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INTRODUCTION 

This remark answers the two problems raised in [2]. As in [4], we use the 
recent techniques of [3] and [5] of the representation theory of finite-dimen- 
sional algebras. It seems that these techniques provide methods of solution, 
as well as proper understanding, of such classification problems, 

3. FIRST PROBLEM 

The first problem of [2] asks for normal forms of 27n x 2n complex 
matrices with respect to W-similarity. Here, two complex 2m X 2n matrices 
A,A’ are said to be W-similar if there exist formally quaternionic invertible 
(square) matrices P, Q such that QA = A’P, and a complex 27n X 2n matrix P 
is called formally guatemio7zic if each block in its natural partition into 2 X 2 
blocks has the form 

with a&EC, 

where E denotes the complex conjugate of c EC. 

In order to solve this problem, one may just follow the general procedure 
presented in [4] and illustrated there on the classification problem of 
27n X 2n real matrices with respect to C-similarity. There, the problem was 
reformulated as the classification of real linear maps between two complex 
vector spaces. Similarly, in the present problem, we are concerned with the 
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&-&fication of complex linear maps rc/ between two quatemionic vector 
spaces V, and W,. It is easy to see that this is equivalent to the clas~ifi~a- 
eon of pairs of linear maps between two quaternicnic spaces. Indeed, the 
C-linear maps 

are in one-to-one correspondence with the H-linear maps 

and 

where the direct summends are generated by 18 1 - 160 i and (I@ 1 + i @ j) i 
= l@i - j@Ie (here l,i, j,k is the standard basis of W,). 

Thus, as in [43, we just translate the classification of the indecomposable 

representation of the species W 
H@H 
- W into matrix language (choosing suit- 

able bases). Using the terminology and results of [3] and [5], we know that 
the subcategb *y of the homogeneous representations is the product of a 
uniserial category with one simple object and the (also uniserial) category of 
all finite-dimensional modules over the polynomial algebra W[X,, and we can 
obtain the simple objects of these categories from the Addendum of [3]. Thus 
we get the following 

THEOREM 1. Every (nonzero) complex 2m x 2n matrix is W-similar to a 
zero-augmented product of matrices of the following types: 

(i) 2( p + 1) X 2p matrices (p = 1,2,. . .) 

c 

El 
E__, 

0 

El 
E-1 El 

E -1 

Y 

0 

3 

El 
E-1 
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(ii) the corresponding transposed 2p X 2( p + 1) m&rices (p = 1,2,. . .), atu! 
(iii) 2pX2p matrices (p=l,2,...) 

EC El 
7 

EC 4 0 
. . . with c=a+bi, a>@ 

0 ‘E, ‘E, 

i EC 

where 

EC = l-c 0 
0 l+C 

farcoanplexc and E= 

These matrices are Windecomposable (i.e. not W-similar to a proper direct 
product of two matrices), and in the &composition of a complex 2m x2n 
matrix, they are determined (up to their or&) uniquely. 

2. SECOND PROBLEM 

The second problem asks for normal forms of 4m x 4n real matrices with 
respect to W-similarity. Here, two real 4m :<4n real matrices A,A’ are said to 
be W-simihr if there exist formally real-quatemionic invertible (square) 
matrices P, Q such that QA = A’P, and a real 4m X4n matrix P is called 
fonna!Zy real-quaternionic if each block of its natural partition into 4 X4 
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blocks has the form 
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--c -d 
d -c 

h 
-;: (1 I with a,b,c,d ER. 

Snnilarlv to the first problem, the W-similarity classes of real 4nt X4n 

matrIce\ correspond to the isomorpbism classes of reai linear maps between 
two quaternionic vector <paces, and agam, since HWwC3&fl,~lH14, they 
correspond to the isomobphism classes o f representations of the species. 

W 5 CO. It is well known that this problem is “wild,” so that one cannot 
expect a satisfactory normal form. For the benefit of the reader, we repeat 
here the argument. 

Given any real 4nt x 4n matrix A, let 

End,(A) = {(P, Q)I P, Q formally real-quatemionic 
matrices with QA = AP} 

he its W-fmtimrtorphism ring (the rir .g operations are componentwise). It is 
clear that for W-similar real 4m X4tz matrices A,A’ the R-algebras End,(A) 
and End,(A’) are isomorphic. 

THEOREM 2. For atzy finite dimensional Ii&algebm R, there exists a red 
4rt1~4n matrix A with End,(A) isonwrphic to A. 

Proof. Let R be generated by rl,. . . ,rn. We will consider the left 
multiplication by r1 BS an element of End,(R), and denote it also by rl. It is 
easy to check that the centralizer of the two m x m matrices 

I 0 

i 
*= + 

0 
\ 

1 

0 1 
0 

and /.3= 

0 

1 

r1 

G 
1 0 

. . 

0 

. *. 

r 1-l 1 0 

r, 1 0 
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in End,(X), with 

X=fltR and m=n+2, 

is just the set of A-multiples of the identity, and thus isomorphic to R (see 
[l]). Consider now Y, = X,@ &!,. The centralizer of l@i and l@ j (where 
i,i denote the corresponding left multiplications on W) in End( Y,) are the 
elements rp@l with cp EEnd(XJ; thus the centralizer of 1 @i, 1 @i and 
a@l+/?@i in End(Yr.J will be isomorphic to R. However, this centralizer 
is precisely the endomorphism ring End,(A) of the real 4m x4m matrix A 

corresponding to the representation 

l@l 
lC31 
181 

(a@l)+( Pat) 

Y H--Y&i 

of o-o%. 

It follows from this theorem that a classification of real 4nl X 4n matrices 
with respect to W-similarity is impossible: it would lead, at the same time, to 
a classification of all finite-dimensional R-algebras. 

3. CONCLUSION 

Note that the first “open problem” is in fact, as we have shown above, a 

special case of the situation considered in the same paper [2]. It may perhaps 
be proper to emphasize two different objectives in dealing with classification 
problems: One is to find normal forms for a given problem; the other, usually 
easier objective is to show that two given problems have the same normal 
forms (modulo various discrete series of forms). The main theorem of [2] is a 
result of the second type (whereas the above solution of the first problem is 
of the first type). Let us remark that in such a situation, no simple normal 
form of matrices need exist at all-the classification of the similarity classes 
of matrices over a division ring seems to be a very difficult problem. On the 
other hand, the normal forms of matrices of discrete dimension type can 
always be listed [5], even in the “wild” situation of the second problem. 
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