BEJEJ'

so J'<R. An ordinal v is called a "prime component” (see [6], p.282) if

g+ y=7 for all 8<7 (or equivalently, if g+ oy forall a<y,

g<7 ),
We then have
LEMMA 12. Let REK so the set of all ideals of R can be writtan {H_}
e 0<a<y

for some ordinal v, and Ha-C-HB if and only if « <B.Theny is a prime

component and if we let <y and let f be the jsomorphism ¥ : R/HB!R

then f(H B+°t/H ) = Ha for all ¢<7.
PROOF. Suppose p<7 then by well-ordering there exists some (in fact unique)

0<y such that 6+ B =7r. Now f(HB+0/H } =0 =H and for induction assume

that for a given ordinal ¢ <9 we have f(H gt /H ) = H, for all a<¢. If &

is a 1imit ordinal then so is g+¢ and HE+¢ u:¢HB+a'

= U = U H =H,.
Thus f{Hg . 4/Hg) a<¢f(HB+m/ g) s e

Otherwise ¢ = o + 1 for some & with F(HBM/HB)
¢. Thus the induction is complete

= Ha. But Hs+u+1/HB is a

simple extension of H» namely H yq =
for all $<B so in particular f(R/HB) = f(HB+8/HB) = Hye But then Hg = R =

= H, 50 in fact 8 = 1, that 157 15 @ prime component and f(HBﬂz/HB) = H,

for all a<7.
THEOREM 13. Let REK so the set of all jdeals of R can be written
f g<y then Hy€ K if and only if 8 is a

- Ly . I
{Ha}0$a§_7 for some ordinal ¥
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prime component,

PROOF. Suppose first that @ is g prime component for some 8<7. By Lemma 11

a proper ideals of HB is HB for some <6. Then g + 6 = 9 sp by Lemma 12

we have the isomorphism

f(HB/HB) = f(Here/Hﬁ) = Hy and so Ha S K,

< - ] )
Conversely, for any 85y the set of all ideals of HB 1s {Hs}Ofsf_G and if
Hg €K then for any 8<@ there exists an isomorphism f'(He/HB)'EHG. But 1in
the proof of lemma 12 it is clear that we can substitute 8 for 7 and f!

for f to obtain the result of the lemma, namely that 0 is a prime component,

As & corollary we get

COROLLARY 14, Let REK so the set of all ideals of R can

fHa}DSaE"r' If R is not simple or a prime order 2er0 ring then v>yu

and H €K,
{1

be written

REMARK 3. The existence of 3 ring R = H‘r in K with y>u is an open question,

7. APPLICATIONS

In this final sectign we collect some results of a miscelianeous

nature.

L. Let R be in K where RZ = R and Tet Rn be a matrix ring over R for some

n. It is wellknown that the ideals of Rn are of the form Un where U

is an ideal in R. Suppose Un # Rn, then U # R. Hence R/U%R and
Rn/Un —-(R/U)n imply Rn/Un"Rn’ so R €K,
. In answer to a question of R. Gilmer and M. O'Malley [2] a non-commuta~

tive ring S 1s constructed by J. Hausen and 4.4, Johnson [ 371, such that

5 does not satisfy the a.c.c. on two-sided ideals, byt every proper

two-sided ideal I of S satisfijes the a.c.c. In fact, for every proper

two-sided ideal I of S, the lattice of all two-sided ideals of T is

finite. S has a countable infinite set {‘]1'}’ 1=1,2, .., of proper
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non-zero ideals and S has no other ideals. Also J; is simple, S =W J;
3

and J1CIJ2 ...C.JnC .. S0 5 satisfies all the conditions of Lemma 7

but not the last one, i.e. J. /4y is not isomorphic to Jiﬁiﬂ)-

From J /‘ledi for some i>0 we would get J1'+1/‘J1' 2Jy. But this is

i+l
impossible, since Ji+l/di is a simple ring without minimal one-sided

ideals [8] , whereas J1 is a simple ring with minimal one-sided ideals.

By Theorem 6 {or Lemma 12) SgK.

However, the ring R of Theorem 10 provides us with another example of

a non-zero ring, which does not satisy the a.c.c. on two~sided ideals,

but every proper two-sided ideal Hn of R satisfies the a.c.c. By Lemma

11, Hn has only the set {HO =0, Hl’ cevs Hn} as its ideals and

hence satisfies the a.c.cC.

For a class M of rings write UM = (R | every 0 # R/I§H}

It is well-known that if M satisfies the condition : If REN and

0 # ]<4R then some 0 # I/JEM, then UM is radical in the Kurosh-Amitsur

sense and UM is called the upper radical defined by the class M. The

condition is trivially satisfied if M is a class of simple rings.
Now let M be a class of simple primitive rings without a unity. Suppose

KEM has minimal one-sided ideals. Then K is isomorphic to a ring of

linear transformations of finite rank of a yector space V over a field

F. First suppose that dimV = ?ﬁ. Then, by construction above, we can
y ideal I # R.

embed K as an ideal of a ring R such that R/I =R for an

ke M, K4R, but R has no non-zero image in M.
t hereditary. Next suppose that

This means : By [5 3

Theorem 1] we conclude that UM s no

dim V 3>3N%. Take a subspace VO of V dimension ?b. It can easily be

seen that K is isomorphic to the ring of Tinear transformations of Yy

of finite rank. Again we get that UM js not hereditary.

Thus we conclude :

N
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THEOREM 15. Let M be a class of simple primitive rings such that at least
one of the rings in M has no unity. A necessary condition for UM is
hereditary is that each of the rings in M without a unity has no minimal
one-sided ideals.

The first-named author has constructed a simple primitive ring K without
unit, without minimal one-sided ideals and with characteristic 2 such
that if M = N U {K}, where N is a class of simple rings with unit, then

UM is hereditary if and only if L,€N, (to appear in Perjodica Math.

Hungarica).
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